7084509: G1: fix inconsistencies and mistakes in the young list target length calculations
Summary: Fixed inconsistencies and mistakes in the young list target length calculations so that a) the calculated target length is optimal (before, it was not), b) other parameters like max survivor size and max gc locker eden expansion are always consistent with the calculated target length (before, they were not always), and c) the resulting target length was always bound by desired min and max values (before, it was not).
Reviewed-by: brutisso, johnc
/*
* Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
#define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP
#include "gc_implementation/g1/collectionSetChooser.hpp"
#include "gc_implementation/g1/g1MMUTracker.hpp"
#include "memory/collectorPolicy.hpp"
// A G1CollectorPolicy makes policy decisions that determine the
// characteristics of the collector. Examples include:
// * choice of collection set.
// * when to collect.
class HeapRegion;
class CollectionSetChooser;
// Yes, this is a bit unpleasant... but it saves replicating the same thing
// over and over again and introducing subtle problems through small typos and
// cutting and pasting mistakes. The macros below introduces a number
// sequnce into the following two classes and the methods that access it.
#define define_num_seq(name) \
private: \
NumberSeq _all_##name##_times_ms; \
public: \
void record_##name##_time_ms(double ms) { \
_all_##name##_times_ms.add(ms); \
} \
NumberSeq* get_##name##_seq() { \
return &_all_##name##_times_ms; \
}
class MainBodySummary;
class PauseSummary: public CHeapObj {
define_num_seq(total)
define_num_seq(other)
public:
virtual MainBodySummary* main_body_summary() { return NULL; }
};
class MainBodySummary: public CHeapObj {
define_num_seq(satb_drain) // optional
define_num_seq(parallel) // parallel only
define_num_seq(ext_root_scan)
define_num_seq(mark_stack_scan)
define_num_seq(update_rs)
define_num_seq(scan_rs)
define_num_seq(obj_copy)
define_num_seq(termination) // parallel only
define_num_seq(parallel_other) // parallel only
define_num_seq(mark_closure)
define_num_seq(clear_ct) // parallel only
};
class Summary: public PauseSummary,
public MainBodySummary {
public:
virtual MainBodySummary* main_body_summary() { return this; }
};
class G1CollectorPolicy: public CollectorPolicy {
protected:
// The number of pauses during the execution.
long _n_pauses;
// either equal to the number of parallel threads, if ParallelGCThreads
// has been set, or 1 otherwise
int _parallel_gc_threads;
enum SomePrivateConstants {
NumPrevPausesForHeuristics = 10
};
G1MMUTracker* _mmu_tracker;
void initialize_flags();
void initialize_all() {
initialize_flags();
initialize_size_info();
initialize_perm_generation(PermGen::MarkSweepCompact);
}
virtual size_t default_init_heap_size() {
// Pick some reasonable default.
return 8*M;
}
double _cur_collection_start_sec;
size_t _cur_collection_pause_used_at_start_bytes;
size_t _cur_collection_pause_used_regions_at_start;
size_t _prev_collection_pause_used_at_end_bytes;
double _cur_collection_par_time_ms;
double _cur_satb_drain_time_ms;
double _cur_clear_ct_time_ms;
bool _satb_drain_time_set;
#ifndef PRODUCT
// Card Table Count Cache stats
double _min_clear_cc_time_ms; // min
double _max_clear_cc_time_ms; // max
double _cur_clear_cc_time_ms; // clearing time during current pause
double _cum_clear_cc_time_ms; // cummulative clearing time
jlong _num_cc_clears; // number of times the card count cache has been cleared
#endif
// Statistics for recent GC pauses. See below for how indexed.
TruncatedSeq* _recent_rs_scan_times_ms;
// These exclude marking times.
TruncatedSeq* _recent_pause_times_ms;
TruncatedSeq* _recent_gc_times_ms;
TruncatedSeq* _recent_CS_bytes_used_before;
TruncatedSeq* _recent_CS_bytes_surviving;
TruncatedSeq* _recent_rs_sizes;
TruncatedSeq* _concurrent_mark_remark_times_ms;
TruncatedSeq* _concurrent_mark_cleanup_times_ms;
Summary* _summary;
NumberSeq* _all_pause_times_ms;
NumberSeq* _all_full_gc_times_ms;
double _stop_world_start;
NumberSeq* _all_stop_world_times_ms;
NumberSeq* _all_yield_times_ms;
size_t _region_num_young;
size_t _region_num_tenured;
size_t _prev_region_num_young;
size_t _prev_region_num_tenured;
NumberSeq* _all_mod_union_times_ms;
int _aux_num;
NumberSeq* _all_aux_times_ms;
double* _cur_aux_start_times_ms;
double* _cur_aux_times_ms;
bool* _cur_aux_times_set;
double* _par_last_gc_worker_start_times_ms;
double* _par_last_ext_root_scan_times_ms;
double* _par_last_mark_stack_scan_times_ms;
double* _par_last_update_rs_times_ms;
double* _par_last_update_rs_processed_buffers;
double* _par_last_scan_rs_times_ms;
double* _par_last_obj_copy_times_ms;
double* _par_last_termination_times_ms;
double* _par_last_termination_attempts;
double* _par_last_gc_worker_end_times_ms;
double* _par_last_gc_worker_times_ms;
// indicates whether we are in full young or partially young GC mode
bool _full_young_gcs;
// if true, then it tries to dynamically adjust the length of the
// young list
bool _adaptive_young_list_length;
size_t _young_list_target_length;
size_t _young_list_fixed_length;
// The max number of regions we can extend the eden by while the GC
// locker is active. This should be >= _young_list_target_length;
size_t _young_list_max_length;
size_t _young_cset_length;
bool _last_young_gc_full;
unsigned _full_young_pause_num;
unsigned _partial_young_pause_num;
bool _during_marking;
bool _in_marking_window;
bool _in_marking_window_im;
SurvRateGroup* _short_lived_surv_rate_group;
SurvRateGroup* _survivor_surv_rate_group;
// add here any more surv rate groups
double _gc_overhead_perc;
double _reserve_factor;
size_t _reserve_regions;
bool during_marking() {
return _during_marking;
}
// <NEW PREDICTION>
private:
enum PredictionConstants {
TruncatedSeqLength = 10
};
TruncatedSeq* _alloc_rate_ms_seq;
double _prev_collection_pause_end_ms;
TruncatedSeq* _pending_card_diff_seq;
TruncatedSeq* _rs_length_diff_seq;
TruncatedSeq* _cost_per_card_ms_seq;
TruncatedSeq* _fully_young_cards_per_entry_ratio_seq;
TruncatedSeq* _partially_young_cards_per_entry_ratio_seq;
TruncatedSeq* _cost_per_entry_ms_seq;
TruncatedSeq* _partially_young_cost_per_entry_ms_seq;
TruncatedSeq* _cost_per_byte_ms_seq;
TruncatedSeq* _constant_other_time_ms_seq;
TruncatedSeq* _young_other_cost_per_region_ms_seq;
TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
TruncatedSeq* _pending_cards_seq;
TruncatedSeq* _scanned_cards_seq;
TruncatedSeq* _rs_lengths_seq;
TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
TruncatedSeq* _young_gc_eff_seq;
TruncatedSeq* _max_conc_overhead_seq;
size_t _recorded_young_regions;
size_t _recorded_non_young_regions;
size_t _recorded_region_num;
size_t _free_regions_at_end_of_collection;
size_t _recorded_rs_lengths;
size_t _max_rs_lengths;
size_t _recorded_marked_bytes;
size_t _recorded_young_bytes;
size_t _predicted_pending_cards;
size_t _predicted_cards_scanned;
size_t _predicted_rs_lengths;
size_t _predicted_bytes_to_copy;
double _predicted_survival_ratio;
double _predicted_rs_update_time_ms;
double _predicted_rs_scan_time_ms;
double _predicted_object_copy_time_ms;
double _predicted_constant_other_time_ms;
double _predicted_young_other_time_ms;
double _predicted_non_young_other_time_ms;
double _predicted_pause_time_ms;
double _vtime_diff_ms;
double _recorded_young_free_cset_time_ms;
double _recorded_non_young_free_cset_time_ms;
double _sigma;
double _expensive_region_limit_ms;
size_t _rs_lengths_prediction;
size_t _known_garbage_bytes;
double _known_garbage_ratio;
double sigma() {
return _sigma;
}
// A function that prevents us putting too much stock in small sample
// sets. Returns a number between 2.0 and 1.0, depending on the number
// of samples. 5 or more samples yields one; fewer scales linearly from
// 2.0 at 1 sample to 1.0 at 5.
double confidence_factor(int samples) {
if (samples > 4) return 1.0;
else return 1.0 + sigma() * ((double)(5 - samples))/2.0;
}
double get_new_neg_prediction(TruncatedSeq* seq) {
return seq->davg() - sigma() * seq->dsd();
}
#ifndef PRODUCT
bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
#endif // PRODUCT
void adjust_concurrent_refinement(double update_rs_time,
double update_rs_processed_buffers,
double goal_ms);
protected:
double _pause_time_target_ms;
double _recorded_young_cset_choice_time_ms;
double _recorded_non_young_cset_choice_time_ms;
bool _within_target;
size_t _pending_cards;
size_t _max_pending_cards;
public:
void set_region_short_lived(HeapRegion* hr) {
hr->install_surv_rate_group(_short_lived_surv_rate_group);
}
void set_region_survivors(HeapRegion* hr) {
hr->install_surv_rate_group(_survivor_surv_rate_group);
}
#ifndef PRODUCT
bool verify_young_ages();
#endif // PRODUCT
double get_new_prediction(TruncatedSeq* seq) {
return MAX2(seq->davg() + sigma() * seq->dsd(),
seq->davg() * confidence_factor(seq->num()));
}
size_t young_cset_length() {
return _young_cset_length;
}
void record_max_rs_lengths(size_t rs_lengths) {
_max_rs_lengths = rs_lengths;
}
size_t predict_pending_card_diff() {
double prediction = get_new_neg_prediction(_pending_card_diff_seq);
if (prediction < 0.00001)
return 0;
else
return (size_t) prediction;
}
size_t predict_pending_cards() {
size_t max_pending_card_num = _g1->max_pending_card_num();
size_t diff = predict_pending_card_diff();
size_t prediction;
if (diff > max_pending_card_num)
prediction = max_pending_card_num;
else
prediction = max_pending_card_num - diff;
return prediction;
}
size_t predict_rs_length_diff() {
return (size_t) get_new_prediction(_rs_length_diff_seq);
}
double predict_alloc_rate_ms() {
return get_new_prediction(_alloc_rate_ms_seq);
}
double predict_cost_per_card_ms() {
return get_new_prediction(_cost_per_card_ms_seq);
}
double predict_rs_update_time_ms(size_t pending_cards) {
return (double) pending_cards * predict_cost_per_card_ms();
}
double predict_fully_young_cards_per_entry_ratio() {
return get_new_prediction(_fully_young_cards_per_entry_ratio_seq);
}
double predict_partially_young_cards_per_entry_ratio() {
if (_partially_young_cards_per_entry_ratio_seq->num() < 2)
return predict_fully_young_cards_per_entry_ratio();
else
return get_new_prediction(_partially_young_cards_per_entry_ratio_seq);
}
size_t predict_young_card_num(size_t rs_length) {
return (size_t) ((double) rs_length *
predict_fully_young_cards_per_entry_ratio());
}
size_t predict_non_young_card_num(size_t rs_length) {
return (size_t) ((double) rs_length *
predict_partially_young_cards_per_entry_ratio());
}
double predict_rs_scan_time_ms(size_t card_num) {
if (full_young_gcs())
return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
else
return predict_partially_young_rs_scan_time_ms(card_num);
}
double predict_partially_young_rs_scan_time_ms(size_t card_num) {
if (_partially_young_cost_per_entry_ms_seq->num() < 3)
return (double) card_num * get_new_prediction(_cost_per_entry_ms_seq);
else
return (double) card_num *
get_new_prediction(_partially_young_cost_per_entry_ms_seq);
}
double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) {
if (_cost_per_byte_ms_during_cm_seq->num() < 3)
return 1.1 * (double) bytes_to_copy *
get_new_prediction(_cost_per_byte_ms_seq);
else
return (double) bytes_to_copy *
get_new_prediction(_cost_per_byte_ms_during_cm_seq);
}
double predict_object_copy_time_ms(size_t bytes_to_copy) {
if (_in_marking_window && !_in_marking_window_im)
return predict_object_copy_time_ms_during_cm(bytes_to_copy);
else
return (double) bytes_to_copy *
get_new_prediction(_cost_per_byte_ms_seq);
}
double predict_constant_other_time_ms() {
return get_new_prediction(_constant_other_time_ms_seq);
}
double predict_young_other_time_ms(size_t young_num) {
return
(double) young_num *
get_new_prediction(_young_other_cost_per_region_ms_seq);
}
double predict_non_young_other_time_ms(size_t non_young_num) {
return
(double) non_young_num *
get_new_prediction(_non_young_other_cost_per_region_ms_seq);
}
void check_if_region_is_too_expensive(double predicted_time_ms);
double predict_young_collection_elapsed_time_ms(size_t adjustment);
double predict_base_elapsed_time_ms(size_t pending_cards);
double predict_base_elapsed_time_ms(size_t pending_cards,
size_t scanned_cards);
size_t predict_bytes_to_copy(HeapRegion* hr);
double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
void start_recording_regions();
void record_cset_region_info(HeapRegion* hr, bool young);
void record_non_young_cset_region(HeapRegion* hr);
void set_recorded_young_regions(size_t n_regions);
void set_recorded_young_bytes(size_t bytes);
void set_recorded_rs_lengths(size_t rs_lengths);
void set_predicted_bytes_to_copy(size_t bytes);
void end_recording_regions();
void record_vtime_diff_ms(double vtime_diff_ms) {
_vtime_diff_ms = vtime_diff_ms;
}
void record_young_free_cset_time_ms(double time_ms) {
_recorded_young_free_cset_time_ms = time_ms;
}
void record_non_young_free_cset_time_ms(double time_ms) {
_recorded_non_young_free_cset_time_ms = time_ms;
}
double predict_young_gc_eff() {
return get_new_neg_prediction(_young_gc_eff_seq);
}
double predict_survivor_regions_evac_time();
// </NEW PREDICTION>
void cset_regions_freed() {
bool propagate = _last_young_gc_full && !_in_marking_window;
_short_lived_surv_rate_group->all_surviving_words_recorded(propagate);
_survivor_surv_rate_group->all_surviving_words_recorded(propagate);
// also call it on any more surv rate groups
}
void set_known_garbage_bytes(size_t known_garbage_bytes) {
_known_garbage_bytes = known_garbage_bytes;
size_t heap_bytes = _g1->capacity();
_known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
}
void decrease_known_garbage_bytes(size_t known_garbage_bytes) {
guarantee( _known_garbage_bytes >= known_garbage_bytes, "invariant" );
_known_garbage_bytes -= known_garbage_bytes;
size_t heap_bytes = _g1->capacity();
_known_garbage_ratio = (double) _known_garbage_bytes / (double) heap_bytes;
}
G1MMUTracker* mmu_tracker() {
return _mmu_tracker;
}
double max_pause_time_ms() {
return _mmu_tracker->max_gc_time() * 1000.0;
}
double predict_remark_time_ms() {
return get_new_prediction(_concurrent_mark_remark_times_ms);
}
double predict_cleanup_time_ms() {
return get_new_prediction(_concurrent_mark_cleanup_times_ms);
}
// Returns an estimate of the survival rate of the region at yg-age
// "yg_age".
double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) {
TruncatedSeq* seq = surv_rate_group->get_seq(age);
if (seq->num() == 0)
gclog_or_tty->print("BARF! age is %d", age);
guarantee( seq->num() > 0, "invariant" );
double pred = get_new_prediction(seq);
if (pred > 1.0)
pred = 1.0;
return pred;
}
double predict_yg_surv_rate(int age) {
return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
}
double accum_yg_surv_rate_pred(int age) {
return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
}
protected:
void print_stats(int level, const char* str, double value);
void print_stats(int level, const char* str, int value);
void print_par_stats(int level, const char* str, double* data);
void print_par_sizes(int level, const char* str, double* data);
void check_other_times(int level,
NumberSeq* other_times_ms,
NumberSeq* calc_other_times_ms) const;
void print_summary (PauseSummary* stats) const;
void print_summary (int level, const char* str, NumberSeq* seq) const;
void print_summary_sd (int level, const char* str, NumberSeq* seq) const;
double avg_value (double* data);
double max_value (double* data);
double sum_of_values (double* data);
double max_sum (double* data1, double* data2);
int _last_satb_drain_processed_buffers;
int _last_update_rs_processed_buffers;
double _last_pause_time_ms;
size_t _bytes_in_collection_set_before_gc;
size_t _bytes_copied_during_gc;
// Used to count used bytes in CS.
friend class CountCSClosure;
// Statistics kept per GC stoppage, pause or full.
TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
// We track markings.
int _num_markings;
double _mark_thread_startup_sec; // Time at startup of marking thread
// Add a new GC of the given duration and end time to the record.
void update_recent_gc_times(double end_time_sec, double elapsed_ms);
// The head of the list (via "next_in_collection_set()") representing the
// current collection set. Set from the incrementally built collection
// set at the start of the pause.
HeapRegion* _collection_set;
// The number of regions in the collection set. Set from the incrementally
// built collection set at the start of an evacuation pause.
size_t _collection_set_size;
// The number of bytes in the collection set before the pause. Set from
// the incrementally built collection set at the start of an evacuation
// pause.
size_t _collection_set_bytes_used_before;
// The associated information that is maintained while the incremental
// collection set is being built with young regions. Used to populate
// the recorded info for the evacuation pause.
enum CSetBuildType {
Active, // We are actively building the collection set
Inactive // We are not actively building the collection set
};
CSetBuildType _inc_cset_build_state;
// The head of the incrementally built collection set.
HeapRegion* _inc_cset_head;
// The tail of the incrementally built collection set.
HeapRegion* _inc_cset_tail;
// The number of regions in the incrementally built collection set.
// Used to set _collection_set_size at the start of an evacuation
// pause.
size_t _inc_cset_size;
// Used as the index in the surving young words structure
// which tracks the amount of space, for each young region,
// that survives the pause.
size_t _inc_cset_young_index;
// The number of bytes in the incrementally built collection set.
// Used to set _collection_set_bytes_used_before at the start of
// an evacuation pause.
size_t _inc_cset_bytes_used_before;
// Used to record the highest end of heap region in collection set
HeapWord* _inc_cset_max_finger;
// The number of recorded used bytes in the young regions
// of the collection set. This is the sum of the used() bytes
// of retired young regions in the collection set.
size_t _inc_cset_recorded_young_bytes;
// The RSet lengths recorded for regions in the collection set
// (updated by the periodic sampling of the regions in the
// young list/collection set).
size_t _inc_cset_recorded_rs_lengths;
// The predicted elapsed time it will take to collect the regions
// in the collection set (updated by the periodic sampling of the
// regions in the young list/collection set).
double _inc_cset_predicted_elapsed_time_ms;
// The predicted bytes to copy for the regions in the collection
// set (updated by the periodic sampling of the regions in the
// young list/collection set).
size_t _inc_cset_predicted_bytes_to_copy;
// Info about marking.
int _n_marks; // Sticky at 2, so we know when we've done at least 2.
// The number of collection pauses at the end of the last mark.
size_t _n_pauses_at_mark_end;
// Stash a pointer to the g1 heap.
G1CollectedHeap* _g1;
// The average time in ms per collection pause, averaged over recent pauses.
double recent_avg_time_for_pauses_ms();
// The average time in ms for RS scanning, per pause, averaged
// over recent pauses. (Note the RS scanning time for a pause
// is itself an average of the RS scanning time for each worker
// thread.)
double recent_avg_time_for_rs_scan_ms();
// The number of "recent" GCs recorded in the number sequences
int number_of_recent_gcs();
// The average survival ratio, computed by the total number of bytes
// suriviving / total number of bytes before collection over the last
// several recent pauses.
double recent_avg_survival_fraction();
// The survival fraction of the most recent pause; if there have been no
// pauses, returns 1.0.
double last_survival_fraction();
// Returns a "conservative" estimate of the recent survival rate, i.e.,
// one that may be higher than "recent_avg_survival_fraction".
// This is conservative in several ways:
// If there have been few pauses, it will assume a potential high
// variance, and err on the side of caution.
// It puts a lower bound (currently 0.1) on the value it will return.
// To try to detect phase changes, if the most recent pause ("latest") has a
// higher-than average ("avg") survival rate, it returns that rate.
// "work" version is a utility function; young is restricted to young regions.
double conservative_avg_survival_fraction_work(double avg,
double latest);
// The arguments are the two sequences that keep track of the number of bytes
// surviving and the total number of bytes before collection, resp.,
// over the last evereal recent pauses
// Returns the survival rate for the category in the most recent pause.
// If there have been no pauses, returns 1.0.
double last_survival_fraction_work(TruncatedSeq* surviving,
TruncatedSeq* before);
// The arguments are the two sequences that keep track of the number of bytes
// surviving and the total number of bytes before collection, resp.,
// over the last several recent pauses
// Returns the average survival ration over the last several recent pauses
// If there have been no pauses, return 1.0
double recent_avg_survival_fraction_work(TruncatedSeq* surviving,
TruncatedSeq* before);
double conservative_avg_survival_fraction() {
double avg = recent_avg_survival_fraction();
double latest = last_survival_fraction();
return conservative_avg_survival_fraction_work(avg, latest);
}
// The ratio of gc time to elapsed time, computed over recent pauses.
double _recent_avg_pause_time_ratio;
double recent_avg_pause_time_ratio() {
return _recent_avg_pause_time_ratio;
}
// Number of pauses between concurrent marking.
size_t _pauses_btwn_concurrent_mark;
size_t _n_marks_since_last_pause;
// At the end of a pause we check the heap occupancy and we decide
// whether we will start a marking cycle during the next pause. If
// we decide that we want to do that, we will set this parameter to
// true. So, this parameter will stay true between the end of a
// pause and the beginning of a subsequent pause (not necessarily
// the next one, see the comments on the next field) when we decide
// that we will indeed start a marking cycle and do the initial-mark
// work.
volatile bool _initiate_conc_mark_if_possible;
// If initiate_conc_mark_if_possible() is set at the beginning of a
// pause, it is a suggestion that the pause should start a marking
// cycle by doing the initial-mark work. However, it is possible
// that the concurrent marking thread is still finishing up the
// previous marking cycle (e.g., clearing the next marking
// bitmap). If that is the case we cannot start a new cycle and
// we'll have to wait for the concurrent marking thread to finish
// what it is doing. In this case we will postpone the marking cycle
// initiation decision for the next pause. When we eventually decide
// to start a cycle, we will set _during_initial_mark_pause which
// will stay true until the end of the initial-mark pause and it's
// the condition that indicates that a pause is doing the
// initial-mark work.
volatile bool _during_initial_mark_pause;
bool _should_revert_to_full_young_gcs;
bool _last_full_young_gc;
// This set of variables tracks the collector efficiency, in order to
// determine whether we should initiate a new marking.
double _cur_mark_stop_world_time_ms;
double _mark_remark_start_sec;
double _mark_cleanup_start_sec;
double _mark_closure_time_ms;
// Update the young list target length either by setting it to the
// desired fixed value or by calculating it using G1's pause
// prediction model. If no rs_lengths parameter is passed, predict
// the RS lengths using the prediction model, otherwise use the
// given rs_lengths as the prediction.
void update_young_list_target_length(size_t rs_lengths = (size_t) -1);
// Calculate and return the minimum desired young list target
// length. This is the minimum desired young list length according
// to the user's inputs.
size_t calculate_young_list_desired_min_length(size_t base_min_length);
// Calculate and return the maximum desired young list target
// length. This is the maximum desired young list length according
// to the user's inputs.
size_t calculate_young_list_desired_max_length();
// Calculate and return the maximum young list target length that
// can fit into the pause time goal. The parameters are: rs_lengths
// represent the prediction of how large the young RSet lengths will
// be, base_min_length is the alreay existing number of regions in
// the young list, min_length and max_length are the desired min and
// max young list length according to the user's inputs.
size_t calculate_young_list_target_length(size_t rs_lengths,
size_t base_min_length,
size_t desired_min_length,
size_t desired_max_length);
// Check whether a given young length (young_length) fits into the
// given target pause time and whether the prediction for the amount
// of objects to be copied for the given length will fit into the
// given free space (expressed by base_free_regions). It is used by
// calculate_young_list_target_length().
bool predict_will_fit(size_t young_length, double base_time_ms,
size_t base_free_regions, double target_pause_time_ms);
public:
G1CollectorPolicy();
virtual G1CollectorPolicy* as_g1_policy() { return this; }
virtual CollectorPolicy::Name kind() {
return CollectorPolicy::G1CollectorPolicyKind;
}
// Check the current value of the young list RSet lengths and
// compare it against the last prediction. If the current value is
// higher, recalculate the young list target length prediction.
void revise_young_list_target_length_if_necessary();
size_t bytes_in_collection_set() {
return _bytes_in_collection_set_before_gc;
}
unsigned calc_gc_alloc_time_stamp() {
return _all_pause_times_ms->num() + 1;
}
// Recalculate the reserve region number. This should be called
// after the heap is resized.
void calculate_reserve(size_t all_regions);
protected:
// Count the number of bytes used in the CS.
void count_CS_bytes_used();
// Together these do the base cleanup-recording work. Subclasses might
// want to put something between them.
void record_concurrent_mark_cleanup_end_work1(size_t freed_bytes,
size_t max_live_bytes);
void record_concurrent_mark_cleanup_end_work2();
public:
virtual void init();
// Create jstat counters for the policy.
virtual void initialize_gc_policy_counters();
virtual HeapWord* mem_allocate_work(size_t size,
bool is_tlab,
bool* gc_overhead_limit_was_exceeded);
// This method controls how a collector handles one or more
// of its generations being fully allocated.
virtual HeapWord* satisfy_failed_allocation(size_t size,
bool is_tlab);
BarrierSet::Name barrier_set_name() { return BarrierSet::G1SATBCTLogging; }
GenRemSet::Name rem_set_name() { return GenRemSet::CardTable; }
// The number of collection pauses so far.
long n_pauses() const { return _n_pauses; }
// Update the heuristic info to record a collection pause of the given
// start time, where the given number of bytes were used at the start.
// This may involve changing the desired size of a collection set.
virtual void record_stop_world_start();
virtual void record_collection_pause_start(double start_time_sec,
size_t start_used);
// Must currently be called while the world is stopped.
void record_concurrent_mark_init_end(double
mark_init_elapsed_time_ms);
void record_mark_closure_time(double mark_closure_time_ms);
virtual void record_concurrent_mark_remark_start();
virtual void record_concurrent_mark_remark_end();
virtual void record_concurrent_mark_cleanup_start();
virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
size_t max_live_bytes);
virtual void record_concurrent_mark_cleanup_completed();
virtual void record_concurrent_pause();
virtual void record_concurrent_pause_end();
virtual void record_collection_pause_end();
void print_heap_transition();
// Record the fact that a full collection occurred.
virtual void record_full_collection_start();
virtual void record_full_collection_end();
void record_gc_worker_start_time(int worker_i, double ms) {
_par_last_gc_worker_start_times_ms[worker_i] = ms;
}
void record_ext_root_scan_time(int worker_i, double ms) {
_par_last_ext_root_scan_times_ms[worker_i] = ms;
}
void record_mark_stack_scan_time(int worker_i, double ms) {
_par_last_mark_stack_scan_times_ms[worker_i] = ms;
}
void record_satb_drain_time(double ms) {
_cur_satb_drain_time_ms = ms;
_satb_drain_time_set = true;
}
void record_satb_drain_processed_buffers (int processed_buffers) {
_last_satb_drain_processed_buffers = processed_buffers;
}
void record_mod_union_time(double ms) {
_all_mod_union_times_ms->add(ms);
}
void record_update_rs_time(int thread, double ms) {
_par_last_update_rs_times_ms[thread] = ms;
}
void record_update_rs_processed_buffers (int thread,
double processed_buffers) {
_par_last_update_rs_processed_buffers[thread] = processed_buffers;
}
void record_scan_rs_time(int thread, double ms) {
_par_last_scan_rs_times_ms[thread] = ms;
}
void reset_obj_copy_time(int thread) {
_par_last_obj_copy_times_ms[thread] = 0.0;
}
void reset_obj_copy_time() {
reset_obj_copy_time(0);
}
void record_obj_copy_time(int thread, double ms) {
_par_last_obj_copy_times_ms[thread] += ms;
}
void record_termination(int thread, double ms, size_t attempts) {
_par_last_termination_times_ms[thread] = ms;
_par_last_termination_attempts[thread] = (double) attempts;
}
void record_gc_worker_end_time(int worker_i, double ms) {
_par_last_gc_worker_end_times_ms[worker_i] = ms;
}
void record_pause_time_ms(double ms) {
_last_pause_time_ms = ms;
}
void record_clear_ct_time(double ms) {
_cur_clear_ct_time_ms = ms;
}
void record_par_time(double ms) {
_cur_collection_par_time_ms = ms;
}
void record_aux_start_time(int i) {
guarantee(i < _aux_num, "should be within range");
_cur_aux_start_times_ms[i] = os::elapsedTime() * 1000.0;
}
void record_aux_end_time(int i) {
guarantee(i < _aux_num, "should be within range");
double ms = os::elapsedTime() * 1000.0 - _cur_aux_start_times_ms[i];
_cur_aux_times_set[i] = true;
_cur_aux_times_ms[i] += ms;
}
#ifndef PRODUCT
void record_cc_clear_time(double ms) {
if (_min_clear_cc_time_ms < 0.0 || ms <= _min_clear_cc_time_ms)
_min_clear_cc_time_ms = ms;
if (_max_clear_cc_time_ms < 0.0 || ms >= _max_clear_cc_time_ms)
_max_clear_cc_time_ms = ms;
_cur_clear_cc_time_ms = ms;
_cum_clear_cc_time_ms += ms;
_num_cc_clears++;
}
#endif
// Record how much space we copied during a GC. This is typically
// called when a GC alloc region is being retired.
void record_bytes_copied_during_gc(size_t bytes) {
_bytes_copied_during_gc += bytes;
}
// The amount of space we copied during a GC.
size_t bytes_copied_during_gc() {
return _bytes_copied_during_gc;
}
// Choose a new collection set. Marks the chosen regions as being
// "in_collection_set", and links them together. The head and number of
// the collection set are available via access methods.
virtual void choose_collection_set(double target_pause_time_ms) = 0;
// The head of the list (via "next_in_collection_set()") representing the
// current collection set.
HeapRegion* collection_set() { return _collection_set; }
void clear_collection_set() { _collection_set = NULL; }
// The number of elements in the current collection set.
size_t collection_set_size() { return _collection_set_size; }
// Add "hr" to the CS.
void add_to_collection_set(HeapRegion* hr);
// Incremental CSet Support
// The head of the incrementally built collection set.
HeapRegion* inc_cset_head() { return _inc_cset_head; }
// The tail of the incrementally built collection set.
HeapRegion* inc_set_tail() { return _inc_cset_tail; }
// The number of elements in the incrementally built collection set.
size_t inc_cset_size() { return _inc_cset_size; }
// Initialize incremental collection set info.
void start_incremental_cset_building();
void clear_incremental_cset() {
_inc_cset_head = NULL;
_inc_cset_tail = NULL;
}
// Stop adding regions to the incremental collection set
void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
// Add/remove information about hr to the aggregated information
// for the incrementally built collection set.
void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
void remove_from_incremental_cset_info(HeapRegion* hr);
// Update information about hr in the aggregated information for
// the incrementally built collection set.
void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
private:
// Update the incremental cset information when adding a region
// (should not be called directly).
void add_region_to_incremental_cset_common(HeapRegion* hr);
public:
// Add hr to the LHS of the incremental collection set.
void add_region_to_incremental_cset_lhs(HeapRegion* hr);
// Add hr to the RHS of the incremental collection set.
void add_region_to_incremental_cset_rhs(HeapRegion* hr);
#ifndef PRODUCT
void print_collection_set(HeapRegion* list_head, outputStream* st);
#endif // !PRODUCT
bool initiate_conc_mark_if_possible() { return _initiate_conc_mark_if_possible; }
void set_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = true; }
void clear_initiate_conc_mark_if_possible() { _initiate_conc_mark_if_possible = false; }
bool during_initial_mark_pause() { return _during_initial_mark_pause; }
void set_during_initial_mark_pause() { _during_initial_mark_pause = true; }
void clear_during_initial_mark_pause(){ _during_initial_mark_pause = false; }
// This sets the initiate_conc_mark_if_possible() flag to start a
// new cycle, as long as we are not already in one. It's best if it
// is called during a safepoint when the test whether a cycle is in
// progress or not is stable.
bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
// This is called at the very beginning of an evacuation pause (it
// has to be the first thing that the pause does). If
// initiate_conc_mark_if_possible() is true, and the concurrent
// marking thread has completed its work during the previous cycle,
// it will set during_initial_mark_pause() to so that the pause does
// the initial-mark work and start a marking cycle.
void decide_on_conc_mark_initiation();
// If an expansion would be appropriate, because recent GC overhead had
// exceeded the desired limit, return an amount to expand by.
virtual size_t expansion_amount();
// note start of mark thread
void note_start_of_mark_thread();
// The marked bytes of the "r" has changed; reclassify it's desirability
// for marking. Also asserts that "r" is eligible for a CS.
virtual void note_change_in_marked_bytes(HeapRegion* r) = 0;
#ifndef PRODUCT
// Check any appropriate marked bytes info, asserting false if
// something's wrong, else returning "true".
virtual bool assertMarkedBytesDataOK() = 0;
#endif
// Print tracing information.
void print_tracing_info() const;
// Print stats on young survival ratio
void print_yg_surv_rate_info() const;
void finished_recalculating_age_indexes(bool is_survivors) {
if (is_survivors) {
_survivor_surv_rate_group->finished_recalculating_age_indexes();
} else {
_short_lived_surv_rate_group->finished_recalculating_age_indexes();
}
// do that for any other surv rate groups
}
bool is_young_list_full() {
size_t young_list_length = _g1->young_list()->length();
size_t young_list_target_length = _young_list_target_length;
return young_list_length >= young_list_target_length;
}
bool can_expand_young_list() {
size_t young_list_length = _g1->young_list()->length();
size_t young_list_max_length = _young_list_max_length;
return young_list_length < young_list_max_length;
}
void update_region_num(bool young);
bool full_young_gcs() {
return _full_young_gcs;
}
void set_full_young_gcs(bool full_young_gcs) {
_full_young_gcs = full_young_gcs;
}
bool adaptive_young_list_length() {
return _adaptive_young_list_length;
}
void set_adaptive_young_list_length(bool adaptive_young_list_length) {
_adaptive_young_list_length = adaptive_young_list_length;
}
inline double get_gc_eff_factor() {
double ratio = _known_garbage_ratio;
double square = ratio * ratio;
// square = square * square;
double ret = square * 9.0 + 1.0;
#if 0
gclog_or_tty->print_cr("ratio = %1.2lf, ret = %1.2lf", ratio, ret);
#endif // 0
guarantee(0.0 <= ret && ret < 10.0, "invariant!");
return ret;
}
//
// Survivor regions policy.
//
protected:
// Current tenuring threshold, set to 0 if the collector reaches the
// maximum amount of suvivors regions.
int _tenuring_threshold;
// The limit on the number of regions allocated for survivors.
size_t _max_survivor_regions;
// For reporting purposes.
size_t _eden_bytes_before_gc;
size_t _survivor_bytes_before_gc;
size_t _capacity_before_gc;
// The amount of survor regions after a collection.
size_t _recorded_survivor_regions;
// List of survivor regions.
HeapRegion* _recorded_survivor_head;
HeapRegion* _recorded_survivor_tail;
ageTable _survivors_age_table;
public:
inline GCAllocPurpose
evacuation_destination(HeapRegion* src_region, int age, size_t word_sz) {
if (age < _tenuring_threshold && src_region->is_young()) {
return GCAllocForSurvived;
} else {
return GCAllocForTenured;
}
}
inline bool track_object_age(GCAllocPurpose purpose) {
return purpose == GCAllocForSurvived;
}
static const size_t REGIONS_UNLIMITED = ~(size_t)0;
size_t max_regions(int purpose);
// The limit on regions for a particular purpose is reached.
void note_alloc_region_limit_reached(int purpose) {
if (purpose == GCAllocForSurvived) {
_tenuring_threshold = 0;
}
}
void note_start_adding_survivor_regions() {
_survivor_surv_rate_group->start_adding_regions();
}
void note_stop_adding_survivor_regions() {
_survivor_surv_rate_group->stop_adding_regions();
}
void record_survivor_regions(size_t regions,
HeapRegion* head,
HeapRegion* tail) {
_recorded_survivor_regions = regions;
_recorded_survivor_head = head;
_recorded_survivor_tail = tail;
}
size_t recorded_survivor_regions() {
return _recorded_survivor_regions;
}
void record_thread_age_table(ageTable* age_table)
{
_survivors_age_table.merge_par(age_table);
}
void update_max_gc_locker_expansion();
// Calculates survivor space parameters.
void update_survivors_policy();
};
// This encapsulates a particular strategy for a g1 Collector.
//
// Start a concurrent mark when our heap size is n bytes
// greater then our heap size was at the last concurrent
// mark. Where n is a function of the CMSTriggerRatio
// and the MinHeapFreeRatio.
//
// Start a g1 collection pause when we have allocated the
// average number of bytes currently being freed in
// a collection, but only if it is at least one region
// full
//
// Resize Heap based on desired
// allocation space, where desired allocation space is
// a function of survival rate and desired future to size.
//
// Choose collection set by first picking all older regions
// which have a survival rate which beats our projected young
// survival rate. Then fill out the number of needed regions
// with young regions.
class G1CollectorPolicy_BestRegionsFirst: public G1CollectorPolicy {
CollectionSetChooser* _collectionSetChooser;
virtual void choose_collection_set(double target_pause_time_ms);
virtual void record_collection_pause_start(double start_time_sec,
size_t start_used);
virtual void record_concurrent_mark_cleanup_end(size_t freed_bytes,
size_t max_live_bytes);
virtual void record_full_collection_end();
public:
G1CollectorPolicy_BestRegionsFirst() {
_collectionSetChooser = new CollectionSetChooser();
}
void record_collection_pause_end();
// This is not needed any more, after the CSet choosing code was
// changed to use the pause prediction work. But let's leave the
// hook in just in case.
void note_change_in_marked_bytes(HeapRegion* r) { }
#ifndef PRODUCT
bool assertMarkedBytesDataOK();
#endif
};
// This should move to some place more general...
// If we have "n" measurements, and we've kept track of their "sum" and the
// "sum_of_squares" of the measurements, this returns the variance of the
// sequence.
inline double variance(int n, double sum_of_squares, double sum) {
double n_d = (double)n;
double avg = sum/n_d;
return (sum_of_squares - 2.0 * avg * sum + n_d * avg * avg) / n_d;
}
#endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTORPOLICY_HPP