/*
* Copyright 1997-2005 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
// Portions of code courtesy of Clifford Click
class PhaseTransform;
//------------------------------MulNode----------------------------------------
// Classic MULTIPLY functionality. This covers all the usual 'multiply'
// behaviors for an algebraic ring. Multiply-integer, multiply-float,
// multiply-double, and binary-and are all inherited from this class. The
// various identity values are supplied by virtual functions.
class MulNode : public Node {
virtual uint hash() const;
public:
MulNode( Node *in1, Node *in2 ): Node(0,in1,in2) {
init_class_id(Class_Mul);
}
// Handle algebraic identities here. If we have an identity, return the Node
// we are equivalent to. We look for "add of zero" as an identity.
virtual Node *Identity( PhaseTransform *phase );
// We also canonicalize the Node, moving constants to the right input,
// and flatten expressions (so that 1+x+2 becomes x+3).
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
// Compute a new Type for this node. Basically we just do the pre-check,
// then call the virtual add() to set the type.
virtual const Type *Value( PhaseTransform *phase ) const;
// Supplied function returns the product of the inputs.
// This also type-checks the inputs for sanity. Guaranteed never to
// be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
// This call recognizes the multiplicative zero type.
virtual const Type *mul_ring( const Type *, const Type * ) const = 0;
// Supplied function to return the multiplicative identity type
virtual const Type *mul_id() const = 0;
// Supplied function to return the additive identity type
virtual const Type *add_id() const = 0;
// Supplied function to return the additive opcode
virtual int add_opcode() const = 0;
// Supplied function to return the multiplicative opcode
virtual int mul_opcode() const = 0;
};
//------------------------------MulINode---------------------------------------
// Multiply 2 integers
class MulINode : public MulNode {
public:
MulINode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *mul_ring( const Type *, const Type * ) const;
const Type *mul_id() const { return TypeInt::ONE; }
const Type *add_id() const { return TypeInt::ZERO; }
int add_opcode() const { return Op_AddI; }
int mul_opcode() const { return Op_MulI; }
const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------MulLNode---------------------------------------
// Multiply 2 longs
class MulLNode : public MulNode {
public:
MulLNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *mul_ring( const Type *, const Type * ) const;
const Type *mul_id() const { return TypeLong::ONE; }
const Type *add_id() const { return TypeLong::ZERO; }
int add_opcode() const { return Op_AddL; }
int mul_opcode() const { return Op_MulL; }
const Type *bottom_type() const { return TypeLong::LONG; }
virtual uint ideal_reg() const { return Op_RegL; }
};
//------------------------------MulFNode---------------------------------------
// Multiply 2 floats
class MulFNode : public MulNode {
public:
MulFNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *mul_ring( const Type *, const Type * ) const;
const Type *mul_id() const { return TypeF::ONE; }
const Type *add_id() const { return TypeF::ZERO; }
int add_opcode() const { return Op_AddF; }
int mul_opcode() const { return Op_MulF; }
const Type *bottom_type() const { return Type::FLOAT; }
virtual uint ideal_reg() const { return Op_RegF; }
};
//------------------------------MulDNode---------------------------------------
// Multiply 2 doubles
class MulDNode : public MulNode {
public:
MulDNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
virtual int Opcode() const;
virtual const Type *mul_ring( const Type *, const Type * ) const;
const Type *mul_id() const { return TypeD::ONE; }
const Type *add_id() const { return TypeD::ZERO; }
int add_opcode() const { return Op_AddD; }
int mul_opcode() const { return Op_MulD; }
const Type *bottom_type() const { return Type::DOUBLE; }
virtual uint ideal_reg() const { return Op_RegD; }
};
//------------------------------AndINode---------------------------------------
// Logically AND 2 integers. Included with the MUL nodes because it inherits
// all the behavior of multiplication on a ring.
class AndINode : public MulINode {
public:
AndINode( Node *in1, Node *in2 ) : MulINode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *mul_ring( const Type *, const Type * ) const;
const Type *mul_id() const { return TypeInt::MINUS_1; }
const Type *add_id() const { return TypeInt::ZERO; }
int add_opcode() const { return Op_OrI; }
int mul_opcode() const { return Op_AndI; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------AndINode---------------------------------------
// Logically AND 2 longs. Included with the MUL nodes because it inherits
// all the behavior of multiplication on a ring.
class AndLNode : public MulLNode {
public:
AndLNode( Node *in1, Node *in2 ) : MulLNode(in1,in2) {}
virtual int Opcode() const;
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *mul_ring( const Type *, const Type * ) const;
const Type *mul_id() const { return TypeLong::MINUS_1; }
const Type *add_id() const { return TypeLong::ZERO; }
int add_opcode() const { return Op_OrL; }
int mul_opcode() const { return Op_AndL; }
virtual uint ideal_reg() const { return Op_RegL; }
};
//------------------------------LShiftINode------------------------------------
// Logical shift left
class LShiftINode : public Node {
public:
LShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value( PhaseTransform *phase ) const;
const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------LShiftLNode------------------------------------
// Logical shift left
class LShiftLNode : public Node {
public:
LShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value( PhaseTransform *phase ) const;
const Type *bottom_type() const { return TypeLong::LONG; }
virtual uint ideal_reg() const { return Op_RegL; }
};
//------------------------------RShiftINode------------------------------------
// Signed shift right
class RShiftINode : public Node {
public:
RShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value( PhaseTransform *phase ) const;
const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------RShiftLNode------------------------------------
// Signed shift right
class RShiftLNode : public Node {
public:
RShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual const Type *Value( PhaseTransform *phase ) const;
const Type *bottom_type() const { return TypeLong::LONG; }
virtual uint ideal_reg() const { return Op_RegL; }
};
//------------------------------URShiftINode-----------------------------------
// Logical shift right
class URShiftINode : public Node {
public:
URShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value( PhaseTransform *phase ) const;
const Type *bottom_type() const { return TypeInt::INT; }
virtual uint ideal_reg() const { return Op_RegI; }
};
//------------------------------URShiftLNode-----------------------------------
// Logical shift right
class URShiftLNode : public Node {
public:
URShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
virtual int Opcode() const;
virtual Node *Identity( PhaseTransform *phase );
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
virtual const Type *Value( PhaseTransform *phase ) const;
const Type *bottom_type() const { return TypeLong::LONG; }
virtual uint ideal_reg() const { return Op_RegL; }
};