1
|
1 |
/*
|
|
2 |
* Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
class VM_Version: public Abstract_VM_Version {
|
|
26 |
public:
|
|
27 |
// cpuid result register layouts. These are all unions of a uint32_t
|
|
28 |
// (in case anyone wants access to the register as a whole) and a bitfield.
|
|
29 |
|
|
30 |
union StdCpuid1Eax {
|
|
31 |
uint32_t value;
|
|
32 |
struct {
|
|
33 |
uint32_t stepping : 4,
|
|
34 |
model : 4,
|
|
35 |
family : 4,
|
|
36 |
proc_type : 2,
|
|
37 |
: 2,
|
|
38 |
ext_model : 4,
|
|
39 |
ext_family : 8,
|
|
40 |
: 4;
|
|
41 |
} bits;
|
|
42 |
};
|
|
43 |
|
|
44 |
union StdCpuid1Ebx { // example, unused
|
|
45 |
uint32_t value;
|
|
46 |
struct {
|
|
47 |
uint32_t brand_id : 8,
|
|
48 |
clflush_size : 8,
|
|
49 |
threads_per_cpu : 8,
|
|
50 |
apic_id : 8;
|
|
51 |
} bits;
|
|
52 |
};
|
|
53 |
|
|
54 |
union StdCpuid1Ecx {
|
|
55 |
uint32_t value;
|
|
56 |
struct {
|
|
57 |
uint32_t sse3 : 1,
|
|
58 |
: 2,
|
|
59 |
monitor : 1,
|
|
60 |
: 1,
|
|
61 |
vmx : 1,
|
|
62 |
: 1,
|
|
63 |
est : 1,
|
|
64 |
: 1,
|
|
65 |
ssse3 : 1,
|
|
66 |
cid : 1,
|
|
67 |
: 2,
|
|
68 |
cmpxchg16: 1,
|
|
69 |
: 4,
|
|
70 |
dca : 1,
|
1437
|
71 |
sse4_1 : 1,
|
|
72 |
sse4_2 : 1,
|
|
73 |
: 11;
|
1
|
74 |
} bits;
|
|
75 |
};
|
|
76 |
|
|
77 |
union StdCpuid1Edx {
|
|
78 |
uint32_t value;
|
|
79 |
struct {
|
|
80 |
uint32_t : 4,
|
|
81 |
tsc : 1,
|
|
82 |
: 3,
|
|
83 |
cmpxchg8 : 1,
|
|
84 |
: 6,
|
|
85 |
cmov : 1,
|
|
86 |
: 7,
|
|
87 |
mmx : 1,
|
|
88 |
fxsr : 1,
|
|
89 |
sse : 1,
|
|
90 |
sse2 : 1,
|
|
91 |
: 1,
|
|
92 |
ht : 1,
|
|
93 |
: 3;
|
|
94 |
} bits;
|
|
95 |
};
|
|
96 |
|
|
97 |
union DcpCpuid4Eax {
|
|
98 |
uint32_t value;
|
|
99 |
struct {
|
|
100 |
uint32_t cache_type : 5,
|
|
101 |
: 21,
|
|
102 |
cores_per_cpu : 6;
|
|
103 |
} bits;
|
|
104 |
};
|
|
105 |
|
|
106 |
union DcpCpuid4Ebx {
|
|
107 |
uint32_t value;
|
|
108 |
struct {
|
|
109 |
uint32_t L1_line_size : 12,
|
|
110 |
partitions : 10,
|
|
111 |
associativity : 10;
|
|
112 |
} bits;
|
|
113 |
};
|
|
114 |
|
|
115 |
union ExtCpuid1Ecx {
|
|
116 |
uint32_t value;
|
|
117 |
struct {
|
|
118 |
uint32_t LahfSahf : 1,
|
|
119 |
CmpLegacy : 1,
|
|
120 |
: 4,
|
|
121 |
abm : 1,
|
|
122 |
sse4a : 1,
|
|
123 |
misalignsse : 1,
|
|
124 |
prefetchw : 1,
|
|
125 |
: 22;
|
|
126 |
} bits;
|
|
127 |
};
|
|
128 |
|
|
129 |
union ExtCpuid1Edx {
|
|
130 |
uint32_t value;
|
|
131 |
struct {
|
|
132 |
uint32_t : 22,
|
|
133 |
mmx_amd : 1,
|
|
134 |
mmx : 1,
|
|
135 |
fxsr : 1,
|
|
136 |
: 4,
|
|
137 |
long_mode : 1,
|
|
138 |
tdnow2 : 1,
|
|
139 |
tdnow : 1;
|
|
140 |
} bits;
|
|
141 |
};
|
|
142 |
|
|
143 |
union ExtCpuid5Ex {
|
|
144 |
uint32_t value;
|
|
145 |
struct {
|
|
146 |
uint32_t L1_line_size : 8,
|
|
147 |
L1_tag_lines : 8,
|
|
148 |
L1_assoc : 8,
|
|
149 |
L1_size : 8;
|
|
150 |
} bits;
|
|
151 |
};
|
|
152 |
|
|
153 |
union ExtCpuid8Ecx {
|
|
154 |
uint32_t value;
|
|
155 |
struct {
|
|
156 |
uint32_t cores_per_cpu : 8,
|
|
157 |
: 24;
|
|
158 |
} bits;
|
|
159 |
};
|
|
160 |
|
|
161 |
protected:
|
|
162 |
static int _cpu;
|
|
163 |
static int _model;
|
|
164 |
static int _stepping;
|
|
165 |
static int _cpuFeatures; // features returned by the "cpuid" instruction
|
|
166 |
// 0 if this instruction is not available
|
|
167 |
static const char* _features_str;
|
|
168 |
|
|
169 |
enum {
|
|
170 |
CPU_CX8 = (1 << 0), // next bits are from cpuid 1 (EDX)
|
|
171 |
CPU_CMOV = (1 << 1),
|
|
172 |
CPU_FXSR = (1 << 2),
|
|
173 |
CPU_HT = (1 << 3),
|
|
174 |
CPU_MMX = (1 << 4),
|
|
175 |
CPU_3DNOW= (1 << 5), // 3DNow comes from cpuid 0x80000001 (EDX)
|
|
176 |
CPU_SSE = (1 << 6),
|
|
177 |
CPU_SSE2 = (1 << 7),
|
|
178 |
CPU_SSE3 = (1 << 8), // sse3 comes from cpuid 1 (ECX)
|
|
179 |
CPU_SSSE3= (1 << 9),
|
1437
|
180 |
CPU_SSE4A= (1 <<10),
|
|
181 |
CPU_SSE4_1 = (1 << 11),
|
|
182 |
CPU_SSE4_2 = (1 << 12)
|
1
|
183 |
} cpuFeatureFlags;
|
|
184 |
|
|
185 |
// cpuid information block. All info derived from executing cpuid with
|
|
186 |
// various function numbers is stored here. Intel and AMD info is
|
|
187 |
// merged in this block: accessor methods disentangle it.
|
|
188 |
//
|
|
189 |
// The info block is laid out in subblocks of 4 dwords corresponding to
|
|
190 |
// rax, rbx, rcx and rdx, whether or not they contain anything useful.
|
|
191 |
struct CpuidInfo {
|
|
192 |
// cpuid function 0
|
|
193 |
uint32_t std_max_function;
|
|
194 |
uint32_t std_vendor_name_0;
|
|
195 |
uint32_t std_vendor_name_1;
|
|
196 |
uint32_t std_vendor_name_2;
|
|
197 |
|
|
198 |
// cpuid function 1
|
|
199 |
StdCpuid1Eax std_cpuid1_rax;
|
|
200 |
StdCpuid1Ebx std_cpuid1_rbx;
|
|
201 |
StdCpuid1Ecx std_cpuid1_rcx;
|
|
202 |
StdCpuid1Edx std_cpuid1_rdx;
|
|
203 |
|
|
204 |
// cpuid function 4 (deterministic cache parameters)
|
|
205 |
DcpCpuid4Eax dcp_cpuid4_rax;
|
|
206 |
DcpCpuid4Ebx dcp_cpuid4_rbx;
|
|
207 |
uint32_t dcp_cpuid4_rcx; // unused currently
|
|
208 |
uint32_t dcp_cpuid4_rdx; // unused currently
|
|
209 |
|
|
210 |
// cpuid function 0x80000000 // example, unused
|
|
211 |
uint32_t ext_max_function;
|
|
212 |
uint32_t ext_vendor_name_0;
|
|
213 |
uint32_t ext_vendor_name_1;
|
|
214 |
uint32_t ext_vendor_name_2;
|
|
215 |
|
|
216 |
// cpuid function 0x80000001
|
|
217 |
uint32_t ext_cpuid1_rax; // reserved
|
|
218 |
uint32_t ext_cpuid1_rbx; // reserved
|
|
219 |
ExtCpuid1Ecx ext_cpuid1_rcx;
|
|
220 |
ExtCpuid1Edx ext_cpuid1_rdx;
|
|
221 |
|
|
222 |
// cpuid functions 0x80000002 thru 0x80000004: example, unused
|
|
223 |
uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
|
|
224 |
uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
|
|
225 |
uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
|
|
226 |
|
|
227 |
// cpuid function 0x80000005 //AMD L1, Intel reserved
|
|
228 |
uint32_t ext_cpuid5_rax; // unused currently
|
|
229 |
uint32_t ext_cpuid5_rbx; // reserved
|
|
230 |
ExtCpuid5Ex ext_cpuid5_rcx; // L1 data cache info (AMD)
|
|
231 |
ExtCpuid5Ex ext_cpuid5_rdx; // L1 instruction cache info (AMD)
|
|
232 |
|
|
233 |
// cpuid function 0x80000008
|
|
234 |
uint32_t ext_cpuid8_rax; // unused currently
|
|
235 |
uint32_t ext_cpuid8_rbx; // reserved
|
|
236 |
ExtCpuid8Ecx ext_cpuid8_rcx;
|
|
237 |
uint32_t ext_cpuid8_rdx; // reserved
|
|
238 |
};
|
|
239 |
|
|
240 |
// The actual cpuid info block
|
|
241 |
static CpuidInfo _cpuid_info;
|
|
242 |
|
|
243 |
// Extractors and predicates
|
|
244 |
static uint32_t extended_cpu_family() {
|
|
245 |
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.family;
|
1437
|
246 |
result += _cpuid_info.std_cpuid1_rax.bits.ext_family;
|
1
|
247 |
return result;
|
|
248 |
}
|
|
249 |
static uint32_t extended_cpu_model() {
|
|
250 |
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.model;
|
1437
|
251 |
result |= _cpuid_info.std_cpuid1_rax.bits.ext_model << 4;
|
1
|
252 |
return result;
|
|
253 |
}
|
|
254 |
static uint32_t cpu_stepping() {
|
|
255 |
uint32_t result = _cpuid_info.std_cpuid1_rax.bits.stepping;
|
|
256 |
return result;
|
|
257 |
}
|
|
258 |
static uint logical_processor_count() {
|
|
259 |
uint result = threads_per_core();
|
|
260 |
return result;
|
|
261 |
}
|
|
262 |
static uint32_t feature_flags() {
|
|
263 |
uint32_t result = 0;
|
|
264 |
if (_cpuid_info.std_cpuid1_rdx.bits.cmpxchg8 != 0)
|
|
265 |
result |= CPU_CX8;
|
|
266 |
if (_cpuid_info.std_cpuid1_rdx.bits.cmov != 0)
|
|
267 |
result |= CPU_CMOV;
|
|
268 |
if (_cpuid_info.std_cpuid1_rdx.bits.fxsr != 0 || is_amd() &&
|
|
269 |
_cpuid_info.ext_cpuid1_rdx.bits.fxsr != 0)
|
|
270 |
result |= CPU_FXSR;
|
|
271 |
// HT flag is set for multi-core processors also.
|
|
272 |
if (threads_per_core() > 1)
|
|
273 |
result |= CPU_HT;
|
|
274 |
if (_cpuid_info.std_cpuid1_rdx.bits.mmx != 0 || is_amd() &&
|
|
275 |
_cpuid_info.ext_cpuid1_rdx.bits.mmx != 0)
|
|
276 |
result |= CPU_MMX;
|
|
277 |
if (is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.tdnow != 0)
|
|
278 |
result |= CPU_3DNOW;
|
|
279 |
if (_cpuid_info.std_cpuid1_rdx.bits.sse != 0)
|
|
280 |
result |= CPU_SSE;
|
|
281 |
if (_cpuid_info.std_cpuid1_rdx.bits.sse2 != 0)
|
|
282 |
result |= CPU_SSE2;
|
|
283 |
if (_cpuid_info.std_cpuid1_rcx.bits.sse3 != 0)
|
|
284 |
result |= CPU_SSE3;
|
|
285 |
if (_cpuid_info.std_cpuid1_rcx.bits.ssse3 != 0)
|
|
286 |
result |= CPU_SSSE3;
|
|
287 |
if (is_amd() && _cpuid_info.ext_cpuid1_rcx.bits.sse4a != 0)
|
|
288 |
result |= CPU_SSE4A;
|
1437
|
289 |
if (_cpuid_info.std_cpuid1_rcx.bits.sse4_1 != 0)
|
|
290 |
result |= CPU_SSE4_1;
|
|
291 |
if (_cpuid_info.std_cpuid1_rcx.bits.sse4_2 != 0)
|
|
292 |
result |= CPU_SSE4_2;
|
1
|
293 |
return result;
|
|
294 |
}
|
|
295 |
|
|
296 |
static void get_processor_features();
|
|
297 |
|
|
298 |
public:
|
|
299 |
// Offsets for cpuid asm stub
|
|
300 |
static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
|
|
301 |
static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_rax); }
|
|
302 |
static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_rax); }
|
|
303 |
static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_rax); }
|
|
304 |
static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_rax); }
|
|
305 |
static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_rax); }
|
|
306 |
|
|
307 |
// Initialization
|
|
308 |
static void initialize();
|
|
309 |
|
|
310 |
// Asserts
|
|
311 |
static void assert_is_initialized() {
|
|
312 |
assert(_cpuid_info.std_cpuid1_rax.bits.family != 0, "VM_Version not initialized");
|
|
313 |
}
|
|
314 |
|
|
315 |
//
|
|
316 |
// Processor family:
|
|
317 |
// 3 - 386
|
|
318 |
// 4 - 486
|
|
319 |
// 5 - Pentium
|
|
320 |
// 6 - PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
|
|
321 |
// Pentium M, Core Solo, Core Duo, Core2 Duo
|
|
322 |
// family 6 model: 9, 13, 14, 15
|
|
323 |
// 0x0f - Pentium 4, Opteron
|
|
324 |
//
|
|
325 |
// Note: The cpu family should be used to select between
|
|
326 |
// instruction sequences which are valid on all Intel
|
|
327 |
// processors. Use the feature test functions below to
|
|
328 |
// determine whether a particular instruction is supported.
|
|
329 |
//
|
|
330 |
static int cpu_family() { return _cpu;}
|
|
331 |
static bool is_P6() { return cpu_family() >= 6; }
|
|
332 |
|
|
333 |
static bool is_amd() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
|
|
334 |
static bool is_intel() { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
|
|
335 |
|
|
336 |
static uint cores_per_cpu() {
|
|
337 |
uint result = 1;
|
|
338 |
if (is_intel()) {
|
|
339 |
result = (_cpuid_info.dcp_cpuid4_rax.bits.cores_per_cpu + 1);
|
|
340 |
} else if (is_amd()) {
|
|
341 |
result = (_cpuid_info.ext_cpuid8_rcx.bits.cores_per_cpu + 1);
|
|
342 |
}
|
|
343 |
return result;
|
|
344 |
}
|
|
345 |
|
|
346 |
static uint threads_per_core() {
|
|
347 |
uint result = 1;
|
|
348 |
if (_cpuid_info.std_cpuid1_rdx.bits.ht != 0) {
|
|
349 |
result = _cpuid_info.std_cpuid1_rbx.bits.threads_per_cpu /
|
|
350 |
cores_per_cpu();
|
|
351 |
}
|
|
352 |
return result;
|
|
353 |
}
|
|
354 |
|
|
355 |
static intx L1_data_cache_line_size() {
|
|
356 |
intx result = 0;
|
|
357 |
if (is_intel()) {
|
|
358 |
result = (_cpuid_info.dcp_cpuid4_rbx.bits.L1_line_size + 1);
|
|
359 |
} else if (is_amd()) {
|
|
360 |
result = _cpuid_info.ext_cpuid5_rcx.bits.L1_line_size;
|
|
361 |
}
|
|
362 |
if (result < 32) // not defined ?
|
|
363 |
result = 32; // 32 bytes by default on x86
|
|
364 |
return result;
|
|
365 |
}
|
|
366 |
|
|
367 |
//
|
|
368 |
// Feature identification
|
|
369 |
//
|
|
370 |
static bool supports_cpuid() { return _cpuFeatures != 0; }
|
|
371 |
static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
|
|
372 |
static bool supports_cmov() { return (_cpuFeatures & CPU_CMOV) != 0; }
|
|
373 |
static bool supports_fxsr() { return (_cpuFeatures & CPU_FXSR) != 0; }
|
|
374 |
static bool supports_ht() { return (_cpuFeatures & CPU_HT) != 0; }
|
|
375 |
static bool supports_mmx() { return (_cpuFeatures & CPU_MMX) != 0; }
|
|
376 |
static bool supports_sse() { return (_cpuFeatures & CPU_SSE) != 0; }
|
|
377 |
static bool supports_sse2() { return (_cpuFeatures & CPU_SSE2) != 0; }
|
|
378 |
static bool supports_sse3() { return (_cpuFeatures & CPU_SSE3) != 0; }
|
|
379 |
static bool supports_ssse3() { return (_cpuFeatures & CPU_SSSE3)!= 0; }
|
1437
|
380 |
static bool supports_sse4_1() { return (_cpuFeatures & CPU_SSE4_1) != 0; }
|
|
381 |
static bool supports_sse4_2() { return (_cpuFeatures & CPU_SSE4_2) != 0; }
|
1
|
382 |
//
|
|
383 |
// AMD features
|
|
384 |
//
|
|
385 |
static bool supports_3dnow() { return (_cpuFeatures & CPU_3DNOW) != 0; }
|
|
386 |
static bool supports_mmx_ext() { return is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.mmx_amd != 0; }
|
|
387 |
static bool supports_3dnow2() { return is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.tdnow2 != 0; }
|
|
388 |
static bool supports_sse4a() { return (_cpuFeatures & CPU_SSE4A) != 0; }
|
|
389 |
|
|
390 |
static bool supports_compare_and_exchange() { return true; }
|
|
391 |
|
|
392 |
static const char* cpu_features() { return _features_str; }
|
|
393 |
|
|
394 |
static intx allocate_prefetch_distance() {
|
|
395 |
// This method should be called before allocate_prefetch_style().
|
|
396 |
//
|
|
397 |
// Hardware prefetching (distance/size in bytes):
|
|
398 |
// Pentium 3 - 64 / 32
|
|
399 |
// Pentium 4 - 256 / 128
|
|
400 |
// Athlon - 64 / 32 ????
|
|
401 |
// Opteron - 128 / 64 only when 2 sequential cache lines accessed
|
|
402 |
// Core - 128 / 64
|
|
403 |
//
|
|
404 |
// Software prefetching (distance in bytes / instruction with best score):
|
|
405 |
// Pentium 3 - 128 / prefetchnta
|
|
406 |
// Pentium 4 - 512 / prefetchnta
|
|
407 |
// Athlon - 128 / prefetchnta
|
|
408 |
// Opteron - 256 / prefetchnta
|
|
409 |
// Core - 256 / prefetchnta
|
|
410 |
// It will be used only when AllocatePrefetchStyle > 0
|
|
411 |
|
|
412 |
intx count = AllocatePrefetchDistance;
|
|
413 |
if (count < 0) { // default ?
|
|
414 |
if (is_amd()) { // AMD
|
|
415 |
if (supports_sse2())
|
|
416 |
count = 256; // Opteron
|
|
417 |
else
|
|
418 |
count = 128; // Athlon
|
|
419 |
} else { // Intel
|
|
420 |
if (supports_sse2())
|
|
421 |
if (cpu_family() == 6) {
|
|
422 |
count = 256; // Pentium M, Core, Core2
|
|
423 |
} else {
|
|
424 |
count = 512; // Pentium 4
|
|
425 |
}
|
|
426 |
else
|
|
427 |
count = 128; // Pentium 3 (and all other old CPUs)
|
|
428 |
}
|
|
429 |
}
|
|
430 |
return count;
|
|
431 |
}
|
|
432 |
static intx allocate_prefetch_style() {
|
|
433 |
assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
|
|
434 |
// Return 0 if AllocatePrefetchDistance was not defined or
|
|
435 |
// prefetch instruction is not supported.
|
|
436 |
return (AllocatePrefetchDistance > 0 &&
|
|
437 |
(supports_3dnow() || supports_sse())) ? AllocatePrefetchStyle : 0;
|
|
438 |
}
|
|
439 |
};
|