--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/native/sun/security/ec/ecp_mont.c Tue Aug 11 16:52:26 2009 +0100
@@ -0,0 +1,223 @@
+/* *********************************************************************
+ *
+ * Sun elects to have this file available under and governed by the
+ * Mozilla Public License Version 1.1 ("MPL") (see
+ * http://www.mozilla.org/MPL/ for full license text). For the avoidance
+ * of doubt and subject to the following, Sun also elects to allow
+ * licensees to use this file under the MPL, the GNU General Public
+ * License version 2 only or the Lesser General Public License version
+ * 2.1 only. Any references to the "GNU General Public License version 2
+ * or later" or "GPL" in the following shall be construed to mean the
+ * GNU General Public License version 2 only. Any references to the "GNU
+ * Lesser General Public License version 2.1 or later" or "LGPL" in the
+ * following shall be construed to mean the GNU Lesser General Public
+ * License version 2.1 only. However, the following notice accompanied
+ * the original version of this file:
+ *
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1
+ *
+ * The contents of this file are subject to the Mozilla Public License Version
+ * 1.1 (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * Software distributed under the License is distributed on an "AS IS" basis,
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
+ * for the specific language governing rights and limitations under the
+ * License.
+ *
+ * The Original Code is the elliptic curve math library.
+ *
+ * The Initial Developer of the Original Code is
+ * Sun Microsystems, Inc.
+ * Portions created by the Initial Developer are Copyright (C) 2003
+ * the Initial Developer. All Rights Reserved.
+ *
+ * Contributor(s):
+ * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
+ *
+ * Alternatively, the contents of this file may be used under the terms of
+ * either the GNU General Public License Version 2 or later (the "GPL"), or
+ * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
+ * in which case the provisions of the GPL or the LGPL are applicable instead
+ * of those above. If you wish to allow use of your version of this file only
+ * under the terms of either the GPL or the LGPL, and not to allow others to
+ * use your version of this file under the terms of the MPL, indicate your
+ * decision by deleting the provisions above and replace them with the notice
+ * and other provisions required by the GPL or the LGPL. If you do not delete
+ * the provisions above, a recipient may use your version of this file under
+ * the terms of any one of the MPL, the GPL or the LGPL.
+ *
+ *********************************************************************** */
+/*
+ * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+/* Uses Montgomery reduction for field arithmetic. See mpi/mpmontg.c for
+ * code implementation. */
+
+#include "mpi.h"
+#include "mplogic.h"
+#include "mpi-priv.h"
+#include "ecl-priv.h"
+#include "ecp.h"
+#ifndef _KERNEL
+#include <stdlib.h>
+#include <stdio.h>
+#endif
+
+/* Construct a generic GFMethod for arithmetic over prime fields with
+ * irreducible irr. */
+GFMethod *
+GFMethod_consGFp_mont(const mp_int *irr)
+{
+ mp_err res = MP_OKAY;
+ int i;
+ GFMethod *meth = NULL;
+ mp_mont_modulus *mmm;
+
+ meth = GFMethod_consGFp(irr);
+ if (meth == NULL)
+ return NULL;
+
+#ifdef _KERNEL
+ mmm = (mp_mont_modulus *) kmem_alloc(sizeof(mp_mont_modulus),
+ FLAG(irr));
+#else
+ mmm = (mp_mont_modulus *) malloc(sizeof(mp_mont_modulus));
+#endif
+ if (mmm == NULL) {
+ res = MP_MEM;
+ goto CLEANUP;
+ }
+
+ meth->field_mul = &ec_GFp_mul_mont;
+ meth->field_sqr = &ec_GFp_sqr_mont;
+ meth->field_div = &ec_GFp_div_mont;
+ meth->field_enc = &ec_GFp_enc_mont;
+ meth->field_dec = &ec_GFp_dec_mont;
+ meth->extra1 = mmm;
+ meth->extra2 = NULL;
+ meth->extra_free = &ec_GFp_extra_free_mont;
+
+ mmm->N = meth->irr;
+ i = mpl_significant_bits(&meth->irr);
+ i += MP_DIGIT_BIT - 1;
+ mmm->b = i - i % MP_DIGIT_BIT;
+ mmm->n0prime = 0 - s_mp_invmod_radix(MP_DIGIT(&meth->irr, 0));
+
+ CLEANUP:
+ if (res != MP_OKAY) {
+ GFMethod_free(meth);
+ return NULL;
+ }
+ return meth;
+}
+
+/* Wrapper functions for generic prime field arithmetic. */
+
+/* Field multiplication using Montgomery reduction. */
+mp_err
+ec_GFp_mul_mont(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+#ifdef MP_MONT_USE_MP_MUL
+ /* if MP_MONT_USE_MP_MUL is defined, then the function s_mp_mul_mont
+ * is not implemented and we have to use mp_mul and s_mp_redc directly
+ */
+ MP_CHECKOK(mp_mul(a, b, r));
+ MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
+#else
+ mp_int s;
+
+ MP_DIGITS(&s) = 0;
+ /* s_mp_mul_mont doesn't allow source and destination to be the same */
+ if ((a == r) || (b == r)) {
+ MP_CHECKOK(mp_init(&s, FLAG(a)));
+ MP_CHECKOK(s_mp_mul_mont
+ (a, b, &s, (mp_mont_modulus *) meth->extra1));
+ MP_CHECKOK(mp_copy(&s, r));
+ mp_clear(&s);
+ } else {
+ return s_mp_mul_mont(a, b, r, (mp_mont_modulus *) meth->extra1);
+ }
+#endif
+ CLEANUP:
+ return res;
+}
+
+/* Field squaring using Montgomery reduction. */
+mp_err
+ec_GFp_sqr_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ return ec_GFp_mul_mont(a, a, r, meth);
+}
+
+/* Field division using Montgomery reduction. */
+mp_err
+ec_GFp_div_mont(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+ /* if A=aZ represents a encoded in montgomery coordinates with Z and #
+ * and \ respectively represent multiplication and division in
+ * montgomery coordinates, then A\B = (a/b)Z = (A/B)Z and Binv =
+ * (1/b)Z = (1/B)(Z^2) where B # Binv = Z */
+ MP_CHECKOK(ec_GFp_div(a, b, r, meth));
+ MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
+ if (a == NULL) {
+ MP_CHECKOK(ec_GFp_enc_mont(r, r, meth));
+ }
+ CLEANUP:
+ return res;
+}
+
+/* Encode a field element in Montgomery form. See s_mp_to_mont in
+ * mpi/mpmontg.c */
+mp_err
+ec_GFp_enc_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_mont_modulus *mmm;
+ mp_err res = MP_OKAY;
+
+ mmm = (mp_mont_modulus *) meth->extra1;
+ MP_CHECKOK(mpl_lsh(a, r, mmm->b));
+ MP_CHECKOK(mp_mod(r, &mmm->N, r));
+ CLEANUP:
+ return res;
+}
+
+/* Decode a field element from Montgomery form. */
+mp_err
+ec_GFp_dec_mont(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+
+ if (a != r) {
+ MP_CHECKOK(mp_copy(a, r));
+ }
+ MP_CHECKOK(s_mp_redc(r, (mp_mont_modulus *) meth->extra1));
+ CLEANUP:
+ return res;
+}
+
+/* Free the memory allocated to the extra fields of Montgomery GFMethod
+ * object. */
+void
+ec_GFp_extra_free_mont(GFMethod *meth)
+{
+ if (meth->extra1 != NULL) {
+#ifdef _KERNEL
+ kmem_free(meth->extra1, sizeof(mp_mont_modulus));
+#else
+ free(meth->extra1);
+#endif
+ meth->extra1 = NULL;
+ }
+}