hotspot/src/share/vm/oops/cpCacheOop.hpp
author twisti
Tue, 24 Jul 2012 10:51:00 -0700
changeset 13391 30245956af37
parent 10008 d84de97ad847
permissions -rw-r--r--
7023639: JSR 292 method handle invocation needs a fast path for compiled code 6984705: JSR 292 method handle creation should not go through JNI Summary: remove assembly code for JDK 7 chained method handles Reviewed-by: jrose, twisti, kvn, mhaupt Contributed-by: John Rose <john.r.rose@oracle.com>, Christian Thalinger <christian.thalinger@oracle.com>, Michael Haupt <michael.haupt@oracle.com>

/*
 * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_OOPS_CPCACHEOOP_HPP
#define SHARE_VM_OOPS_CPCACHEOOP_HPP

#include "interpreter/bytecodes.hpp"
#include "memory/allocation.hpp"
#include "oops/arrayOop.hpp"
#include "utilities/array.hpp"

// A ConstantPoolCacheEntry describes an individual entry of the constant
// pool cache. There's 2 principal kinds of entries: field entries for in-
// stance & static field access, and method entries for invokes. Some of
// the entry layout is shared and looks as follows:
//
// bit number |31                0|
// bit length |-8--|-8--|---16----|
// --------------------------------
// _indices   [ b2 | b1 |  index  ]  index = constant_pool_index (!= 0, normal entries only)
// _indices   [  index  |  00000  ]  index = main_entry_index (secondary entries only)
// _f1        [  entry specific   ]  method, klass, or oop (MethodType or CallSite)
// _f2        [  entry specific   ]  vtable index or vfinal method
// _flags     [tos|0|00|00|00|f|v|f2|unused|field_index] (for field entries)
// bit length [ 4 |1|1 |1 | 1|1|1| 1|---5--|----16-----]
// _flags     [tos|M|vf|fv|ea|f|0|f2|unused|00000|psize] (for method entries)
// bit length [ 4 |1|1 |1 | 1|1|1| 1|---5--|--8--|--8--]

// --------------------------------
//
// with:
// index  = original constant pool index
// b1     = bytecode 1
// b2     = bytecode 2
// psize  = parameters size (method entries only)
// field_index = index into field information in holder instanceKlass
//          The index max is 0xffff (max number of fields in constant pool)
//          and is multiplied by (instanceKlass::next_offset) when accessing.
// t      = TosState (see below)
// f      = field is marked final (see below)
// f2     = virtual but final (method entries only: is_vfinal())
// v      = field is volatile (see below)
// m      = invokeinterface used for method in class Object (see below)
// h      = RedefineClasses/Hotswap bit (see below)
//
// The flags after TosState have the following interpretation:
// bit 27: 0 for fields, 1 for methods
// f  flag true if field is marked final
// v  flag true if field is volatile (only for fields)
// f2 flag true if f2 contains an oop (e.g., virtual final method)
// fv flag true if invokeinterface used for method in class Object
//
// The flags 31, 30, 29, 28 together build a 4 bit number 0 to 8 with the
// following mapping to the TosState states:
//
// btos: 0
// ctos: 1
// stos: 2
// itos: 3
// ltos: 4
// ftos: 5
// dtos: 6
// atos: 7
// vtos: 8
//
// Entry specific: field entries:
// _indices = get (b1 section) and put (b2 section) bytecodes, original constant pool index
// _f1      = field holder (as a java.lang.Class, not a klassOop)
// _f2      = field offset in bytes
// _flags   = field type information, original FieldInfo index in field holder
//            (field_index section)
//
// Entry specific: method entries:
// _indices = invoke code for f1 (b1 section), invoke code for f2 (b2 section),
//            original constant pool index
// _f1      = methodOop for non-virtual calls, unused by virtual calls.
//            for interface calls, which are essentially virtual but need a klass,
//            contains klassOop for the corresponding interface.
//            for invokedynamic, f1 contains a site-specific CallSite object (as an appendix)
//            for invokehandle, f1 contains a site-specific MethodType object (as an appendix)
//            (upcoming metadata changes will move the appendix to a separate array)
// _f2      = vtable/itable index (or final methodOop) for virtual calls only,
//            unused by non-virtual.  The is_vfinal flag indicates this is a
//            method pointer for a final method, not an index.
// _flags   = method type info (t section),
//            virtual final bit (vfinal),
//            parameter size (psize section)
//
// Note: invokevirtual & invokespecial bytecodes can share the same constant
//       pool entry and thus the same constant pool cache entry. All invoke
//       bytecodes but invokevirtual use only _f1 and the corresponding b1
//       bytecode, while invokevirtual uses only _f2 and the corresponding
//       b2 bytecode.  The value of _flags is shared for both types of entries.
//
// The fields are volatile so that they are stored in the order written in the
// source code.  The _indices field with the bytecode must be written last.

class ConstantPoolCacheEntry VALUE_OBJ_CLASS_SPEC {
  friend class VMStructs;
  friend class constantPoolCacheKlass;
  friend class constantPoolOopDesc;  //resolve_constant_at_impl => set_f1

 private:
  volatile intx     _indices;  // constant pool index & rewrite bytecodes
  volatile oop      _f1;       // entry specific oop field
  volatile intx     _f2;       // entry specific int/oop field
  volatile intx     _flags;    // flags


#ifdef ASSERT
  bool same_methodOop(oop cur_f1, oop f1);
#endif

  void set_bytecode_1(Bytecodes::Code code);
  void set_bytecode_2(Bytecodes::Code code);
  void set_f1(oop f1)                            {
    oop existing_f1 = _f1; // read once
    assert(existing_f1 == NULL || existing_f1 == f1, "illegal field change");
    oop_store(&_f1, f1);
  }
  void release_set_f1(oop f1);
  void set_f2(intx f2)                           { assert(_f2 == 0 || _f2 == f2,            "illegal field change"); _f2 = f2; }
  void set_f2_as_vfinal_method(methodOop f2)     { assert(_f2 == 0 || _f2 == (intptr_t) f2, "illegal field change"); assert(is_vfinal(), "flags must be set"); _f2 = (intptr_t) f2; }
  int make_flags(TosState state, int option_bits, int field_index_or_method_params);
  void set_flags(intx flags)                     { _flags = flags; }
  bool init_flags_atomic(intx flags);
  void set_field_flags(TosState field_type, int option_bits, int field_index) {
    assert((field_index & field_index_mask) == field_index, "field_index in range");
    set_flags(make_flags(field_type, option_bits | (1 << is_field_entry_shift), field_index));
  }
  void set_method_flags(TosState return_type, int option_bits, int method_params) {
    assert((method_params & parameter_size_mask) == method_params, "method_params in range");
    set_flags(make_flags(return_type, option_bits, method_params));
  }
  bool init_method_flags_atomic(TosState return_type, int option_bits, int method_params) {
    assert((method_params & parameter_size_mask) == method_params, "method_params in range");
    return init_flags_atomic(make_flags(return_type, option_bits, method_params));
  }

 public:
  // specific bit definitions for the flags field:
  // (Note: the interpreter must use these definitions to access the CP cache.)
  enum {
    // high order bits are the TosState corresponding to field type or method return type
    tos_state_bits             = 4,
    tos_state_mask             = right_n_bits(tos_state_bits),
    tos_state_shift            = BitsPerInt - tos_state_bits,  // see verify_tos_state_shift below
    // misc. option bits; can be any bit position in [16..27]
    is_vfinal_shift            = 21,
    is_volatile_shift          = 22,
    is_final_shift             = 23,
    has_appendix_shift         = 24,
    is_forced_virtual_shift    = 25,
    is_field_entry_shift       = 26,
    // low order bits give field index (for FieldInfo) or method parameter size:
    field_index_bits           = 16,
    field_index_mask           = right_n_bits(field_index_bits),
    parameter_size_bits        = 8,  // subset of field_index_mask, range is 0..255
    parameter_size_mask        = right_n_bits(parameter_size_bits),
    option_bits_mask           = ~(((-1) << tos_state_shift) | (field_index_mask | parameter_size_mask))
  };

  // specific bit definitions for the indices field:
  enum {
    main_cp_index_bits         = 2*BitsPerByte,
    main_cp_index_mask         = right_n_bits(main_cp_index_bits),
    bytecode_1_shift           = main_cp_index_bits,
    bytecode_1_mask            = right_n_bits(BitsPerByte), // == (u1)0xFF
    bytecode_2_shift           = main_cp_index_bits + BitsPerByte,
    bytecode_2_mask            = right_n_bits(BitsPerByte), // == (u1)0xFF
    // the secondary cp index overlaps with bytecodes 1 and 2:
    secondary_cp_index_shift   = bytecode_1_shift,
    secondary_cp_index_bits    = BitsPerInt - main_cp_index_bits
  };


  // Initialization
  void initialize_entry(int original_index);     // initialize primary entry
  void initialize_secondary_entry(int main_index); // initialize secondary entry

  void set_field(                                // sets entry to resolved field state
    Bytecodes::Code get_code,                    // the bytecode used for reading the field
    Bytecodes::Code put_code,                    // the bytecode used for writing the field
    KlassHandle     field_holder,                // the object/klass holding the field
    int             orig_field_index,            // the original field index in the field holder
    int             field_offset,                // the field offset in words in the field holder
    TosState        field_type,                  // the (machine) field type
    bool            is_final,                     // the field is final
    bool            is_volatile                  // the field is volatile
  );

  void set_method(                               // sets entry to resolved method entry
    Bytecodes::Code invoke_code,                 // the bytecode used for invoking the method
    methodHandle    method,                      // the method/prototype if any (NULL, otherwise)
    int             vtable_index                 // the vtable index if any, else negative
  );

  void set_interface_call(
    methodHandle method,                         // Resolved method
    int index                                    // Method index into interface
  );

  void set_method_handle(
    methodHandle method,                         // adapter for invokeExact, etc.
    Handle appendix                              // stored in f1; could be a java.lang.invoke.MethodType
  );

  void set_dynamic_call(
    methodHandle method,                         // adapter for this call site
    Handle appendix                              // stored in f1; could be a java.lang.invoke.CallSite
  );

  // Common code for invokedynamic and MH invocations.

  // The "appendix" is an optional call-site-specific parameter which is
  // pushed by the JVM at the end of the argument list.  This argument may
  // be a MethodType for the MH.invokes and a CallSite for an invokedynamic
  // instruction.  However, its exact type and use depends on the Java upcall,
  // which simply returns a compiled LambdaForm along with any reference
  // that LambdaForm needs to complete the call.  If the upcall returns a
  // null appendix, the argument is not passed at all.
  //
  // The appendix is *not* represented in the signature of the symbolic
  // reference for the call site, but (if present) it *is* represented in
  // the methodOop bound to the site.  This means that static and dynamic
  // resolution logic needs to make slightly different assessments about the
  // number and types of arguments.
  void set_method_handle_common(
    Bytecodes::Code invoke_code,                 // _invokehandle or _invokedynamic
    methodHandle adapter,                        // invoker method (f2)
    Handle appendix                              // appendix such as CallSite, MethodType, etc. (f1)
  );

  methodOop method_if_resolved(constantPoolHandle cpool);

  void set_parameter_size(int value);

  // Which bytecode number (1 or 2) in the index field is valid for this bytecode?
  // Returns -1 if neither is valid.
  static int bytecode_number(Bytecodes::Code code) {
    switch (code) {
      case Bytecodes::_getstatic       :    // fall through
      case Bytecodes::_getfield        :    // fall through
      case Bytecodes::_invokespecial   :    // fall through
      case Bytecodes::_invokestatic    :    // fall through
      case Bytecodes::_invokeinterface : return 1;
      case Bytecodes::_putstatic       :    // fall through
      case Bytecodes::_putfield        :    // fall through
      case Bytecodes::_invokehandle    :    // fall through
      case Bytecodes::_invokedynamic   :    // fall through
      case Bytecodes::_invokevirtual   : return 2;
      default                          : break;
    }
    return -1;
  }

  // Has this bytecode been resolved? Only valid for invokes and get/put field/static.
  bool is_resolved(Bytecodes::Code code) const {
    switch (bytecode_number(code)) {
      case 1:  return (bytecode_1() == code);
      case 2:  return (bytecode_2() == code);
    }
    return false;      // default: not resolved
  }

  // Accessors
  bool is_secondary_entry() const                { return (_indices & main_cp_index_mask) == 0; }
  int main_entry_index() const                   { assert(is_secondary_entry(), "must be secondary entry");
                                                   return ((uintx)_indices >> secondary_cp_index_shift); }
  int primary_entry_indices() const              { assert(!is_secondary_entry(), "must be main entry");
                                                   return _indices; }
  int constant_pool_index() const                { return (primary_entry_indices() & main_cp_index_mask); }
  Bytecodes::Code bytecode_1() const             { return Bytecodes::cast((primary_entry_indices() >> bytecode_1_shift)
                                                                          & bytecode_1_mask); }
  Bytecodes::Code bytecode_2() const             { return Bytecodes::cast((primary_entry_indices() >> bytecode_2_shift)
                                                                          & bytecode_2_mask); }
  methodOop f1_as_method() const                 { oop f1 = _f1; assert(f1 == NULL || f1->is_method(), ""); return methodOop(f1); }
  klassOop  f1_as_klass() const                  { oop f1 = _f1; assert(f1 == NULL || f1->is_klass(), ""); return klassOop(f1); }
  oop       f1_as_klass_mirror() const           { oop f1 = f1_as_instance(); return f1; }  // i.e., return a java_mirror
  oop       f1_as_instance() const               { oop f1 = _f1; assert(f1 == NULL || f1->is_instance() || f1->is_array(), ""); return f1; }
  oop       f1_appendix() const                  { assert(has_appendix(), ""); return f1_as_instance(); }
  bool      is_f1_null() const                   { oop f1 = _f1; return f1 == NULL; }  // classifies a CPC entry as unbound
  int       f2_as_index() const                  { assert(!is_vfinal(), ""); return (int) _f2; }
  methodOop f2_as_vfinal_method() const          { assert(is_vfinal(), ""); return methodOop(_f2); }
  int  field_index() const                       { assert(is_field_entry(),  ""); return (_flags & field_index_mask); }
  int  parameter_size() const                    { assert(is_method_entry(), ""); return (_flags & parameter_size_mask); }
  bool is_volatile() const                       { return (_flags & (1 << is_volatile_shift))       != 0; }
  bool is_final() const                          { return (_flags & (1 << is_final_shift))          != 0; }
  bool has_appendix() const                      { return (_flags & (1 << has_appendix_shift))     != 0; }
  bool is_forced_virtual() const                 { return (_flags & (1 << is_forced_virtual_shift)) != 0; }
  bool is_vfinal() const                         { return (_flags & (1 << is_vfinal_shift))         != 0; }
  bool is_method_entry() const                   { return (_flags & (1 << is_field_entry_shift))    == 0; }
  bool is_field_entry() const                    { return (_flags & (1 << is_field_entry_shift))    != 0; }
  bool is_byte() const                           { return flag_state() == btos; }
  bool is_char() const                           { return flag_state() == ctos; }
  bool is_short() const                          { return flag_state() == stos; }
  bool is_int() const                            { return flag_state() == itos; }
  bool is_long() const                           { return flag_state() == ltos; }
  bool is_float() const                          { return flag_state() == ftos; }
  bool is_double() const                         { return flag_state() == dtos; }
  bool is_object() const                         { return flag_state() == atos; }
  TosState flag_state() const                    { assert((uint)number_of_states <= (uint)tos_state_mask+1, "");
                                                   return (TosState)((_flags >> tos_state_shift) & tos_state_mask); }

  // Code generation support
  static WordSize size()                         { return in_WordSize(sizeof(ConstantPoolCacheEntry) / HeapWordSize); }
  static ByteSize size_in_bytes()                { return in_ByteSize(sizeof(ConstantPoolCacheEntry)); }
  static ByteSize indices_offset()               { return byte_offset_of(ConstantPoolCacheEntry, _indices); }
  static ByteSize f1_offset()                    { return byte_offset_of(ConstantPoolCacheEntry, _f1); }
  static ByteSize f2_offset()                    { return byte_offset_of(ConstantPoolCacheEntry, _f2); }
  static ByteSize flags_offset()                 { return byte_offset_of(ConstantPoolCacheEntry, _flags); }

  // GC Support
  void oops_do(void f(oop*));
  void oop_iterate(OopClosure* blk);
  void oop_iterate_m(OopClosure* blk, MemRegion mr);
  void follow_contents();
  void adjust_pointers();

#ifndef SERIALGC
  // Parallel Old
  void follow_contents(ParCompactionManager* cm);
#endif // SERIALGC

  void update_pointers();

  // RedefineClasses() API support:
  // If this constantPoolCacheEntry refers to old_method then update it
  // to refer to new_method.
  // trace_name_printed is set to true if the current call has
  // printed the klass name so that other routines in the adjust_*
  // group don't print the klass name.
  bool adjust_method_entry(methodOop old_method, methodOop new_method,
         bool * trace_name_printed);
  bool is_interesting_method_entry(klassOop k);

  // Debugging & Printing
  void print (outputStream* st, int index) const;
  void verify(outputStream* st) const;

  static void verify_tos_state_shift() {
    // When shifting flags as a 32-bit int, make sure we don't need an extra mask for tos_state:
    assert((((u4)-1 >> tos_state_shift) & ~tos_state_mask) == 0, "no need for tos_state mask");
  }
};


// A constant pool cache is a runtime data structure set aside to a constant pool. The cache
// holds interpreter runtime information for all field access and invoke bytecodes. The cache
// is created and initialized before a class is actively used (i.e., initialized), the indivi-
// dual cache entries are filled at resolution (i.e., "link") time (see also: rewriter.*).

class constantPoolCacheOopDesc: public oopDesc {
  friend class VMStructs;
 private:
  int             _length;
  constantPoolOop _constant_pool;                // the corresponding constant pool

  // Sizing
  debug_only(friend class ClassVerifier;)
 public:
  int length() const                             { return _length; }
 private:
  void set_length(int length)                    { _length = length; }

  static int header_size()                       { return sizeof(constantPoolCacheOopDesc) / HeapWordSize; }
  static int object_size(int length)             { return align_object_size(header_size() + length * in_words(ConstantPoolCacheEntry::size())); }
  int object_size()                              { return object_size(length()); }

  // Helpers
  constantPoolOop*        constant_pool_addr()   { return &_constant_pool; }
  ConstantPoolCacheEntry* base() const           { return (ConstantPoolCacheEntry*)((address)this + in_bytes(base_offset())); }

  friend class constantPoolCacheKlass;
  friend class ConstantPoolCacheEntry;

 public:
  // Initialization
  void initialize(intArray& inverse_index_map);

  // Secondary indexes.
  // They must look completely different from normal indexes.
  // The main reason is that byte swapping is sometimes done on normal indexes.
  // Also, some of the CP accessors do different things for secondary indexes.
  // Finally, it is helpful for debugging to tell the two apart.
  static bool is_secondary_index(int i) { return (i < 0); }
  static int  decode_secondary_index(int i) { assert(is_secondary_index(i),  ""); return ~i; }
  static int  encode_secondary_index(int i) { assert(!is_secondary_index(i), ""); return ~i; }

  // Accessors
  void set_constant_pool(constantPoolOop pool)   { oop_store_without_check((oop*)&_constant_pool, (oop)pool); }
  constantPoolOop constant_pool() const          { return _constant_pool; }
  // Fetches the entry at the given index.
  // The entry may be either primary or secondary.
  // In either case the index must not be encoded or byte-swapped in any way.
  ConstantPoolCacheEntry* entry_at(int i) const {
    assert(0 <= i && i < length(), "index out of bounds");
    return base() + i;
  }
  // Fetches the secondary entry referred to by index.
  // The index may be a secondary index, and must not be byte-swapped.
  ConstantPoolCacheEntry* secondary_entry_at(int i) const {
    int raw_index = i;
    if (is_secondary_index(i)) {  // correct these on the fly
      raw_index = decode_secondary_index(i);
    }
    assert(entry_at(raw_index)->is_secondary_entry(), "not a secondary entry");
    return entry_at(raw_index);
  }
  // Given a primary or secondary index, fetch the corresponding primary entry.
  // Indirect through the secondary entry, if the index is encoded as a secondary index.
  // The index must not be byte-swapped.
  ConstantPoolCacheEntry* main_entry_at(int i) const {
    int primary_index = i;
    if (is_secondary_index(i)) {
      // run through an extra level of indirection:
      int raw_index = decode_secondary_index(i);
      primary_index = entry_at(raw_index)->main_entry_index();
    }
    assert(!entry_at(primary_index)->is_secondary_entry(), "only one level of indirection");
    return entry_at(primary_index);
  }

  // Code generation
  static ByteSize base_offset()                  { return in_ByteSize(sizeof(constantPoolCacheOopDesc)); }
  static ByteSize entry_offset(int raw_index) {
    int index = raw_index;
    if (is_secondary_index(raw_index))
      index = decode_secondary_index(raw_index);
    return (base_offset() + ConstantPoolCacheEntry::size_in_bytes() * index);
  }

  // RedefineClasses() API support:
  // If any entry of this constantPoolCache points to any of
  // old_methods, replace it with the corresponding new_method.
  // trace_name_printed is set to true if the current call has
  // printed the klass name so that other routines in the adjust_*
  // group don't print the klass name.
  void adjust_method_entries(methodOop* old_methods, methodOop* new_methods,
                             int methods_length, bool * trace_name_printed);
};

#endif // SHARE_VM_OOPS_CPCACHEOOP_HPP