8220628: Move the HeapMonitor library to C++
Summary: Migrate libHeapMonitorTest.c to libHeapMonitorTest.cpp
Reviewed-by: cjplummer, sspitsyn
/*
* Copyright (c) 2009, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.security.ec;
import java.nio.ByteBuffer;
import java.security.*;
import java.security.interfaces.*;
import java.security.spec.*;
import java.util.Optional;
import sun.security.jca.JCAUtil;
import sun.security.util.*;
import static sun.security.ec.ECOperations.IntermediateValueException;
/**
* ECDSA signature implementation. This class currently supports the
* following algorithm names:
*
* . "NONEwithECDSA"
* . "SHA1withECDSA"
* . "SHA224withECDSA"
* . "SHA256withECDSA"
* . "SHA384withECDSA"
* . "SHA512withECDSA"
* . "NONEwithECDSAinP1363Format"
* . "SHA1withECDSAinP1363Format"
* . "SHA224withECDSAinP1363Format"
* . "SHA256withECDSAinP1363Format"
* . "SHA384withECDSAinP1363Format"
* . "SHA512withECDSAinP1363Format"
*
* @since 1.7
*/
abstract class ECDSASignature extends SignatureSpi {
// message digest implementation we use
private final MessageDigest messageDigest;
// supplied entropy
private SecureRandom random;
// flag indicating whether the digest has been reset
private boolean needsReset;
// private key, if initialized for signing
private ECPrivateKey privateKey;
// public key, if initialized for verifying
private ECPublicKey publicKey;
// The format. true for the IEEE P1363 format. false (default) for ASN.1
private final boolean p1363Format;
/**
* Constructs a new ECDSASignature.
*
* @exception ProviderException if the native ECC library is unavailable.
*/
ECDSASignature() {
this(false);
}
/**
* Constructs a new ECDSASignature that will use the specified
* signature format. {@code p1363Format} should be {@code true} to
* use the IEEE P1363 format. If {@code p1363Format} is {@code false},
* the DER-encoded ASN.1 format will be used. This constructor is
* used by the RawECDSA subclasses.
*/
ECDSASignature(boolean p1363Format) {
this.messageDigest = null;
this.p1363Format = p1363Format;
}
/**
* Constructs a new ECDSASignature. Used by subclasses.
*/
ECDSASignature(String digestName) {
this(digestName, false);
}
/**
* Constructs a new ECDSASignature that will use the specified
* digest and signature format. {@code p1363Format} should be
* {@code true} to use the IEEE P1363 format. If {@code p1363Format}
* is {@code false}, the DER-encoded ASN.1 format will be used. This
* constructor is used by subclasses.
*/
ECDSASignature(String digestName, boolean p1363Format) {
try {
messageDigest = MessageDigest.getInstance(digestName);
} catch (NoSuchAlgorithmException e) {
throw new ProviderException(e);
}
this.needsReset = false;
this.p1363Format = p1363Format;
}
// Class for Raw ECDSA signatures.
static class RawECDSA extends ECDSASignature {
// the longest supported digest is 512 bits (SHA-512)
private static final int RAW_ECDSA_MAX = 64;
private final byte[] precomputedDigest;
private int offset = 0;
RawECDSA(boolean p1363Format) {
super(p1363Format);
precomputedDigest = new byte[RAW_ECDSA_MAX];
}
// Stores the precomputed message digest value.
@Override
protected void engineUpdate(byte b) throws SignatureException {
if (offset >= precomputedDigest.length) {
offset = RAW_ECDSA_MAX + 1;
return;
}
precomputedDigest[offset++] = b;
}
// Stores the precomputed message digest value.
@Override
protected void engineUpdate(byte[] b, int off, int len)
throws SignatureException {
if (offset >= precomputedDigest.length) {
offset = RAW_ECDSA_MAX + 1;
return;
}
System.arraycopy(b, off, precomputedDigest, offset, len);
offset += len;
}
// Stores the precomputed message digest value.
@Override
protected void engineUpdate(ByteBuffer byteBuffer) {
int len = byteBuffer.remaining();
if (len <= 0) {
return;
}
if (len >= precomputedDigest.length - offset) {
offset = RAW_ECDSA_MAX + 1;
return;
}
byteBuffer.get(precomputedDigest, offset, len);
offset += len;
}
@Override
protected void resetDigest() {
offset = 0;
}
// Returns the precomputed message digest value.
@Override
protected byte[] getDigestValue() throws SignatureException {
if (offset > RAW_ECDSA_MAX) {
throw new SignatureException("Message digest is too long");
}
byte[] result = new byte[offset];
System.arraycopy(precomputedDigest, 0, result, 0, offset);
offset = 0;
return result;
}
}
// Nested class for NONEwithECDSA signatures
public static final class Raw extends RawECDSA {
public Raw() {
super(false);
}
}
// Nested class for NONEwithECDSAinP1363Format signatures
public static final class RawinP1363Format extends RawECDSA {
public RawinP1363Format() {
super(true);
}
}
// Nested class for SHA1withECDSA signatures
public static final class SHA1 extends ECDSASignature {
public SHA1() {
super("SHA1");
}
}
// Nested class for SHA1withECDSAinP1363Format signatures
public static final class SHA1inP1363Format extends ECDSASignature {
public SHA1inP1363Format() {
super("SHA1", true);
}
}
// Nested class for SHA224withECDSA signatures
public static final class SHA224 extends ECDSASignature {
public SHA224() {
super("SHA-224");
}
}
// Nested class for SHA224withECDSAinP1363Format signatures
public static final class SHA224inP1363Format extends ECDSASignature {
public SHA224inP1363Format() {
super("SHA-224", true);
}
}
// Nested class for SHA256withECDSA signatures
public static final class SHA256 extends ECDSASignature {
public SHA256() {
super("SHA-256");
}
}
// Nested class for SHA256withECDSAinP1363Format signatures
public static final class SHA256inP1363Format extends ECDSASignature {
public SHA256inP1363Format() {
super("SHA-256", true);
}
}
// Nested class for SHA384withECDSA signatures
public static final class SHA384 extends ECDSASignature {
public SHA384() {
super("SHA-384");
}
}
// Nested class for SHA384withECDSAinP1363Format signatures
public static final class SHA384inP1363Format extends ECDSASignature {
public SHA384inP1363Format() {
super("SHA-384", true);
}
}
// Nested class for SHA512withECDSA signatures
public static final class SHA512 extends ECDSASignature {
public SHA512() {
super("SHA-512");
}
}
// Nested class for SHA512withECDSAinP1363Format signatures
public static final class SHA512inP1363Format extends ECDSASignature {
public SHA512inP1363Format() {
super("SHA-512", true);
}
}
// initialize for verification. See JCA doc
@Override
protected void engineInitVerify(PublicKey publicKey)
throws InvalidKeyException {
this.publicKey = (ECPublicKey) ECKeyFactory.toECKey(publicKey);
// Should check that the supplied key is appropriate for signature
// algorithm (e.g. P-256 for SHA256withECDSA)
this.privateKey = null;
resetDigest();
}
// initialize for signing. See JCA doc
@Override
protected void engineInitSign(PrivateKey privateKey)
throws InvalidKeyException {
engineInitSign(privateKey, null);
}
// initialize for signing. See JCA doc
@Override
protected void engineInitSign(PrivateKey privateKey, SecureRandom random)
throws InvalidKeyException {
this.privateKey = (ECPrivateKey) ECKeyFactory.toECKey(privateKey);
// Should check that the supplied key is appropriate for signature
// algorithm (e.g. P-256 for SHA256withECDSA)
this.publicKey = null;
this.random = random;
resetDigest();
}
/**
* Resets the message digest if needed.
*/
protected void resetDigest() {
if (needsReset) {
if (messageDigest != null) {
messageDigest.reset();
}
needsReset = false;
}
}
/**
* Returns the message digest value.
*/
protected byte[] getDigestValue() throws SignatureException {
needsReset = false;
return messageDigest.digest();
}
// update the signature with the plaintext data. See JCA doc
@Override
protected void engineUpdate(byte b) throws SignatureException {
messageDigest.update(b);
needsReset = true;
}
// update the signature with the plaintext data. See JCA doc
@Override
protected void engineUpdate(byte[] b, int off, int len)
throws SignatureException {
messageDigest.update(b, off, len);
needsReset = true;
}
// update the signature with the plaintext data. See JCA doc
@Override
protected void engineUpdate(ByteBuffer byteBuffer) {
int len = byteBuffer.remaining();
if (len <= 0) {
return;
}
messageDigest.update(byteBuffer);
needsReset = true;
}
private byte[] signDigestImpl(ECDSAOperations ops, int seedBits,
byte[] digest, ECPrivateKeyImpl privImpl, SecureRandom random)
throws SignatureException {
byte[] seedBytes = new byte[(seedBits + 7) / 8];
byte[] s = privImpl.getArrayS();
// Attempt to create the signature in a loop that uses new random input
// each time. The chance of failure is very small assuming the
// implementation derives the nonce using extra bits
int numAttempts = 128;
for (int i = 0; i < numAttempts; i++) {
random.nextBytes(seedBytes);
ECDSAOperations.Seed seed = new ECDSAOperations.Seed(seedBytes);
try {
return ops.signDigest(s, digest, seed);
} catch (IntermediateValueException ex) {
// try again in the next iteration
}
}
throw new SignatureException("Unable to produce signature after "
+ numAttempts + " attempts");
}
private Optional<byte[]> signDigestImpl(ECPrivateKey privateKey,
byte[] digest, SecureRandom random) throws SignatureException {
if (! (privateKey instanceof ECPrivateKeyImpl)) {
return Optional.empty();
}
ECPrivateKeyImpl privImpl = (ECPrivateKeyImpl) privateKey;
ECParameterSpec params = privateKey.getParams();
// seed is the key size + 64 bits
int seedBits = params.getOrder().bitLength() + 64;
Optional<ECDSAOperations> opsOpt =
ECDSAOperations.forParameters(params);
if (opsOpt.isEmpty()) {
return Optional.empty();
} else {
byte[] sig = signDigestImpl(opsOpt.get(), seedBits, digest,
privImpl, random);
return Optional.of(sig);
}
}
private byte[] signDigestNative(ECPrivateKey privateKey, byte[] digest,
SecureRandom random) throws SignatureException {
byte[] s = privateKey.getS().toByteArray();
ECParameterSpec params = privateKey.getParams();
// DER OID
byte[] encodedParams = ECUtil.encodeECParameterSpec(null, params);
int keySize = params.getCurve().getField().getFieldSize();
// seed is twice the key size (in bytes) plus 1
byte[] seed = new byte[(((keySize + 7) >> 3) + 1) * 2];
random.nextBytes(seed);
// random bits needed for timing countermeasures
int timingArgument = random.nextInt();
// values must be non-zero to enable countermeasures
timingArgument |= 1;
try {
return signDigest(digest, s, encodedParams, seed,
timingArgument);
} catch (GeneralSecurityException e) {
throw new SignatureException("Could not sign data", e);
}
}
// sign the data and return the signature. See JCA doc
@Override
protected byte[] engineSign() throws SignatureException {
if (random == null) {
random = JCAUtil.getSecureRandom();
}
byte[] digest = getDigestValue();
Optional<byte[]> sigOpt = signDigestImpl(privateKey, digest, random);
byte[] sig;
if (sigOpt.isPresent()) {
sig = sigOpt.get();
} else {
sig = signDigestNative(privateKey, digest, random);
}
if (p1363Format) {
return sig;
} else {
return ECUtil.encodeSignature(sig);
}
}
// verify the data and return the result. See JCA doc
@Override
protected boolean engineVerify(byte[] signature) throws SignatureException {
byte[] w;
ECParameterSpec params = publicKey.getParams();
// DER OID
byte[] encodedParams = ECUtil.encodeECParameterSpec(null, params);
if (publicKey instanceof ECPublicKeyImpl) {
w = ((ECPublicKeyImpl) publicKey).getEncodedPublicValue();
} else { // instanceof ECPublicKey
w = ECUtil.encodePoint(publicKey.getW(), params.getCurve());
}
byte[] sig;
if (p1363Format) {
sig = signature;
} else {
sig = ECUtil.decodeSignature(signature);
}
try {
return verifySignedDigest(sig, getDigestValue(), w, encodedParams);
} catch (GeneralSecurityException e) {
throw new SignatureException("Could not verify signature", e);
}
}
// set parameter, not supported. See JCA doc
@Override
@Deprecated
protected void engineSetParameter(String param, Object value)
throws InvalidParameterException {
throw new UnsupportedOperationException("setParameter() not supported");
}
@Override
protected void engineSetParameter(AlgorithmParameterSpec params)
throws InvalidAlgorithmParameterException {
if (params != null) {
throw new InvalidAlgorithmParameterException("No parameter accepted");
}
}
// get parameter, not supported. See JCA doc
@Override
@Deprecated
protected Object engineGetParameter(String param)
throws InvalidParameterException {
throw new UnsupportedOperationException("getParameter() not supported");
}
@Override
protected AlgorithmParameters engineGetParameters() {
return null;
}
/**
* Signs the digest using the private key.
*
* @param digest the digest to be signed.
* @param s the private key's S value.
* @param encodedParams the curve's DER encoded object identifier.
* @param seed the random seed.
* @param timing When non-zero, the implmentation will use timing
* countermeasures to hide secrets from timing channels. The EC
* implementation will disable the countermeasures when this value is
* zero, because the underlying EC functions are shared by several
* crypto operations, some of which do not use the countermeasures.
* The high-order 31 bits must be uniformly random. The entropy from
* these bits is used by the countermeasures.
*
* @return byte[] the signature.
*/
private static native byte[] signDigest(byte[] digest, byte[] s,
byte[] encodedParams, byte[] seed, int timing)
throws GeneralSecurityException;
/**
* Verifies the signed digest using the public key.
*
* @param signature the signature to be verified. It is encoded
* as a concatenation of the key's R and S values.
* @param digest the digest to be used.
* @param w the public key's W point (in uncompressed form).
* @param encodedParams the curve's DER encoded object identifier.
*
* @return boolean true if the signature is successfully verified.
*/
private static native boolean verifySignedDigest(byte[] signature,
byte[] digest, byte[] w, byte[] encodedParams)
throws GeneralSecurityException;
}