7150058: Allocate symbols from null boot loader to an arena for NMT
Summary: Move symbol allocation to an arena so NMT doesn't have to track them at startup.
Reviewed-by: never, kamg, zgu
/*
* Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OOPS_CPCACHEOOP_HPP
#define SHARE_VM_OOPS_CPCACHEOOP_HPP
#include "interpreter/bytecodes.hpp"
#include "memory/allocation.hpp"
#include "oops/arrayOop.hpp"
#include "utilities/array.hpp"
// A ConstantPoolCacheEntry describes an individual entry of the constant
// pool cache. There's 2 principal kinds of entries: field entries for in-
// stance & static field access, and method entries for invokes. Some of
// the entry layout is shared and looks as follows:
//
// bit number |31 0|
// bit length |-8--|-8--|---16----|
// --------------------------------
// _indices [ b2 | b1 | index ]
// _f1 [ entry specific ]
// _f2 [ entry specific ]
// _flags [t|f|vf|v|m|h|unused|field_index] (for field entries)
// bit length |4|1|1 |1|1|0|---7--|----16-----]
// _flags [t|f|vf|v|m|h|unused|eidx|psze] (for method entries)
// bit length |4|1|1 |1|1|1|---7--|-8--|-8--]
// --------------------------------
//
// with:
// index = original constant pool index
// b1 = bytecode 1
// b2 = bytecode 2
// psze = parameters size (method entries only)
// eidx = interpreter entry index (method entries only)
// field_index = index into field information in holder instanceKlass
// The index max is 0xffff (max number of fields in constant pool)
// and is multiplied by (instanceKlass::next_offset) when accessing.
// t = TosState (see below)
// f = field is marked final (see below)
// vf = virtual, final (method entries only : is_vfinal())
// v = field is volatile (see below)
// m = invokeinterface used for method in class Object (see below)
// h = RedefineClasses/Hotswap bit (see below)
//
// The flags after TosState have the following interpretation:
// bit 27: f flag true if field is marked final
// bit 26: vf flag true if virtual final method
// bit 25: v flag true if field is volatile (only for fields)
// bit 24: m flag true if invokeinterface used for method in class Object
// bit 23: 0 for fields, 1 for methods
//
// The flags 31, 30, 29, 28 together build a 4 bit number 0 to 8 with the
// following mapping to the TosState states:
//
// btos: 0
// ctos: 1
// stos: 2
// itos: 3
// ltos: 4
// ftos: 5
// dtos: 6
// atos: 7
// vtos: 8
//
// Entry specific: field entries:
// _indices = get (b1 section) and put (b2 section) bytecodes, original constant pool index
// _f1 = field holder
// _f2 = field offset in words
// _flags = field type information, original field index in field holder
// (field_index section)
//
// Entry specific: method entries:
// _indices = invoke code for f1 (b1 section), invoke code for f2 (b2 section),
// original constant pool index
// _f1 = method for all but virtual calls, unused by virtual calls
// (note: for interface calls, which are essentially virtual,
// contains klassOop for the corresponding interface.
// for invokedynamic, f1 contains the CallSite object for the invocation
// _f2 = method/vtable index for virtual calls only, unused by all other
// calls. The vf flag indicates this is a method pointer not an
// index.
// _flags = field type info (f section),
// virtual final entry (vf),
// interpreter entry index (eidx section),
// parameter size (psze section)
//
// Note: invokevirtual & invokespecial bytecodes can share the same constant
// pool entry and thus the same constant pool cache entry. All invoke
// bytecodes but invokevirtual use only _f1 and the corresponding b1
// bytecode, while invokevirtual uses only _f2 and the corresponding
// b2 bytecode. The value of _flags is shared for both types of entries.
//
// The fields are volatile so that they are stored in the order written in the
// source code. The _indices field with the bytecode must be written last.
class ConstantPoolCacheEntry VALUE_OBJ_CLASS_SPEC {
friend class VMStructs;
friend class constantPoolCacheKlass;
friend class constantPoolOopDesc; //resolve_constant_at_impl => set_f1
private:
volatile intx _indices; // constant pool index & rewrite bytecodes
volatile oop _f1; // entry specific oop field
volatile intx _f2; // entry specific int/oop field
volatile intx _flags; // flags
#ifdef ASSERT
bool same_methodOop(oop cur_f1, oop f1);
#endif
void set_bytecode_1(Bytecodes::Code code);
void set_bytecode_2(Bytecodes::Code code);
void set_f1(oop f1) {
oop existing_f1 = _f1; // read once
assert(existing_f1 == NULL || existing_f1 == f1, "illegal field change");
oop_store(&_f1, f1);
}
void set_f1_if_null_atomic(oop f1);
void set_f2(intx f2) { assert(_f2 == 0 || _f2 == f2, "illegal field change"); _f2 = f2; }
int as_flags(TosState state, bool is_final, bool is_vfinal, bool is_volatile,
bool is_method_interface, bool is_method);
void set_flags(intx flags) { _flags = flags; }
public:
// specific bit values in flag field
// Note: the interpreter knows this layout!
enum FlagBitValues {
hotSwapBit = 23,
methodInterface = 24,
volatileField = 25,
vfinalMethod = 26,
finalField = 27
};
enum { field_index_mask = 0xFFFF };
// start of type bits in flags
// Note: the interpreter knows this layout!
enum FlagValues {
tosBits = 28
};
// Initialization
void initialize_entry(int original_index); // initialize primary entry
void initialize_secondary_entry(int main_index); // initialize secondary entry
void set_field( // sets entry to resolved field state
Bytecodes::Code get_code, // the bytecode used for reading the field
Bytecodes::Code put_code, // the bytecode used for writing the field
KlassHandle field_holder, // the object/klass holding the field
int orig_field_index, // the original field index in the field holder
int field_offset, // the field offset in words in the field holder
TosState field_type, // the (machine) field type
bool is_final, // the field is final
bool is_volatile // the field is volatile
);
void set_method( // sets entry to resolved method entry
Bytecodes::Code invoke_code, // the bytecode used for invoking the method
methodHandle method, // the method/prototype if any (NULL, otherwise)
int vtable_index // the vtable index if any, else negative
);
void set_interface_call(
methodHandle method, // Resolved method
int index // Method index into interface
);
void set_dynamic_call(
Handle call_site, // Resolved java.lang.invoke.CallSite (f1)
methodHandle signature_invoker // determines signature information
);
methodOop get_method_if_resolved(Bytecodes::Code invoke_code, constantPoolHandle cpool);
// For JVM_CONSTANT_InvokeDynamic cache entries:
void initialize_bootstrap_method_index_in_cache(int bsm_cache_index);
int bootstrap_method_index_in_cache();
void set_parameter_size(int value) {
assert(parameter_size() == 0 || parameter_size() == value,
"size must not change");
// Setting the parameter size by itself is only safe if the
// current value of _flags is 0, otherwise another thread may have
// updated it and we don't want to overwrite that value. Don't
// bother trying to update it once it's nonzero but always make
// sure that the final parameter size agrees with what was passed.
if (_flags == 0) {
Atomic::cmpxchg_ptr((value & 0xFF), &_flags, 0);
}
guarantee(parameter_size() == value, "size must not change");
}
// Which bytecode number (1 or 2) in the index field is valid for this bytecode?
// Returns -1 if neither is valid.
static int bytecode_number(Bytecodes::Code code) {
switch (code) {
case Bytecodes::_getstatic : // fall through
case Bytecodes::_getfield : // fall through
case Bytecodes::_invokespecial : // fall through
case Bytecodes::_invokestatic : // fall through
case Bytecodes::_invokedynamic : // fall through
case Bytecodes::_invokeinterface : return 1;
case Bytecodes::_putstatic : // fall through
case Bytecodes::_putfield : // fall through
case Bytecodes::_invokevirtual : return 2;
default : break;
}
return -1;
}
// Has this bytecode been resolved? Only valid for invokes and get/put field/static.
bool is_resolved(Bytecodes::Code code) const {
switch (bytecode_number(code)) {
case 1: return (bytecode_1() == code);
case 2: return (bytecode_2() == code);
}
return false; // default: not resolved
}
// Accessors
bool is_secondary_entry() const { return (_indices & 0xFFFF) == 0; }
int constant_pool_index() const { assert((_indices & 0xFFFF) != 0, "must be main entry");
return (_indices & 0xFFFF); }
int main_entry_index() const { assert((_indices & 0xFFFF) == 0, "must be secondary entry");
return ((uintx)_indices >> 16); }
Bytecodes::Code bytecode_1() const { return Bytecodes::cast((_indices >> 16) & 0xFF); }
Bytecodes::Code bytecode_2() const { return Bytecodes::cast((_indices >> 24) & 0xFF); }
volatile oop f1() const { return _f1; }
bool is_f1_null() const { return (oop)_f1 == NULL; } // classifies a CPC entry as unbound
intx f2() const { return _f2; }
int field_index() const;
int parameter_size() const { return _flags & 0xFF; }
bool is_vfinal() const { return ((_flags & (1 << vfinalMethod)) == (1 << vfinalMethod)); }
bool is_volatile() const { return ((_flags & (1 << volatileField)) == (1 << volatileField)); }
bool is_methodInterface() const { return ((_flags & (1 << methodInterface)) == (1 << methodInterface)); }
bool is_byte() const { return (((uintx) _flags >> tosBits) == btos); }
bool is_char() const { return (((uintx) _flags >> tosBits) == ctos); }
bool is_short() const { return (((uintx) _flags >> tosBits) == stos); }
bool is_int() const { return (((uintx) _flags >> tosBits) == itos); }
bool is_long() const { return (((uintx) _flags >> tosBits) == ltos); }
bool is_float() const { return (((uintx) _flags >> tosBits) == ftos); }
bool is_double() const { return (((uintx) _flags >> tosBits) == dtos); }
bool is_object() const { return (((uintx) _flags >> tosBits) == atos); }
TosState flag_state() const { assert( ( (_flags >> tosBits) & 0x0F ) < number_of_states, "Invalid state in as_flags");
return (TosState)((_flags >> tosBits) & 0x0F); }
// Code generation support
static WordSize size() { return in_WordSize(sizeof(ConstantPoolCacheEntry) / HeapWordSize); }
static ByteSize size_in_bytes() { return in_ByteSize(sizeof(ConstantPoolCacheEntry)); }
static ByteSize indices_offset() { return byte_offset_of(ConstantPoolCacheEntry, _indices); }
static ByteSize f1_offset() { return byte_offset_of(ConstantPoolCacheEntry, _f1); }
static ByteSize f2_offset() { return byte_offset_of(ConstantPoolCacheEntry, _f2); }
static ByteSize flags_offset() { return byte_offset_of(ConstantPoolCacheEntry, _flags); }
// GC Support
void oops_do(void f(oop*));
void oop_iterate(OopClosure* blk);
void oop_iterate_m(OopClosure* blk, MemRegion mr);
void follow_contents();
void adjust_pointers();
#ifndef SERIALGC
// Parallel Old
void follow_contents(ParCompactionManager* cm);
#endif // SERIALGC
void update_pointers();
// RedefineClasses() API support:
// If this constantPoolCacheEntry refers to old_method then update it
// to refer to new_method.
// trace_name_printed is set to true if the current call has
// printed the klass name so that other routines in the adjust_*
// group don't print the klass name.
bool adjust_method_entry(methodOop old_method, methodOop new_method,
bool * trace_name_printed);
bool is_interesting_method_entry(klassOop k);
bool is_field_entry() const { return (_flags & (1 << hotSwapBit)) == 0; }
bool is_method_entry() const { return (_flags & (1 << hotSwapBit)) != 0; }
// Debugging & Printing
void print (outputStream* st, int index) const;
void verify(outputStream* st) const;
static void verify_tosBits() {
assert(tosBits == 28, "interpreter now assumes tosBits is 28");
}
};
// A constant pool cache is a runtime data structure set aside to a constant pool. The cache
// holds interpreter runtime information for all field access and invoke bytecodes. The cache
// is created and initialized before a class is actively used (i.e., initialized), the indivi-
// dual cache entries are filled at resolution (i.e., "link") time (see also: rewriter.*).
class constantPoolCacheOopDesc: public oopDesc {
friend class VMStructs;
private:
int _length;
constantPoolOop _constant_pool; // the corresponding constant pool
// Sizing
debug_only(friend class ClassVerifier;)
public:
int length() const { return _length; }
private:
void set_length(int length) { _length = length; }
static int header_size() { return sizeof(constantPoolCacheOopDesc) / HeapWordSize; }
static int object_size(int length) { return align_object_size(header_size() + length * in_words(ConstantPoolCacheEntry::size())); }
int object_size() { return object_size(length()); }
// Helpers
constantPoolOop* constant_pool_addr() { return &_constant_pool; }
ConstantPoolCacheEntry* base() const { return (ConstantPoolCacheEntry*)((address)this + in_bytes(base_offset())); }
friend class constantPoolCacheKlass;
friend class ConstantPoolCacheEntry;
public:
// Initialization
void initialize(intArray& inverse_index_map);
// Secondary indexes.
// They must look completely different from normal indexes.
// The main reason is that byte swapping is sometimes done on normal indexes.
// Also, some of the CP accessors do different things for secondary indexes.
// Finally, it is helpful for debugging to tell the two apart.
static bool is_secondary_index(int i) { return (i < 0); }
static int decode_secondary_index(int i) { assert(is_secondary_index(i), ""); return ~i; }
static int encode_secondary_index(int i) { assert(!is_secondary_index(i), ""); return ~i; }
// Accessors
void set_constant_pool(constantPoolOop pool) { oop_store_without_check((oop*)&_constant_pool, (oop)pool); }
constantPoolOop constant_pool() const { return _constant_pool; }
// Fetches the entry at the given index.
// The entry may be either primary or secondary.
// In either case the index must not be encoded or byte-swapped in any way.
ConstantPoolCacheEntry* entry_at(int i) const {
assert(0 <= i && i < length(), "index out of bounds");
return base() + i;
}
// Fetches the secondary entry referred to by index.
// The index may be a secondary index, and must not be byte-swapped.
ConstantPoolCacheEntry* secondary_entry_at(int i) const {
int raw_index = i;
if (is_secondary_index(i)) { // correct these on the fly
raw_index = decode_secondary_index(i);
}
assert(entry_at(raw_index)->is_secondary_entry(), "not a secondary entry");
return entry_at(raw_index);
}
// Given a primary or secondary index, fetch the corresponding primary entry.
// Indirect through the secondary entry, if the index is encoded as a secondary index.
// The index must not be byte-swapped.
ConstantPoolCacheEntry* main_entry_at(int i) const {
int primary_index = i;
if (is_secondary_index(i)) {
// run through an extra level of indirection:
int raw_index = decode_secondary_index(i);
primary_index = entry_at(raw_index)->main_entry_index();
}
assert(!entry_at(primary_index)->is_secondary_entry(), "only one level of indirection");
return entry_at(primary_index);
}
// Code generation
static ByteSize base_offset() { return in_ByteSize(sizeof(constantPoolCacheOopDesc)); }
static ByteSize entry_offset(int raw_index) {
int index = raw_index;
if (is_secondary_index(raw_index))
index = decode_secondary_index(raw_index);
return (base_offset() + ConstantPoolCacheEntry::size_in_bytes() * index);
}
// RedefineClasses() API support:
// If any entry of this constantPoolCache points to any of
// old_methods, replace it with the corresponding new_method.
// trace_name_printed is set to true if the current call has
// printed the klass name so that other routines in the adjust_*
// group don't print the klass name.
void adjust_method_entries(methodOop* old_methods, methodOop* new_methods,
int methods_length, bool * trace_name_printed);
};
#endif // SHARE_VM_OOPS_CPCACHEOOP_HPP