6787106: Hotspot 32 bit build fails on platforms having different definitions for intptr_t & int32_t
Summary: Avoid casting between int32_t and intptr_t specifically for MasmAssembler::movptr in 32 bit platforms.
Reviewed-by: jrose, kvn
/*
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
class VM_Version: public Abstract_VM_Version {
public:
// cpuid result register layouts. These are all unions of a uint32_t
// (in case anyone wants access to the register as a whole) and a bitfield.
union StdCpuid1Eax {
uint32_t value;
struct {
uint32_t stepping : 4,
model : 4,
family : 4,
proc_type : 2,
: 2,
ext_model : 4,
ext_family : 8,
: 4;
} bits;
};
union StdCpuid1Ebx { // example, unused
uint32_t value;
struct {
uint32_t brand_id : 8,
clflush_size : 8,
threads_per_cpu : 8,
apic_id : 8;
} bits;
};
union StdCpuid1Ecx {
uint32_t value;
struct {
uint32_t sse3 : 1,
: 2,
monitor : 1,
: 1,
vmx : 1,
: 1,
est : 1,
: 1,
ssse3 : 1,
cid : 1,
: 2,
cmpxchg16: 1,
: 4,
dca : 1,
sse4_1 : 1,
sse4_2 : 1,
: 11;
} bits;
};
union StdCpuid1Edx {
uint32_t value;
struct {
uint32_t : 4,
tsc : 1,
: 3,
cmpxchg8 : 1,
: 6,
cmov : 1,
: 7,
mmx : 1,
fxsr : 1,
sse : 1,
sse2 : 1,
: 1,
ht : 1,
: 3;
} bits;
};
union DcpCpuid4Eax {
uint32_t value;
struct {
uint32_t cache_type : 5,
: 21,
cores_per_cpu : 6;
} bits;
};
union DcpCpuid4Ebx {
uint32_t value;
struct {
uint32_t L1_line_size : 12,
partitions : 10,
associativity : 10;
} bits;
};
union ExtCpuid1Ecx {
uint32_t value;
struct {
uint32_t LahfSahf : 1,
CmpLegacy : 1,
: 4,
abm : 1,
sse4a : 1,
misalignsse : 1,
prefetchw : 1,
: 22;
} bits;
};
union ExtCpuid1Edx {
uint32_t value;
struct {
uint32_t : 22,
mmx_amd : 1,
mmx : 1,
fxsr : 1,
: 4,
long_mode : 1,
tdnow2 : 1,
tdnow : 1;
} bits;
};
union ExtCpuid5Ex {
uint32_t value;
struct {
uint32_t L1_line_size : 8,
L1_tag_lines : 8,
L1_assoc : 8,
L1_size : 8;
} bits;
};
union ExtCpuid8Ecx {
uint32_t value;
struct {
uint32_t cores_per_cpu : 8,
: 24;
} bits;
};
protected:
static int _cpu;
static int _model;
static int _stepping;
static int _cpuFeatures; // features returned by the "cpuid" instruction
// 0 if this instruction is not available
static const char* _features_str;
enum {
CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX)
CPU_CMOV = (1 << 1),
CPU_FXSR = (1 << 2),
CPU_HT = (1 << 3),
CPU_MMX = (1 << 4),
CPU_3DNOW= (1 << 5), // 3DNow comes from cpuid 0x80000001 (EDX)
CPU_SSE = (1 << 6),
CPU_SSE2 = (1 << 7),
CPU_SSE3 = (1 << 8), // sse3 comes from cpuid 1 (ECX)
CPU_SSSE3= (1 << 9),
CPU_SSE4A= (1 <<10),
CPU_SSE4_1 = (1 << 11),
CPU_SSE4_2 = (1 << 12)
} cpuFeatureFlags;
// cpuid information block. All info derived from executing cpuid with
// various function numbers is stored here. Intel and AMD info is
// merged in this block: accessor methods disentangle it.
//
// The info block is laid out in subblocks of 4 dwords corresponding to
// rax, rbx, rcx and rdx, whether or not they contain anything useful.
struct CpuidInfo {
// cpuid function 0
uint32_t std_max_function;
uint32_t std_vendor_name_0;
uint32_t std_vendor_name_1;
uint32_t std_vendor_name_2;
// cpuid function 1
StdCpuid1Eax std_cpuid1_rax;
StdCpuid1Ebx std_cpuid1_rbx;
StdCpuid1Ecx std_cpuid1_rcx;
StdCpuid1Edx std_cpuid1_rdx;
// cpuid function 4 (deterministic cache parameters)
DcpCpuid4Eax dcp_cpuid4_rax;
DcpCpuid4Ebx dcp_cpuid4_rbx;
uint32_t dcp_cpuid4_rcx; // unused currently
uint32_t dcp_cpuid4_rdx; // unused currently
// cpuid function 0x80000000 // example, unused
uint32_t ext_max_function;
uint32_t ext_vendor_name_0;
uint32_t ext_vendor_name_1;
uint32_t ext_vendor_name_2;
// cpuid function 0x80000001
uint32_t ext_cpuid1_rax; // reserved
uint32_t ext_cpuid1_rbx; // reserved
ExtCpuid1Ecx ext_cpuid1_rcx;
ExtCpuid1Edx ext_cpuid1_rdx;
// cpuid functions 0x80000002 thru 0x80000004: example, unused
uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
// cpuid function 0x80000005 //AMD L1, Intel reserved
uint32_t ext_cpuid5_rax; // unused currently
uint32_t ext_cpuid5_rbx; // reserved
ExtCpuid5Ex ext_cpuid5_rcx; // L1 data cache info (AMD)
ExtCpuid5Ex ext_cpuid5_rdx; // L1 instruction cache info (AMD)
// cpuid function 0x80000008
uint32_t ext_cpuid8_rax; // unused currently
uint32_t ext_cpuid8_rbx; // reserved
ExtCpuid8Ecx ext_cpuid8_rcx;
uint32_t ext_cpuid8_rdx; // reserved
};
// The actual cpuid info block
static CpuidInfo _cpuid_info;
// Extractors and predicates
static uint32_t extended_cpu_family() {
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.family;
result += _cpuid_info.std_cpuid1_rax.bits.ext_family;
return result;
}
static uint32_t extended_cpu_model() {
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.model;
result |= _cpuid_info.std_cpuid1_rax.bits.ext_model << 4;
return result;
}
static uint32_t cpu_stepping() {
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.stepping;
return result;
}
static uint logical_processor_count() {
uint result = threads_per_core();
return result;
}
static uint32_t feature_flags() {
uint32_t result = 0;
if (_cpuid_info.std_cpuid1_rdx.bits.cmpxchg8 != 0)
result |= CPU_CX8;
if (_cpuid_info.std_cpuid1_rdx.bits.cmov != 0)
result |= CPU_CMOV;
if (_cpuid_info.std_cpuid1_rdx.bits.fxsr != 0 || is_amd() &&
_cpuid_info.ext_cpuid1_rdx.bits.fxsr != 0)
result |= CPU_FXSR;
// HT flag is set for multi-core processors also.
if (threads_per_core() > 1)
result |= CPU_HT;
if (_cpuid_info.std_cpuid1_rdx.bits.mmx != 0 || is_amd() &&
_cpuid_info.ext_cpuid1_rdx.bits.mmx != 0)
result |= CPU_MMX;
if (is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.tdnow != 0)
result |= CPU_3DNOW;
if (_cpuid_info.std_cpuid1_rdx.bits.sse != 0)
result |= CPU_SSE;
if (_cpuid_info.std_cpuid1_rdx.bits.sse2 != 0)
result |= CPU_SSE2;
if (_cpuid_info.std_cpuid1_rcx.bits.sse3 != 0)
result |= CPU_SSE3;
if (_cpuid_info.std_cpuid1_rcx.bits.ssse3 != 0)
result |= CPU_SSSE3;
if (is_amd() && _cpuid_info.ext_cpuid1_rcx.bits.sse4a != 0)
result |= CPU_SSE4A;
if (_cpuid_info.std_cpuid1_rcx.bits.sse4_1 != 0)
result |= CPU_SSE4_1;
if (_cpuid_info.std_cpuid1_rcx.bits.sse4_2 != 0)
result |= CPU_SSE4_2;
return result;
}
static void get_processor_features();
public:
// Offsets for cpuid asm stub
static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_rax); }
static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_rax); }
static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_rax); }
static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_rax); }
static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_rax); }
// Initialization
static void initialize();
// Asserts
static void assert_is_initialized() {
assert(_cpuid_info.std_cpuid1_rax.bits.family != 0, "VM_Version not initialized");
}
//
// Processor family:
// 3 - 386
// 4 - 486
// 5 - Pentium
// 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
// Pentium M, Core Solo, Core Duo, Core2 Duo
// family 6 model: 9, 13, 14, 15
// 0x0f - Pentium 4, Opteron
//
// Note: The cpu family should be used to select between
// instruction sequences which are valid on all Intel
// processors. Use the feature test functions below to
// determine whether a particular instruction is supported.
//
static int cpu_family() { return _cpu;}
static bool is_P6() { return cpu_family() >= 6; }
static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
static uint cores_per_cpu() {
uint result = 1;
if (is_intel()) {
result = (_cpuid_info.dcp_cpuid4_rax.bits.cores_per_cpu + 1);
} else if (is_amd()) {
result = (_cpuid_info.ext_cpuid8_rcx.bits.cores_per_cpu + 1);
}
return result;
}
static uint threads_per_core() {
uint result = 1;
if (_cpuid_info.std_cpuid1_rdx.bits.ht != 0) {
result = _cpuid_info.std_cpuid1_rbx.bits.threads_per_cpu /
cores_per_cpu();
}
return result;
}
static intx L1_data_cache_line_size() {
intx result = 0;
if (is_intel()) {
result = (_cpuid_info.dcp_cpuid4_rbx.bits.L1_line_size + 1);
} else if (is_amd()) {
result = _cpuid_info.ext_cpuid5_rcx.bits.L1_line_size;
}
if (result < 32) // not defined ?
result = 32; // 32 bytes by default on x86
return result;
}
//
// Feature identification
//
static bool supports_cpuid() { return _cpuFeatures != 0; }
static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
static bool supports_cmov() { return (_cpuFeatures & CPU_CMOV) != 0; }
static bool supports_fxsr() { return (_cpuFeatures & CPU_FXSR) != 0; }
static bool supports_ht() { return (_cpuFeatures & CPU_HT) != 0; }
static bool supports_mmx() { return (_cpuFeatures & CPU_MMX) != 0; }
static bool supports_sse() { return (_cpuFeatures & CPU_SSE) != 0; }
static bool supports_sse2() { return (_cpuFeatures & CPU_SSE2) != 0; }
static bool supports_sse3() { return (_cpuFeatures & CPU_SSE3) != 0; }
static bool supports_ssse3() { return (_cpuFeatures & CPU_SSSE3)!= 0; }
static bool supports_sse4_1() { return (_cpuFeatures & CPU_SSE4_1) != 0; }
static bool supports_sse4_2() { return (_cpuFeatures & CPU_SSE4_2) != 0; }
//
// AMD features
//
static bool supports_3dnow() { return (_cpuFeatures & CPU_3DNOW) != 0; }
static bool supports_mmx_ext() { return is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.mmx_amd != 0; }
static bool supports_3dnow2() { return is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.tdnow2 != 0; }
static bool supports_sse4a() { return (_cpuFeatures & CPU_SSE4A) != 0; }
static bool supports_compare_and_exchange() { return true; }
static const char* cpu_features() { return _features_str; }
static intx allocate_prefetch_distance() {
// This method should be called before allocate_prefetch_style().
//
// Hardware prefetching (distance/size in bytes):
// Pentium 3 - 64 / 32
// Pentium 4 - 256 / 128
// Athlon - 64 / 32 ????
// Opteron - 128 / 64 only when 2 sequential cache lines accessed
// Core - 128 / 64
//
// Software prefetching (distance in bytes / instruction with best score):
// Pentium 3 - 128 / prefetchnta
// Pentium 4 - 512 / prefetchnta
// Athlon - 128 / prefetchnta
// Opteron - 256 / prefetchnta
// Core - 256 / prefetchnta
// It will be used only when AllocatePrefetchStyle > 0
intx count = AllocatePrefetchDistance;
if (count < 0) { // default ?
if (is_amd()) { // AMD
if (supports_sse2())
count = 256; // Opteron
else
count = 128; // Athlon
} else { // Intel
if (supports_sse2())
if (cpu_family() == 6) {
count = 256; // Pentium M, Core, Core2
} else {
count = 512; // Pentium 4
}
else
count = 128; // Pentium 3 (and all other old CPUs)
}
}
return count;
}
static intx allocate_prefetch_style() {
assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
// Return 0 if AllocatePrefetchDistance was not defined or
// prefetch instruction is not supported.
return (AllocatePrefetchDistance > 0 &&
(supports_3dnow() || supports_sse())) ? AllocatePrefetchStyle : 0;
}
};