jdk/src/share/native/sun/security/ec/ecl_mult.c
changeset 3492 e549cea58864
equal deleted inserted replaced
3480:c197e38bf15a 3492:e549cea58864
       
     1 /* *********************************************************************
       
     2  *
       
     3  * Sun elects to have this file available under and governed by the
       
     4  * Mozilla Public License Version 1.1 ("MPL") (see
       
     5  * http://www.mozilla.org/MPL/ for full license text). For the avoidance
       
     6  * of doubt and subject to the following, Sun also elects to allow
       
     7  * licensees to use this file under the MPL, the GNU General Public
       
     8  * License version 2 only or the Lesser General Public License version
       
     9  * 2.1 only. Any references to the "GNU General Public License version 2
       
    10  * or later" or "GPL" in the following shall be construed to mean the
       
    11  * GNU General Public License version 2 only. Any references to the "GNU
       
    12  * Lesser General Public License version 2.1 or later" or "LGPL" in the
       
    13  * following shall be construed to mean the GNU Lesser General Public
       
    14  * License version 2.1 only. However, the following notice accompanied
       
    15  * the original version of this file:
       
    16  *
       
    17  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
       
    18  *
       
    19  * The contents of this file are subject to the Mozilla Public License Version
       
    20  * 1.1 (the "License"); you may not use this file except in compliance with
       
    21  * the License. You may obtain a copy of the License at
       
    22  * http://www.mozilla.org/MPL/
       
    23  *
       
    24  * Software distributed under the License is distributed on an "AS IS" basis,
       
    25  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
       
    26  * for the specific language governing rights and limitations under the
       
    27  * License.
       
    28  *
       
    29  * The Original Code is the elliptic curve math library.
       
    30  *
       
    31  * The Initial Developer of the Original Code is
       
    32  * Sun Microsystems, Inc.
       
    33  * Portions created by the Initial Developer are Copyright (C) 2003
       
    34  * the Initial Developer. All Rights Reserved.
       
    35  *
       
    36  * Contributor(s):
       
    37  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories
       
    38  *
       
    39  * Alternatively, the contents of this file may be used under the terms of
       
    40  * either the GNU General Public License Version 2 or later (the "GPL"), or
       
    41  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
       
    42  * in which case the provisions of the GPL or the LGPL are applicable instead
       
    43  * of those above. If you wish to allow use of your version of this file only
       
    44  * under the terms of either the GPL or the LGPL, and not to allow others to
       
    45  * use your version of this file under the terms of the MPL, indicate your
       
    46  * decision by deleting the provisions above and replace them with the notice
       
    47  * and other provisions required by the GPL or the LGPL. If you do not delete
       
    48  * the provisions above, a recipient may use your version of this file under
       
    49  * the terms of any one of the MPL, the GPL or the LGPL.
       
    50  *
       
    51  *********************************************************************** */
       
    52 /*
       
    53  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
       
    54  * Use is subject to license terms.
       
    55  */
       
    56 
       
    57 #pragma ident   "%Z%%M% %I%     %E% SMI"
       
    58 
       
    59 #include "mpi.h"
       
    60 #include "mplogic.h"
       
    61 #include "ecl.h"
       
    62 #include "ecl-priv.h"
       
    63 #ifndef _KERNEL
       
    64 #include <stdlib.h>
       
    65 #endif
       
    66 
       
    67 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k * P(x,
       
    68  * y).  If x, y = NULL, then P is assumed to be the generator (base point)
       
    69  * of the group of points on the elliptic curve. Input and output values
       
    70  * are assumed to be NOT field-encoded. */
       
    71 mp_err
       
    72 ECPoint_mul(const ECGroup *group, const mp_int *k, const mp_int *px,
       
    73                         const mp_int *py, mp_int *rx, mp_int *ry)
       
    74 {
       
    75         mp_err res = MP_OKAY;
       
    76         mp_int kt;
       
    77 
       
    78         ARGCHK((k != NULL) && (group != NULL), MP_BADARG);
       
    79         MP_DIGITS(&kt) = 0;
       
    80 
       
    81         /* want scalar to be less than or equal to group order */
       
    82         if (mp_cmp(k, &group->order) > 0) {
       
    83                 MP_CHECKOK(mp_init(&kt, FLAG(k)));
       
    84                 MP_CHECKOK(mp_mod(k, &group->order, &kt));
       
    85         } else {
       
    86                 MP_SIGN(&kt) = MP_ZPOS;
       
    87                 MP_USED(&kt) = MP_USED(k);
       
    88                 MP_ALLOC(&kt) = MP_ALLOC(k);
       
    89                 MP_DIGITS(&kt) = MP_DIGITS(k);
       
    90         }
       
    91 
       
    92         if ((px == NULL) || (py == NULL)) {
       
    93                 if (group->base_point_mul) {
       
    94                         MP_CHECKOK(group->base_point_mul(&kt, rx, ry, group));
       
    95                 } else {
       
    96                         MP_CHECKOK(group->
       
    97                                            point_mul(&kt, &group->genx, &group->geny, rx, ry,
       
    98                                                                  group));
       
    99                 }
       
   100         } else {
       
   101                 if (group->meth->field_enc) {
       
   102                         MP_CHECKOK(group->meth->field_enc(px, rx, group->meth));
       
   103                         MP_CHECKOK(group->meth->field_enc(py, ry, group->meth));
       
   104                         MP_CHECKOK(group->point_mul(&kt, rx, ry, rx, ry, group));
       
   105                 } else {
       
   106                         MP_CHECKOK(group->point_mul(&kt, px, py, rx, ry, group));
       
   107                 }
       
   108         }
       
   109         if (group->meth->field_dec) {
       
   110                 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
       
   111                 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
       
   112         }
       
   113 
       
   114   CLEANUP:
       
   115         if (MP_DIGITS(&kt) != MP_DIGITS(k)) {
       
   116                 mp_clear(&kt);
       
   117         }
       
   118         return res;
       
   119 }
       
   120 
       
   121 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
       
   122  * k2 * P(x, y), where G is the generator (base point) of the group of
       
   123  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
       
   124  * Input and output values are assumed to be NOT field-encoded. */
       
   125 mp_err
       
   126 ec_pts_mul_basic(const mp_int *k1, const mp_int *k2, const mp_int *px,
       
   127                                  const mp_int *py, mp_int *rx, mp_int *ry,
       
   128                                  const ECGroup *group)
       
   129 {
       
   130         mp_err res = MP_OKAY;
       
   131         mp_int sx, sy;
       
   132 
       
   133         ARGCHK(group != NULL, MP_BADARG);
       
   134         ARGCHK(!((k1 == NULL)
       
   135                          && ((k2 == NULL) || (px == NULL)
       
   136                                  || (py == NULL))), MP_BADARG);
       
   137 
       
   138         /* if some arguments are not defined used ECPoint_mul */
       
   139         if (k1 == NULL) {
       
   140                 return ECPoint_mul(group, k2, px, py, rx, ry);
       
   141         } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
       
   142                 return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
       
   143         }
       
   144 
       
   145         MP_DIGITS(&sx) = 0;
       
   146         MP_DIGITS(&sy) = 0;
       
   147         MP_CHECKOK(mp_init(&sx, FLAG(k1)));
       
   148         MP_CHECKOK(mp_init(&sy, FLAG(k1)));
       
   149 
       
   150         MP_CHECKOK(ECPoint_mul(group, k1, NULL, NULL, &sx, &sy));
       
   151         MP_CHECKOK(ECPoint_mul(group, k2, px, py, rx, ry));
       
   152 
       
   153         if (group->meth->field_enc) {
       
   154                 MP_CHECKOK(group->meth->field_enc(&sx, &sx, group->meth));
       
   155                 MP_CHECKOK(group->meth->field_enc(&sy, &sy, group->meth));
       
   156                 MP_CHECKOK(group->meth->field_enc(rx, rx, group->meth));
       
   157                 MP_CHECKOK(group->meth->field_enc(ry, ry, group->meth));
       
   158         }
       
   159 
       
   160         MP_CHECKOK(group->point_add(&sx, &sy, rx, ry, rx, ry, group));
       
   161 
       
   162         if (group->meth->field_dec) {
       
   163                 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
       
   164                 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
       
   165         }
       
   166 
       
   167   CLEANUP:
       
   168         mp_clear(&sx);
       
   169         mp_clear(&sy);
       
   170         return res;
       
   171 }
       
   172 
       
   173 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
       
   174  * k2 * P(x, y), where G is the generator (base point) of the group of
       
   175  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
       
   176  * Input and output values are assumed to be NOT field-encoded. Uses
       
   177  * algorithm 15 (simultaneous multiple point multiplication) from Brown,
       
   178  * Hankerson, Lopez, Menezes. Software Implementation of the NIST
       
   179  * Elliptic Curves over Prime Fields. */
       
   180 mp_err
       
   181 ec_pts_mul_simul_w2(const mp_int *k1, const mp_int *k2, const mp_int *px,
       
   182                                         const mp_int *py, mp_int *rx, mp_int *ry,
       
   183                                         const ECGroup *group)
       
   184 {
       
   185         mp_err res = MP_OKAY;
       
   186         mp_int precomp[4][4][2];
       
   187         const mp_int *a, *b;
       
   188         int i, j;
       
   189         int ai, bi, d;
       
   190 
       
   191         ARGCHK(group != NULL, MP_BADARG);
       
   192         ARGCHK(!((k1 == NULL)
       
   193                          && ((k2 == NULL) || (px == NULL)
       
   194                                  || (py == NULL))), MP_BADARG);
       
   195 
       
   196         /* if some arguments are not defined used ECPoint_mul */
       
   197         if (k1 == NULL) {
       
   198                 return ECPoint_mul(group, k2, px, py, rx, ry);
       
   199         } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
       
   200                 return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
       
   201         }
       
   202 
       
   203         /* initialize precomputation table */
       
   204         for (i = 0; i < 4; i++) {
       
   205                 for (j = 0; j < 4; j++) {
       
   206                         MP_DIGITS(&precomp[i][j][0]) = 0;
       
   207                         MP_DIGITS(&precomp[i][j][1]) = 0;
       
   208                 }
       
   209         }
       
   210         for (i = 0; i < 4; i++) {
       
   211                 for (j = 0; j < 4; j++) {
       
   212                          MP_CHECKOK( mp_init_size(&precomp[i][j][0],
       
   213                                          ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
       
   214                          MP_CHECKOK( mp_init_size(&precomp[i][j][1],
       
   215                                          ECL_MAX_FIELD_SIZE_DIGITS, FLAG(k1)) );
       
   216                 }
       
   217         }
       
   218 
       
   219         /* fill precomputation table */
       
   220         /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
       
   221         if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
       
   222                 a = k2;
       
   223                 b = k1;
       
   224                 if (group->meth->field_enc) {
       
   225                         MP_CHECKOK(group->meth->
       
   226                                            field_enc(px, &precomp[1][0][0], group->meth));
       
   227                         MP_CHECKOK(group->meth->
       
   228                                            field_enc(py, &precomp[1][0][1], group->meth));
       
   229                 } else {
       
   230                         MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
       
   231                         MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
       
   232                 }
       
   233                 MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
       
   234                 MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
       
   235         } else {
       
   236                 a = k1;
       
   237                 b = k2;
       
   238                 MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
       
   239                 MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
       
   240                 if (group->meth->field_enc) {
       
   241                         MP_CHECKOK(group->meth->
       
   242                                            field_enc(px, &precomp[0][1][0], group->meth));
       
   243                         MP_CHECKOK(group->meth->
       
   244                                            field_enc(py, &precomp[0][1][1], group->meth));
       
   245                 } else {
       
   246                         MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
       
   247                         MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
       
   248                 }
       
   249         }
       
   250         /* precompute [*][0][*] */
       
   251         mp_zero(&precomp[0][0][0]);
       
   252         mp_zero(&precomp[0][0][1]);
       
   253         MP_CHECKOK(group->
       
   254                            point_dbl(&precomp[1][0][0], &precomp[1][0][1],
       
   255                                                  &precomp[2][0][0], &precomp[2][0][1], group));
       
   256         MP_CHECKOK(group->
       
   257                            point_add(&precomp[1][0][0], &precomp[1][0][1],
       
   258                                                  &precomp[2][0][0], &precomp[2][0][1],
       
   259                                                  &precomp[3][0][0], &precomp[3][0][1], group));
       
   260         /* precompute [*][1][*] */
       
   261         for (i = 1; i < 4; i++) {
       
   262                 MP_CHECKOK(group->
       
   263                                    point_add(&precomp[0][1][0], &precomp[0][1][1],
       
   264                                                          &precomp[i][0][0], &precomp[i][0][1],
       
   265                                                          &precomp[i][1][0], &precomp[i][1][1], group));
       
   266         }
       
   267         /* precompute [*][2][*] */
       
   268         MP_CHECKOK(group->
       
   269                            point_dbl(&precomp[0][1][0], &precomp[0][1][1],
       
   270                                                  &precomp[0][2][0], &precomp[0][2][1], group));
       
   271         for (i = 1; i < 4; i++) {
       
   272                 MP_CHECKOK(group->
       
   273                                    point_add(&precomp[0][2][0], &precomp[0][2][1],
       
   274                                                          &precomp[i][0][0], &precomp[i][0][1],
       
   275                                                          &precomp[i][2][0], &precomp[i][2][1], group));
       
   276         }
       
   277         /* precompute [*][3][*] */
       
   278         MP_CHECKOK(group->
       
   279                            point_add(&precomp[0][1][0], &precomp[0][1][1],
       
   280                                                  &precomp[0][2][0], &precomp[0][2][1],
       
   281                                                  &precomp[0][3][0], &precomp[0][3][1], group));
       
   282         for (i = 1; i < 4; i++) {
       
   283                 MP_CHECKOK(group->
       
   284                                    point_add(&precomp[0][3][0], &precomp[0][3][1],
       
   285                                                          &precomp[i][0][0], &precomp[i][0][1],
       
   286                                                          &precomp[i][3][0], &precomp[i][3][1], group));
       
   287         }
       
   288 
       
   289         d = (mpl_significant_bits(a) + 1) / 2;
       
   290 
       
   291         /* R = inf */
       
   292         mp_zero(rx);
       
   293         mp_zero(ry);
       
   294 
       
   295         for (i = d - 1; i >= 0; i--) {
       
   296                 ai = MP_GET_BIT(a, 2 * i + 1);
       
   297                 ai <<= 1;
       
   298                 ai |= MP_GET_BIT(a, 2 * i);
       
   299                 bi = MP_GET_BIT(b, 2 * i + 1);
       
   300                 bi <<= 1;
       
   301                 bi |= MP_GET_BIT(b, 2 * i);
       
   302                 /* R = 2^2 * R */
       
   303                 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
       
   304                 MP_CHECKOK(group->point_dbl(rx, ry, rx, ry, group));
       
   305                 /* R = R + (ai * A + bi * B) */
       
   306                 MP_CHECKOK(group->
       
   307                                    point_add(rx, ry, &precomp[ai][bi][0],
       
   308                                                          &precomp[ai][bi][1], rx, ry, group));
       
   309         }
       
   310 
       
   311         if (group->meth->field_dec) {
       
   312                 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
       
   313                 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
       
   314         }
       
   315 
       
   316   CLEANUP:
       
   317         for (i = 0; i < 4; i++) {
       
   318                 for (j = 0; j < 4; j++) {
       
   319                         mp_clear(&precomp[i][j][0]);
       
   320                         mp_clear(&precomp[i][j][1]);
       
   321                 }
       
   322         }
       
   323         return res;
       
   324 }
       
   325 
       
   326 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
       
   327  * k2 * P(x, y), where G is the generator (base point) of the group of
       
   328  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
       
   329  * Input and output values are assumed to be NOT field-encoded. */
       
   330 mp_err
       
   331 ECPoints_mul(const ECGroup *group, const mp_int *k1, const mp_int *k2,
       
   332                          const mp_int *px, const mp_int *py, mp_int *rx, mp_int *ry)
       
   333 {
       
   334         mp_err res = MP_OKAY;
       
   335         mp_int k1t, k2t;
       
   336         const mp_int *k1p, *k2p;
       
   337 
       
   338         MP_DIGITS(&k1t) = 0;
       
   339         MP_DIGITS(&k2t) = 0;
       
   340 
       
   341         ARGCHK(group != NULL, MP_BADARG);
       
   342 
       
   343         /* want scalar to be less than or equal to group order */
       
   344         if (k1 != NULL) {
       
   345                 if (mp_cmp(k1, &group->order) >= 0) {
       
   346                         MP_CHECKOK(mp_init(&k1t, FLAG(k1)));
       
   347                         MP_CHECKOK(mp_mod(k1, &group->order, &k1t));
       
   348                         k1p = &k1t;
       
   349                 } else {
       
   350                         k1p = k1;
       
   351                 }
       
   352         } else {
       
   353                 k1p = k1;
       
   354         }
       
   355         if (k2 != NULL) {
       
   356                 if (mp_cmp(k2, &group->order) >= 0) {
       
   357                         MP_CHECKOK(mp_init(&k2t, FLAG(k2)));
       
   358                         MP_CHECKOK(mp_mod(k2, &group->order, &k2t));
       
   359                         k2p = &k2t;
       
   360                 } else {
       
   361                         k2p = k2;
       
   362                 }
       
   363         } else {
       
   364                 k2p = k2;
       
   365         }
       
   366 
       
   367         /* if points_mul is defined, then use it */
       
   368         if (group->points_mul) {
       
   369                 res = group->points_mul(k1p, k2p, px, py, rx, ry, group);
       
   370         } else {
       
   371                 res = ec_pts_mul_simul_w2(k1p, k2p, px, py, rx, ry, group);
       
   372         }
       
   373 
       
   374   CLEANUP:
       
   375         mp_clear(&k1t);
       
   376         mp_clear(&k2t);
       
   377         return res;
       
   378 }