jdk/src/share/native/sun/security/ec/ecp_jac.c
changeset 3492 e549cea58864
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/native/sun/security/ec/ecp_jac.c	Tue Aug 11 16:52:26 2009 +0100
@@ -0,0 +1,575 @@
+/* *********************************************************************
+ *
+ * Sun elects to have this file available under and governed by the
+ * Mozilla Public License Version 1.1 ("MPL") (see
+ * http://www.mozilla.org/MPL/ for full license text). For the avoidance
+ * of doubt and subject to the following, Sun also elects to allow
+ * licensees to use this file under the MPL, the GNU General Public
+ * License version 2 only or the Lesser General Public License version
+ * 2.1 only. Any references to the "GNU General Public License version 2
+ * or later" or "GPL" in the following shall be construed to mean the
+ * GNU General Public License version 2 only. Any references to the "GNU
+ * Lesser General Public License version 2.1 or later" or "LGPL" in the
+ * following shall be construed to mean the GNU Lesser General Public
+ * License version 2.1 only. However, the following notice accompanied
+ * the original version of this file:
+ *
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1
+ *
+ * The contents of this file are subject to the Mozilla Public License Version
+ * 1.1 (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * Software distributed under the License is distributed on an "AS IS" basis,
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
+ * for the specific language governing rights and limitations under the
+ * License.
+ *
+ * The Original Code is the elliptic curve math library for prime field curves.
+ *
+ * The Initial Developer of the Original Code is
+ * Sun Microsystems, Inc.
+ * Portions created by the Initial Developer are Copyright (C) 2003
+ * the Initial Developer. All Rights Reserved.
+ *
+ * Contributor(s):
+ *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
+ *   Stephen Fung <fungstep@hotmail.com>, and
+ *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
+ *   Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
+ *   Nils Larsch <nla@trustcenter.de>, and
+ *   Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
+ *
+ * Alternatively, the contents of this file may be used under the terms of
+ * either the GNU General Public License Version 2 or later (the "GPL"), or
+ * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
+ * in which case the provisions of the GPL or the LGPL are applicable instead
+ * of those above. If you wish to allow use of your version of this file only
+ * under the terms of either the GPL or the LGPL, and not to allow others to
+ * use your version of this file under the terms of the MPL, indicate your
+ * decision by deleting the provisions above and replace them with the notice
+ * and other provisions required by the GPL or the LGPL. If you do not delete
+ * the provisions above, a recipient may use your version of this file under
+ * the terms of any one of the MPL, the GPL or the LGPL.
+ *
+ *********************************************************************** */
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident   "%Z%%M% %I%     %E% SMI"
+
+#include "ecp.h"
+#include "mplogic.h"
+#ifndef _KERNEL
+#include <stdlib.h>
+#endif
+#ifdef ECL_DEBUG
+#include <assert.h>
+#endif
+
+/* Converts a point P(px, py) from affine coordinates to Jacobian
+ * projective coordinates R(rx, ry, rz). Assumes input is already
+ * field-encoded using field_enc, and returns output that is still
+ * field-encoded. */
+mp_err
+ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
+                                  mp_int *ry, mp_int *rz, const ECGroup *group)
+{
+        mp_err res = MP_OKAY;
+
+        if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
+                MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
+        } else {
+                MP_CHECKOK(mp_copy(px, rx));
+                MP_CHECKOK(mp_copy(py, ry));
+                MP_CHECKOK(mp_set_int(rz, 1));
+                if (group->meth->field_enc) {
+                        MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
+                }
+        }
+  CLEANUP:
+        return res;
+}
+
+/* Converts a point P(px, py, pz) from Jacobian projective coordinates to
+ * affine coordinates R(rx, ry).  P and R can share x and y coordinates.
+ * Assumes input is already field-encoded using field_enc, and returns
+ * output that is still field-encoded. */
+mp_err
+ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
+                                  mp_int *rx, mp_int *ry, const ECGroup *group)
+{
+        mp_err res = MP_OKAY;
+        mp_int z1, z2, z3;
+
+        MP_DIGITS(&z1) = 0;
+        MP_DIGITS(&z2) = 0;
+        MP_DIGITS(&z3) = 0;
+        MP_CHECKOK(mp_init(&z1, FLAG(px)));
+        MP_CHECKOK(mp_init(&z2, FLAG(px)));
+        MP_CHECKOK(mp_init(&z3, FLAG(px)));
+
+        /* if point at infinity, then set point at infinity and exit */
+        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
+                MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
+                goto CLEANUP;
+        }
+
+        /* transform (px, py, pz) into (px / pz^2, py / pz^3) */
+        if (mp_cmp_d(pz, 1) == 0) {
+                MP_CHECKOK(mp_copy(px, rx));
+                MP_CHECKOK(mp_copy(py, ry));
+        } else {
+                MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
+                MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
+                MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
+                MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
+                MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
+        }
+
+  CLEANUP:
+        mp_clear(&z1);
+        mp_clear(&z2);
+        mp_clear(&z3);
+        return res;
+}
+
+/* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
+ * coordinates. */
+mp_err
+ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
+{
+        return mp_cmp_z(pz);
+}
+
+/* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
+ * coordinates. */
+mp_err
+ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
+{
+        mp_zero(pz);
+        return MP_OKAY;
+}
+
+/* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
+ * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
+ * Uses mixed Jacobian-affine coordinates. Assumes input is already
+ * field-encoded using field_enc, and returns output that is still
+ * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
+ * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
+ * Fields. */
+mp_err
+ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
+                                          const mp_int *qx, const mp_int *qy, mp_int *rx,
+                                          mp_int *ry, mp_int *rz, const ECGroup *group)
+{
+        mp_err res = MP_OKAY;
+        mp_int A, B, C, D, C2, C3;
+
+        MP_DIGITS(&A) = 0;
+        MP_DIGITS(&B) = 0;
+        MP_DIGITS(&C) = 0;
+        MP_DIGITS(&D) = 0;
+        MP_DIGITS(&C2) = 0;
+        MP_DIGITS(&C3) = 0;
+        MP_CHECKOK(mp_init(&A, FLAG(px)));
+        MP_CHECKOK(mp_init(&B, FLAG(px)));
+        MP_CHECKOK(mp_init(&C, FLAG(px)));
+        MP_CHECKOK(mp_init(&D, FLAG(px)));
+        MP_CHECKOK(mp_init(&C2, FLAG(px)));
+        MP_CHECKOK(mp_init(&C3, FLAG(px)));
+
+        /* If either P or Q is the point at infinity, then return the other
+         * point */
+        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
+                MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
+                goto CLEANUP;
+        }
+        if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
+                MP_CHECKOK(mp_copy(px, rx));
+                MP_CHECKOK(mp_copy(py, ry));
+                MP_CHECKOK(mp_copy(pz, rz));
+                goto CLEANUP;
+        }
+
+        /* A = qx * pz^2, B = qy * pz^3 */
+        MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
+        MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
+        MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
+        MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
+
+        /* C = A - px, D = B - py */
+        MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
+        MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));
+
+        /* C2 = C^2, C3 = C^3 */
+        MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
+        MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));
+
+        /* rz = pz * C */
+        MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));
+
+        /* C = px * C^2 */
+        MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
+        /* A = D^2 */
+        MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));
+
+        /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
+        MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
+        MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
+        MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));
+
+        /* C3 = py * C^3 */
+        MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));
+
+        /* ry = D * (px * C^2 - rx) - py * C^3 */
+        MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
+        MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
+        MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));
+
+  CLEANUP:
+        mp_clear(&A);
+        mp_clear(&B);
+        mp_clear(&C);
+        mp_clear(&D);
+        mp_clear(&C2);
+        mp_clear(&C3);
+        return res;
+}
+
+/* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses
+ * Jacobian coordinates.
+ *
+ * Assumes input is already field-encoded using field_enc, and returns
+ * output that is still field-encoded.
+ *
+ * This routine implements Point Doubling in the Jacobian Projective
+ * space as described in the paper "Efficient elliptic curve exponentiation
+ * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
+ */
+mp_err
+ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
+                                  mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
+{
+        mp_err res = MP_OKAY;
+        mp_int t0, t1, M, S;
+
+        MP_DIGITS(&t0) = 0;
+        MP_DIGITS(&t1) = 0;
+        MP_DIGITS(&M) = 0;
+        MP_DIGITS(&S) = 0;
+        MP_CHECKOK(mp_init(&t0, FLAG(px)));
+        MP_CHECKOK(mp_init(&t1, FLAG(px)));
+        MP_CHECKOK(mp_init(&M, FLAG(px)));
+        MP_CHECKOK(mp_init(&S, FLAG(px)));
+
+        if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
+                MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
+                goto CLEANUP;
+        }
+
+        if (mp_cmp_d(pz, 1) == 0) {
+                /* M = 3 * px^2 + a */
+                MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
+                MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
+                MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
+                MP_CHECKOK(group->meth->
+                                   field_add(&t0, &group->curvea, &M, group->meth));
+        } else if (mp_cmp_int(&group->curvea, -3, FLAG(px)) == 0) {
+                /* M = 3 * (px + pz^2) * (px - pz^2) */
+                MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
+                MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
+                MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
+                MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
+                MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
+                MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
+        } else {
+                /* M = 3 * (px^2) + a * (pz^4) */
+                MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
+                MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
+                MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
+                MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
+                MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
+                MP_CHECKOK(group->meth->
+                                   field_mul(&M, &group->curvea, &M, group->meth));
+                MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
+        }
+
+        /* rz = 2 * py * pz */
+        /* t0 = 4 * py^2 */
+        if (mp_cmp_d(pz, 1) == 0) {
+                MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
+                MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
+        } else {
+                MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
+                MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
+                MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
+        }
+
+        /* S = 4 * px * py^2 = px * (2 * py)^2 */
+        MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));
+
+        /* rx = M^2 - 2 * S */
+        MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
+        MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
+        MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));
+
+        /* ry = M * (S - rx) - 8 * py^4 */
+        MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
+        if (mp_isodd(&t1)) {
+                MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
+        }
+        MP_CHECKOK(mp_div_2(&t1, &t1));
+        MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
+        MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
+        MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));
+
+  CLEANUP:
+        mp_clear(&t0);
+        mp_clear(&t1);
+        mp_clear(&M);
+        mp_clear(&S);
+        return res;
+}
+
+/* by default, this routine is unused and thus doesn't need to be compiled */
+#ifdef ECL_ENABLE_GFP_PT_MUL_JAC
+/* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
+ * a, b and p are the elliptic curve coefficients and the prime that
+ * determines the field GFp.  Elliptic curve points P and R can be
+ * identical.  Uses mixed Jacobian-affine coordinates. Assumes input is
+ * already field-encoded using field_enc, and returns output that is still
+ * field-encoded. Uses 4-bit window method. */
+mp_err
+ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
+                                  mp_int *rx, mp_int *ry, const ECGroup *group)
+{
+        mp_err res = MP_OKAY;
+        mp_int precomp[16][2], rz;
+        int i, ni, d;
+
+        MP_DIGITS(&rz) = 0;
+        for (i = 0; i < 16; i++) {
+                MP_DIGITS(&precomp[i][0]) = 0;
+                MP_DIGITS(&precomp[i][1]) = 0;
+        }
+
+        ARGCHK(group != NULL, MP_BADARG);
+        ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
+
+        /* initialize precomputation table */
+        for (i = 0; i < 16; i++) {
+                MP_CHECKOK(mp_init(&precomp[i][0]));
+                MP_CHECKOK(mp_init(&precomp[i][1]));
+        }
+
+        /* fill precomputation table */
+        mp_zero(&precomp[0][0]);
+        mp_zero(&precomp[0][1]);
+        MP_CHECKOK(mp_copy(px, &precomp[1][0]));
+        MP_CHECKOK(mp_copy(py, &precomp[1][1]));
+        for (i = 2; i < 16; i++) {
+                MP_CHECKOK(group->
+                                   point_add(&precomp[1][0], &precomp[1][1],
+                                                         &precomp[i - 1][0], &precomp[i - 1][1],
+                                                         &precomp[i][0], &precomp[i][1], group));
+        }
+
+        d = (mpl_significant_bits(n) + 3) / 4;
+
+        /* R = inf */
+        MP_CHECKOK(mp_init(&rz));
+        MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
+
+        for (i = d - 1; i >= 0; i--) {
+                /* compute window ni */
+                ni = MP_GET_BIT(n, 4 * i + 3);
+                ni <<= 1;
+                ni |= MP_GET_BIT(n, 4 * i + 2);
+                ni <<= 1;
+                ni |= MP_GET_BIT(n, 4 * i + 1);
+                ni <<= 1;
+                ni |= MP_GET_BIT(n, 4 * i);
+                /* R = 2^4 * R */
+                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+                /* R = R + (ni * P) */
+                MP_CHECKOK(ec_GFp_pt_add_jac_aff
+                                   (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
+                                        &rz, group));
+        }
+
+        /* convert result S to affine coordinates */
+        MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
+
+  CLEANUP:
+        mp_clear(&rz);
+        for (i = 0; i < 16; i++) {
+                mp_clear(&precomp[i][0]);
+                mp_clear(&precomp[i][1]);
+        }
+        return res;
+}
+#endif
+
+/* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
+ * k2 * P(x, y), where G is the generator (base point) of the group of
+ * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
+ * Uses mixed Jacobian-affine coordinates. Input and output values are
+ * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
+ * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
+ * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
+mp_err
+ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
+                                   const mp_int *py, mp_int *rx, mp_int *ry,
+                                   const ECGroup *group)
+{
+        mp_err res = MP_OKAY;
+        mp_int precomp[4][4][2];
+        mp_int rz;
+        const mp_int *a, *b;
+        int i, j;
+        int ai, bi, d;
+
+        for (i = 0; i < 4; i++) {
+                for (j = 0; j < 4; j++) {
+                        MP_DIGITS(&precomp[i][j][0]) = 0;
+                        MP_DIGITS(&precomp[i][j][1]) = 0;
+                }
+        }
+        MP_DIGITS(&rz) = 0;
+
+        ARGCHK(group != NULL, MP_BADARG);
+        ARGCHK(!((k1 == NULL)
+                         && ((k2 == NULL) || (px == NULL)
+                                 || (py == NULL))), MP_BADARG);
+
+        /* if some arguments are not defined used ECPoint_mul */
+        if (k1 == NULL) {
+                return ECPoint_mul(group, k2, px, py, rx, ry);
+        } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
+                return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
+        }
+
+        /* initialize precomputation table */
+        for (i = 0; i < 4; i++) {
+                for (j = 0; j < 4; j++) {
+                        MP_CHECKOK(mp_init(&precomp[i][j][0], FLAG(k1)));
+                        MP_CHECKOK(mp_init(&precomp[i][j][1], FLAG(k1)));
+                }
+        }
+
+        /* fill precomputation table */
+        /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
+        if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
+                a = k2;
+                b = k1;
+                if (group->meth->field_enc) {
+                        MP_CHECKOK(group->meth->
+                                           field_enc(px, &precomp[1][0][0], group->meth));
+                        MP_CHECKOK(group->meth->
+                                           field_enc(py, &precomp[1][0][1], group->meth));
+                } else {
+                        MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
+                        MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
+                }
+                MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
+                MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
+        } else {
+                a = k1;
+                b = k2;
+                MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
+                MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
+                if (group->meth->field_enc) {
+                        MP_CHECKOK(group->meth->
+                                           field_enc(px, &precomp[0][1][0], group->meth));
+                        MP_CHECKOK(group->meth->
+                                           field_enc(py, &precomp[0][1][1], group->meth));
+                } else {
+                        MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
+                        MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
+                }
+        }
+        /* precompute [*][0][*] */
+        mp_zero(&precomp[0][0][0]);
+        mp_zero(&precomp[0][0][1]);
+        MP_CHECKOK(group->
+                           point_dbl(&precomp[1][0][0], &precomp[1][0][1],
+                                                 &precomp[2][0][0], &precomp[2][0][1], group));
+        MP_CHECKOK(group->
+                           point_add(&precomp[1][0][0], &precomp[1][0][1],
+                                                 &precomp[2][0][0], &precomp[2][0][1],
+                                                 &precomp[3][0][0], &precomp[3][0][1], group));
+        /* precompute [*][1][*] */
+        for (i = 1; i < 4; i++) {
+                MP_CHECKOK(group->
+                                   point_add(&precomp[0][1][0], &precomp[0][1][1],
+                                                         &precomp[i][0][0], &precomp[i][0][1],
+                                                         &precomp[i][1][0], &precomp[i][1][1], group));
+        }
+        /* precompute [*][2][*] */
+        MP_CHECKOK(group->
+                           point_dbl(&precomp[0][1][0], &precomp[0][1][1],
+                                                 &precomp[0][2][0], &precomp[0][2][1], group));
+        for (i = 1; i < 4; i++) {
+                MP_CHECKOK(group->
+                                   point_add(&precomp[0][2][0], &precomp[0][2][1],
+                                                         &precomp[i][0][0], &precomp[i][0][1],
+                                                         &precomp[i][2][0], &precomp[i][2][1], group));
+        }
+        /* precompute [*][3][*] */
+        MP_CHECKOK(group->
+                           point_add(&precomp[0][1][0], &precomp[0][1][1],
+                                                 &precomp[0][2][0], &precomp[0][2][1],
+                                                 &precomp[0][3][0], &precomp[0][3][1], group));
+        for (i = 1; i < 4; i++) {
+                MP_CHECKOK(group->
+                                   point_add(&precomp[0][3][0], &precomp[0][3][1],
+                                                         &precomp[i][0][0], &precomp[i][0][1],
+                                                         &precomp[i][3][0], &precomp[i][3][1], group));
+        }
+
+        d = (mpl_significant_bits(a) + 1) / 2;
+
+        /* R = inf */
+        MP_CHECKOK(mp_init(&rz, FLAG(k1)));
+        MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
+
+        for (i = d - 1; i >= 0; i--) {
+                ai = MP_GET_BIT(a, 2 * i + 1);
+                ai <<= 1;
+                ai |= MP_GET_BIT(a, 2 * i);
+                bi = MP_GET_BIT(b, 2 * i + 1);
+                bi <<= 1;
+                bi |= MP_GET_BIT(b, 2 * i);
+                /* R = 2^2 * R */
+                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+                MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
+                /* R = R + (ai * A + bi * B) */
+                MP_CHECKOK(ec_GFp_pt_add_jac_aff
+                                   (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
+                                        rx, ry, &rz, group));
+        }
+
+        MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
+
+        if (group->meth->field_dec) {
+                MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
+                MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
+        }
+
+  CLEANUP:
+        mp_clear(&rz);
+        for (i = 0; i < 4; i++) {
+                for (j = 0; j < 4; j++) {
+                        mp_clear(&precomp[i][j][0]);
+                        mp_clear(&precomp[i][j][1]);
+                }
+        }
+        return res;
+}