jdk/src/share/native/sun/security/ec/ecl_mult.c
author vinnie
Tue, 11 Aug 2009 16:52:26 +0100
changeset 3492 e549cea58864
permissions -rw-r--r--
6840752: Provide out-of-the-box support for ECC algorithms Reviewed-by: alanb, mullan, wetmore

/* *********************************************************************
 *
 * Sun elects to have this file available under and governed by the
 * Mozilla Public License Version 1.1 ("MPL") (see
 * http://www.mozilla.org/MPL/ for full license text). For the avoidance
 * of doubt and subject to the following, Sun also elects to allow
 * licensees to use this file under the MPL, the GNU General Public
 * License version 2 only or the Lesser General Public License version
 * 2.1 only. Any references to the "GNU General Public License version 2
 * or later" or "GPL" in the following shall be construed to mean the
 * GNU General Public License version 2 only. Any references to the "GNU
 * Lesser General Public License version 2.1 or later" or "LGPL" in the
 * following shall be construed to mean the GNU Lesser General Public
 * License version 2.1 only. However, the following notice accompanied
 * the original version of this file:
 *
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is the elliptic curve math library.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either the GNU General Public License Version 2 or later (the "GPL"), or
 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 *********************************************************************** */
/*
 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident   "%Z%%M% %I%     %E% SMI"

#include "mpi.h"
#include "mplogic.h"
#include "ecl.h"
#include "ecl-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif

/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
 * y).  If x, y = NULL, then P is assumed to be the generator (base point)
 * of the group of points on the elliptic curve. Input and output values
 * are assumed to be NOT field-encoded. */
mp_err
ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
                        const mp_int *py, mp_int *rx, mp_int *ry)
{
        mp_err res = MP_OKAY;
        mp_int kt;

        ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
        MP_DIGITS(&kt) = 0;

        /* want scalar to be less than or equal to group order */
        if (mp_cmp(k, &group->order) > 0) {
                MP_CHECKOK(mp_init(&kt, FLAG(k)));
                MP_CHECKOK(mp_mod(k, &group->order, &kt));
        } else {
                MP_SIGN(&kt) = MP_ZPOS;
                MP_USED(&kt) = MP_USED(k);
                MP_ALLOC(&kt) = MP_ALLOC(k);
                MP_DIGITS(&kt) = MP_DIGITS(k);
        }

        if ((px == NULL) || (py == NULL)) {
                if (group->base_point_mul) {
                        MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
                } else {
                        MP_CHECKOK(group->
                                           point_mul(&kt, &group->genx, &group->geny, rx, ry,
                                                                 group));
                }
        } else {
                if (group->meth->field_enc) {
                        MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
                        MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
                        MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
                } else {
                        MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
                }
        }
        if (group->meth->field_dec) {
                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
        }

  CLEANUP:
        if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
                mp_clear(&kt);
        }
        return res;
}

/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 * k2 * P(x, y), where G is the generator (base point) of the group of
 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 * Input and output values are assumed to be NOT field-encoded. */
mp_err
ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
                                 const mp_int *py, mp_int *rx, mp_int *ry,
                                 const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int sx, sy;

        ARGCHK(group != NULL, MP_BADARG);
        ARGCHK(!((k1 == NULL)
                         && ((k2 == NULL) || (px == NULL)
                                 || (py == NULL))), MP_BADARG);

        /* if some arguments are not defined used ECPoint_mul */
        if (k1 == NULL) {
                return ECPoint_mul(group, k2, px, py, rx, ry);
        } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
                return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
        }

        MP_DIGITS(&sx) = 0;
        MP_DIGITS(&sy) = 0;
        MP_CHECKOK(mp_init(&sx, FLAG(k1)));
        MP_CHECKOK(mp_init(&sy, FLAG(k1)));

        MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
        MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));

        if (group->meth->field_enc) {
                MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
                MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
                MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
                MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
        }

        MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));

        if (group->meth->field_dec) {
                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
        }

  CLEANUP:
        mp_clear(&sx);
        mp_clear(&sy);
        return res;
}

/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 * k2 * P(x, y), where G is the generator (base point) of the group of
 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 * Input and output values are assumed to be NOT field-encoded. Uses
 * algorithm 15 (simultaneous multiple point multiplication) from Brown,
 * Hankerson, Lopez, Menezes. Software Implementation of the NIST
 * Elliptic Curves over Prime Fields. */
mp_err
ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
                                        const mp_int *py, mp_int *rx, mp_int *ry,
                                        const ECGroup *group)
{
        mp_err res = MP_OKAY;
        mp_int precomp[4][4][2];
        const mp_int *a, *b;
        int i, j;
        int ai, bi, d;

        ARGCHK(group != NULL, MP_BADARG);
        ARGCHK(!((k1 == NULL)
                         && ((k2 == NULL) || (px == NULL)
                                 || (py == NULL))), MP_BADARG);

        /* if some arguments are not defined used ECPoint_mul */
        if (k1 == NULL) {
                return ECPoint_mul(group, k2, px, py, rx, ry);
        } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
                return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
        }

        /* initialize precomputation table */
        for (i = 0; i < 4; i++) {
                for (j = 0; j < 4; j++) {
                        MP_DIGITS(&precomp[i][j][0]) = 0;
                        MP_DIGITS(&precomp[i][j][1]) = 0;
                }
        }
        for (i = 0; i < 4; i++) {
                for (j = 0; j < 4; j++) {
                         MP_CHECKOK( mp_init_size(&precomp[i][j][0],
                                         ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
                         MP_CHECKOK( mp_init_size(&precomp[i][j][1],
                                         ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
                }
        }

        /* fill precomputation table */
        /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
        if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
                a = k2;
                b = k1;
                if (group->meth->field_enc) {
                        MP_CHECKOK(group->meth->
                                           field_enc(px, &precomp[1][0][0], group->meth));
                        MP_CHECKOK(group->meth->
                                           field_enc(py, &precomp[1][0][1], group->meth));
                } else {
                        MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
                        MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
                }
                MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
                MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
        } else {
                a = k1;
                b = k2;
                MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
                MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
                if (group->meth->field_enc) {
                        MP_CHECKOK(group->meth->
                                           field_enc(px, &precomp[0][1][0], group->meth));
                        MP_CHECKOK(group->meth->
                                           field_enc(py, &precomp[0][1][1], group->meth));
                } else {
                        MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
                        MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
                }
        }
        /* precompute [*][0][*] */
        mp_zero(&precomp[0][0][0]);
        mp_zero(&precomp[0][0][1]);
        MP_CHECKOK(group->
                           point_dbl(&precomp[1][0][0], &precomp[1][0][1],
                                                 &precomp[2][0][0], &precomp[2][0][1], group));
        MP_CHECKOK(group->
                           point_add(&precomp[1][0][0], &precomp[1][0][1],
                                                 &precomp[2][0][0], &precomp[2][0][1],
                                                 &precomp[3][0][0], &precomp[3][0][1], group));
        /* precompute [*][1][*] */
        for (i = 1; i < 4; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[0][1][0], &precomp[0][1][1],
                                                         &precomp[i][0][0], &precomp[i][0][1],
                                                         &precomp[i][1][0], &precomp[i][1][1], group));
        }
        /* precompute [*][2][*] */
        MP_CHECKOK(group->
                           point_dbl(&precomp[0][1][0], &precomp[0][1][1],
                                                 &precomp[0][2][0], &precomp[0][2][1], group));
        for (i = 1; i < 4; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[0][2][0], &precomp[0][2][1],
                                                         &precomp[i][0][0], &precomp[i][0][1],
                                                         &precomp[i][2][0], &precomp[i][2][1], group));
        }
        /* precompute [*][3][*] */
        MP_CHECKOK(group->
                           point_add(&precomp[0][1][0], &precomp[0][1][1],
                                                 &precomp[0][2][0], &precomp[0][2][1],
                                                 &precomp[0][3][0], &precomp[0][3][1], group));
        for (i = 1; i < 4; i++) {
                MP_CHECKOK(group->
                                   point_add(&precomp[0][3][0], &precomp[0][3][1],
                                                         &precomp[i][0][0], &precomp[i][0][1],
                                                         &precomp[i][3][0], &precomp[i][3][1], group));
        }

        d = (mpl_significant_bits(a) + 1) / 2;

        /* R = inf */
        mp_zero(rx);
        mp_zero(ry);

        for (i = d - 1; i >= 0; i--) {
                ai = MP_GET_BIT(a, 2 * i + 1);
                ai <<= 1;
                ai |= MP_GET_BIT(a, 2 * i);
                bi = MP_GET_BIT(b, 2 * i + 1);
                bi <<= 1;
                bi |= MP_GET_BIT(b, 2 * i);
                /* R = 2^2 * R */
                MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
                MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
                /* R = R + (ai * A + bi * B) */
                MP_CHECKOK(group->
                                   point_add(rx, ry, &precomp[ai][bi][0],
                                                         &precomp[ai][bi][1], rx, ry, group));
        }

        if (group->meth->field_dec) {
                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
        }

  CLEANUP:
        for (i = 0; i < 4; i++) {
                for (j = 0; j < 4; j++) {
                        mp_clear(&precomp[i][j][0]);
                        mp_clear(&precomp[i][j][1]);
                }
        }
        return res;
}

/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
 * k2 * P(x, y), where G is the generator (base point) of the group of
 * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
 * Input and output values are assumed to be NOT field-encoded. */
mp_err
ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
                         const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
{
        mp_err res = MP_OKAY;
        mp_int k1t, k2t;
        const mp_int *k1p, *k2p;

        MP_DIGITS(&k1t) = 0;
        MP_DIGITS(&k2t) = 0;

        ARGCHK(group != NULL, MP_BADARG);

        /* want scalar to be less than or equal to group order */
        if (k1 != NULL) {
                if (mp_cmp(k1, &group->order) >= 0) {
                        MP_CHECKOK(mp_init(&k1t, FLAG(k1)));
                        MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
                        k1p = &k1t;
                } else {
                        k1p = k1;
                }
        } else {
                k1p = k1;
        }
        if (k2 != NULL) {
                if (mp_cmp(k2, &group->order) >= 0) {
                        MP_CHECKOK(mp_init(&k2t, FLAG(k2)));
                        MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
                        k2p = &k2t;
                } else {
                        k2p = k2;
                }
        } else {
                k2p = k2;
        }

        /* if points_mul is defined, then use it */
        if (group->points_mul) {
                res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
        } else {
                res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
        }

  CLEANUP:
        mp_clear(&k1t);
        mp_clear(&k2t);
        return res;
}