jdk/src/share/native/sun/security/ec/ecp_jac.c
changeset 3492 e549cea58864
equal deleted inserted replaced
3480:c197e38bf15a 3492:e549cea58864
       
     1 /* *********************************************************************
       
     2  *
       
     3  * Sun elects to have this file available under and governed by the
       
     4  * Mozilla Public License Version 1.1 ("MPL") (see
       
     5  * http://www.mozilla.org/MPL/ for full license text). For the avoidance
       
     6  * of doubt and subject to the following, Sun also elects to allow
       
     7  * licensees to use this file under the MPL, the GNU General Public
       
     8  * License version 2 only or the Lesser General Public License version
       
     9  * 2.1 only. Any references to the "GNU General Public License version 2
       
    10  * or later" or "GPL" in the following shall be construed to mean the
       
    11  * GNU General Public License version 2 only. Any references to the "GNU
       
    12  * Lesser General Public License version 2.1 or later" or "LGPL" in the
       
    13  * following shall be construed to mean the GNU Lesser General Public
       
    14  * License version 2.1 only. However, the following notice accompanied
       
    15  * the original version of this file:
       
    16  *
       
    17  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
       
    18  *
       
    19  * The contents of this file are subject to the Mozilla Public License Version
       
    20  * 1.1 (the "License"); you may not use this file except in compliance with
       
    21  * the License. You may obtain a copy of the License at
       
    22  * http://www.mozilla.org/MPL/
       
    23  *
       
    24  * Software distributed under the License is distributed on an "AS IS" basis,
       
    25  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
       
    26  * for the specific language governing rights and limitations under the
       
    27  * License.
       
    28  *
       
    29  * The Original Code is the elliptic curve math library for prime field curves.
       
    30  *
       
    31  * The Initial Developer of the Original Code is
       
    32  * Sun Microsystems, Inc.
       
    33  * Portions created by the Initial Developer are Copyright (C) 2003
       
    34  * the Initial Developer. All Rights Reserved.
       
    35  *
       
    36  * Contributor(s):
       
    37  *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
       
    38  *   Stephen Fung <fungstep@hotmail.com>, and
       
    39  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
       
    40  *   Bodo Moeller <moeller@cdc.informatik.tu-darmstadt.de>,
       
    41  *   Nils Larsch <nla@trustcenter.de>, and
       
    42  *   Lenka Fibikova <fibikova@exp-math.uni-essen.de>, the OpenSSL Project
       
    43  *
       
    44  * Alternatively, the contents of this file may be used under the terms of
       
    45  * either the GNU General Public License Version 2 or later (the "GPL"), or
       
    46  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
       
    47  * in which case the provisions of the GPL or the LGPL are applicable instead
       
    48  * of those above. If you wish to allow use of your version of this file only
       
    49  * under the terms of either the GPL or the LGPL, and not to allow others to
       
    50  * use your version of this file under the terms of the MPL, indicate your
       
    51  * decision by deleting the provisions above and replace them with the notice
       
    52  * and other provisions required by the GPL or the LGPL. If you do not delete
       
    53  * the provisions above, a recipient may use your version of this file under
       
    54  * the terms of any one of the MPL, the GPL or the LGPL.
       
    55  *
       
    56  *********************************************************************** */
       
    57 /*
       
    58  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
       
    59  * Use is subject to license terms.
       
    60  */
       
    61 
       
    62 #pragma ident   "%Z%%M% %I%     %E% SMI"
       
    63 
       
    64 #include "ecp.h"
       
    65 #include "mplogic.h"
       
    66 #ifndef _KERNEL
       
    67 #include <stdlib.h>
       
    68 #endif
       
    69 #ifdef ECL_DEBUG
       
    70 #include <assert.h>
       
    71 #endif
       
    72 
       
    73 /* Converts a point P(px, py) from affine coordinates to Jacobian
       
    74  * projective coordinates R(rx, ry, rz). Assumes input is already
       
    75  * field-encoded using field_enc, and returns output that is still
       
    76  * field-encoded. */
       
    77 mp_err
       
    78 ec_GFp_pt_aff2jac(const mp_int *px, const mp_int *py, mp_int *rx,
       
    79                                   mp_int *ry, mp_int *rz, const ECGroup *group)
       
    80 {
       
    81         mp_err res = MP_OKAY;
       
    82 
       
    83         if (ec_GFp_pt_is_inf_aff(px, py) == MP_YES) {
       
    84                 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
       
    85         } else {
       
    86                 MP_CHECKOK(mp_copy(px, rx));
       
    87                 MP_CHECKOK(mp_copy(py, ry));
       
    88                 MP_CHECKOK(mp_set_int(rz, 1));
       
    89                 if (group->meth->field_enc) {
       
    90                         MP_CHECKOK(group->meth->field_enc(rz, rz, group->meth));
       
    91                 }
       
    92         }
       
    93   CLEANUP:
       
    94         return res;
       
    95 }
       
    96 
       
    97 /* Converts a point P(px, py, pz) from Jacobian projective coordinates to
       
    98  * affine coordinates R(rx, ry).  P and R can share x and y coordinates.
       
    99  * Assumes input is already field-encoded using field_enc, and returns
       
   100  * output that is still field-encoded. */
       
   101 mp_err
       
   102 ec_GFp_pt_jac2aff(const mp_int *px, const mp_int *py, const mp_int *pz,
       
   103                                   mp_int *rx, mp_int *ry, const ECGroup *group)
       
   104 {
       
   105         mp_err res = MP_OKAY;
       
   106         mp_int z1, z2, z3;
       
   107 
       
   108         MP_DIGITS(&z1) = 0;
       
   109         MP_DIGITS(&z2) = 0;
       
   110         MP_DIGITS(&z3) = 0;
       
   111         MP_CHECKOK(mp_init(&z1, FLAG(px)));
       
   112         MP_CHECKOK(mp_init(&z2, FLAG(px)));
       
   113         MP_CHECKOK(mp_init(&z3, FLAG(px)));
       
   114 
       
   115         /* if point at infinity, then set point at infinity and exit */
       
   116         if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
       
   117                 MP_CHECKOK(ec_GFp_pt_set_inf_aff(rx, ry));
       
   118                 goto CLEANUP;
       
   119         }
       
   120 
       
   121         /* transform (px, py, pz) into (px / pz^2, py / pz^3) */
       
   122         if (mp_cmp_d(pz, 1) == 0) {
       
   123                 MP_CHECKOK(mp_copy(px, rx));
       
   124                 MP_CHECKOK(mp_copy(py, ry));
       
   125         } else {
       
   126                 MP_CHECKOK(group->meth->field_div(NULL, pz, &z1, group->meth));
       
   127                 MP_CHECKOK(group->meth->field_sqr(&z1, &z2, group->meth));
       
   128                 MP_CHECKOK(group->meth->field_mul(&z1, &z2, &z3, group->meth));
       
   129                 MP_CHECKOK(group->meth->field_mul(px, &z2, rx, group->meth));
       
   130                 MP_CHECKOK(group->meth->field_mul(py, &z3, ry, group->meth));
       
   131         }
       
   132 
       
   133   CLEANUP:
       
   134         mp_clear(&z1);
       
   135         mp_clear(&z2);
       
   136         mp_clear(&z3);
       
   137         return res;
       
   138 }
       
   139 
       
   140 /* Checks if point P(px, py, pz) is at infinity. Uses Jacobian
       
   141  * coordinates. */
       
   142 mp_err
       
   143 ec_GFp_pt_is_inf_jac(const mp_int *px, const mp_int *py, const mp_int *pz)
       
   144 {
       
   145         return mp_cmp_z(pz);
       
   146 }
       
   147 
       
   148 /* Sets P(px, py, pz) to be the point at infinity.  Uses Jacobian
       
   149  * coordinates. */
       
   150 mp_err
       
   151 ec_GFp_pt_set_inf_jac(mp_int *px, mp_int *py, mp_int *pz)
       
   152 {
       
   153         mp_zero(pz);
       
   154         return MP_OKAY;
       
   155 }
       
   156 
       
   157 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is
       
   158  * (qx, qy, 1).  Elliptic curve points P, Q, and R can all be identical.
       
   159  * Uses mixed Jacobian-affine coordinates. Assumes input is already
       
   160  * field-encoded using field_enc, and returns output that is still
       
   161  * field-encoded. Uses equation (2) from Brown, Hankerson, Lopez, and
       
   162  * Menezes. Software Implementation of the NIST Elliptic Curves Over Prime
       
   163  * Fields. */
       
   164 mp_err
       
   165 ec_GFp_pt_add_jac_aff(const mp_int *px, const mp_int *py, const mp_int *pz,
       
   166                                           const mp_int *qx, const mp_int *qy, mp_int *rx,
       
   167                                           mp_int *ry, mp_int *rz, const ECGroup *group)
       
   168 {
       
   169         mp_err res = MP_OKAY;
       
   170         mp_int A, B, C, D, C2, C3;
       
   171 
       
   172         MP_DIGITS(&A) = 0;
       
   173         MP_DIGITS(&B) = 0;
       
   174         MP_DIGITS(&C) = 0;
       
   175         MP_DIGITS(&D) = 0;
       
   176         MP_DIGITS(&C2) = 0;
       
   177         MP_DIGITS(&C3) = 0;
       
   178         MP_CHECKOK(mp_init(&A, FLAG(px)));
       
   179         MP_CHECKOK(mp_init(&B, FLAG(px)));
       
   180         MP_CHECKOK(mp_init(&C, FLAG(px)));
       
   181         MP_CHECKOK(mp_init(&D, FLAG(px)));
       
   182         MP_CHECKOK(mp_init(&C2, FLAG(px)));
       
   183         MP_CHECKOK(mp_init(&C3, FLAG(px)));
       
   184 
       
   185         /* If either P or Q is the point at infinity, then return the other
       
   186          * point */
       
   187         if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
       
   188                 MP_CHECKOK(ec_GFp_pt_aff2jac(qx, qy, rx, ry, rz, group));
       
   189                 goto CLEANUP;
       
   190         }
       
   191         if (ec_GFp_pt_is_inf_aff(qx, qy) == MP_YES) {
       
   192                 MP_CHECKOK(mp_copy(px, rx));
       
   193                 MP_CHECKOK(mp_copy(py, ry));
       
   194                 MP_CHECKOK(mp_copy(pz, rz));
       
   195                 goto CLEANUP;
       
   196         }
       
   197 
       
   198         /* A = qx * pz^2, B = qy * pz^3 */
       
   199         MP_CHECKOK(group->meth->field_sqr(pz, &A, group->meth));
       
   200         MP_CHECKOK(group->meth->field_mul(&A, pz, &B, group->meth));
       
   201         MP_CHECKOK(group->meth->field_mul(&A, qx, &A, group->meth));
       
   202         MP_CHECKOK(group->meth->field_mul(&B, qy, &B, group->meth));
       
   203 
       
   204         /* C = A - px, D = B - py */
       
   205         MP_CHECKOK(group->meth->field_sub(&A, px, &C, group->meth));
       
   206         MP_CHECKOK(group->meth->field_sub(&B, py, &D, group->meth));
       
   207 
       
   208         /* C2 = C^2, C3 = C^3 */
       
   209         MP_CHECKOK(group->meth->field_sqr(&C, &C2, group->meth));
       
   210         MP_CHECKOK(group->meth->field_mul(&C, &C2, &C3, group->meth));
       
   211 
       
   212         /* rz = pz * C */
       
   213         MP_CHECKOK(group->meth->field_mul(pz, &C, rz, group->meth));
       
   214 
       
   215         /* C = px * C^2 */
       
   216         MP_CHECKOK(group->meth->field_mul(px, &C2, &C, group->meth));
       
   217         /* A = D^2 */
       
   218         MP_CHECKOK(group->meth->field_sqr(&D, &A, group->meth));
       
   219 
       
   220         /* rx = D^2 - (C^3 + 2 * (px * C^2)) */
       
   221         MP_CHECKOK(group->meth->field_add(&C, &C, rx, group->meth));
       
   222         MP_CHECKOK(group->meth->field_add(&C3, rx, rx, group->meth));
       
   223         MP_CHECKOK(group->meth->field_sub(&A, rx, rx, group->meth));
       
   224 
       
   225         /* C3 = py * C^3 */
       
   226         MP_CHECKOK(group->meth->field_mul(py, &C3, &C3, group->meth));
       
   227 
       
   228         /* ry = D * (px * C^2 - rx) - py * C^3 */
       
   229         MP_CHECKOK(group->meth->field_sub(&C, rx, ry, group->meth));
       
   230         MP_CHECKOK(group->meth->field_mul(&D, ry, ry, group->meth));
       
   231         MP_CHECKOK(group->meth->field_sub(ry, &C3, ry, group->meth));
       
   232 
       
   233   CLEANUP:
       
   234         mp_clear(&A);
       
   235         mp_clear(&B);
       
   236         mp_clear(&C);
       
   237         mp_clear(&D);
       
   238         mp_clear(&C2);
       
   239         mp_clear(&C3);
       
   240         return res;
       
   241 }
       
   242 
       
   243 /* Computes R = 2P.  Elliptic curve points P and R can be identical.  Uses
       
   244  * Jacobian coordinates.
       
   245  *
       
   246  * Assumes input is already field-encoded using field_enc, and returns
       
   247  * output that is still field-encoded.
       
   248  *
       
   249  * This routine implements Point Doubling in the Jacobian Projective
       
   250  * space as described in the paper "Efficient elliptic curve exponentiation
       
   251  * using mixed coordinates", by H. Cohen, A Miyaji, T. Ono.
       
   252  */
       
   253 mp_err
       
   254 ec_GFp_pt_dbl_jac(const mp_int *px, const mp_int *py, const mp_int *pz,
       
   255                                   mp_int *rx, mp_int *ry, mp_int *rz, const ECGroup *group)
       
   256 {
       
   257         mp_err res = MP_OKAY;
       
   258         mp_int t0, t1, M, S;
       
   259 
       
   260         MP_DIGITS(&t0) = 0;
       
   261         MP_DIGITS(&t1) = 0;
       
   262         MP_DIGITS(&M) = 0;
       
   263         MP_DIGITS(&S) = 0;
       
   264         MP_CHECKOK(mp_init(&t0, FLAG(px)));
       
   265         MP_CHECKOK(mp_init(&t1, FLAG(px)));
       
   266         MP_CHECKOK(mp_init(&M, FLAG(px)));
       
   267         MP_CHECKOK(mp_init(&S, FLAG(px)));
       
   268 
       
   269         if (ec_GFp_pt_is_inf_jac(px, py, pz) == MP_YES) {
       
   270                 MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, rz));
       
   271                 goto CLEANUP;
       
   272         }
       
   273 
       
   274         if (mp_cmp_d(pz, 1) == 0) {
       
   275                 /* M = 3 * px^2 + a */
       
   276                 MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
       
   277                 MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
       
   278                 MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
       
   279                 MP_CHECKOK(group->meth->
       
   280                                    field_add(&t0, &group->curvea, &M, group->meth));
       
   281         } else if (mp_cmp_int(&group->curvea, -3, FLAG(px)) == 0) {
       
   282                 /* M = 3 * (px + pz^2) * (px - pz^2) */
       
   283                 MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
       
   284                 MP_CHECKOK(group->meth->field_add(px, &M, &t0, group->meth));
       
   285                 MP_CHECKOK(group->meth->field_sub(px, &M, &t1, group->meth));
       
   286                 MP_CHECKOK(group->meth->field_mul(&t0, &t1, &M, group->meth));
       
   287                 MP_CHECKOK(group->meth->field_add(&M, &M, &t0, group->meth));
       
   288                 MP_CHECKOK(group->meth->field_add(&t0, &M, &M, group->meth));
       
   289         } else {
       
   290                 /* M = 3 * (px^2) + a * (pz^4) */
       
   291                 MP_CHECKOK(group->meth->field_sqr(px, &t0, group->meth));
       
   292                 MP_CHECKOK(group->meth->field_add(&t0, &t0, &M, group->meth));
       
   293                 MP_CHECKOK(group->meth->field_add(&t0, &M, &t0, group->meth));
       
   294                 MP_CHECKOK(group->meth->field_sqr(pz, &M, group->meth));
       
   295                 MP_CHECKOK(group->meth->field_sqr(&M, &M, group->meth));
       
   296                 MP_CHECKOK(group->meth->
       
   297                                    field_mul(&M, &group->curvea, &M, group->meth));
       
   298                 MP_CHECKOK(group->meth->field_add(&M, &t0, &M, group->meth));
       
   299         }
       
   300 
       
   301         /* rz = 2 * py * pz */
       
   302         /* t0 = 4 * py^2 */
       
   303         if (mp_cmp_d(pz, 1) == 0) {
       
   304                 MP_CHECKOK(group->meth->field_add(py, py, rz, group->meth));
       
   305                 MP_CHECKOK(group->meth->field_sqr(rz, &t0, group->meth));
       
   306         } else {
       
   307                 MP_CHECKOK(group->meth->field_add(py, py, &t0, group->meth));
       
   308                 MP_CHECKOK(group->meth->field_mul(&t0, pz, rz, group->meth));
       
   309                 MP_CHECKOK(group->meth->field_sqr(&t0, &t0, group->meth));
       
   310         }
       
   311 
       
   312         /* S = 4 * px * py^2 = px * (2 * py)^2 */
       
   313         MP_CHECKOK(group->meth->field_mul(px, &t0, &S, group->meth));
       
   314 
       
   315         /* rx = M^2 - 2 * S */
       
   316         MP_CHECKOK(group->meth->field_add(&S, &S, &t1, group->meth));
       
   317         MP_CHECKOK(group->meth->field_sqr(&M, rx, group->meth));
       
   318         MP_CHECKOK(group->meth->field_sub(rx, &t1, rx, group->meth));
       
   319 
       
   320         /* ry = M * (S - rx) - 8 * py^4 */
       
   321         MP_CHECKOK(group->meth->field_sqr(&t0, &t1, group->meth));
       
   322         if (mp_isodd(&t1)) {
       
   323                 MP_CHECKOK(mp_add(&t1, &group->meth->irr, &t1));
       
   324         }
       
   325         MP_CHECKOK(mp_div_2(&t1, &t1));
       
   326         MP_CHECKOK(group->meth->field_sub(&S, rx, &S, group->meth));
       
   327         MP_CHECKOK(group->meth->field_mul(&M, &S, &M, group->meth));
       
   328         MP_CHECKOK(group->meth->field_sub(&M, &t1, ry, group->meth));
       
   329 
       
   330   CLEANUP:
       
   331         mp_clear(&t0);
       
   332         mp_clear(&t1);
       
   333         mp_clear(&M);
       
   334         mp_clear(&S);
       
   335         return res;
       
   336 }
       
   337 
       
   338 /* by default, this routine is unused and thus doesn't need to be compiled */
       
   339 #ifdef ECL_ENABLE_GFP_PT_MUL_JAC
       
   340 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters
       
   341  * a, b and p are the elliptic curve coefficients and the prime that
       
   342  * determines the field GFp.  Elliptic curve points P and R can be
       
   343  * identical.  Uses mixed Jacobian-affine coordinates. Assumes input is
       
   344  * already field-encoded using field_enc, and returns output that is still
       
   345  * field-encoded. Uses 4-bit window method. */
       
   346 mp_err
       
   347 ec_GFp_pt_mul_jac(const mp_int *n, const mp_int *px, const mp_int *py,
       
   348                                   mp_int *rx, mp_int *ry, const ECGroup *group)
       
   349 {
       
   350         mp_err res = MP_OKAY;
       
   351         mp_int precomp[16][2], rz;
       
   352         int i, ni, d;
       
   353 
       
   354         MP_DIGITS(&rz) = 0;
       
   355         for (i = 0; i < 16; i++) {
       
   356                 MP_DIGITS(&precomp[i][0]) = 0;
       
   357                 MP_DIGITS(&precomp[i][1]) = 0;
       
   358         }
       
   359 
       
   360         ARGCHK(group != NULL, MP_BADARG);
       
   361         ARGCHK((n != NULL) && (px != NULL) && (py != NULL), MP_BADARG);
       
   362 
       
   363         /* initialize precomputation table */
       
   364         for (i = 0; i < 16; i++) {
       
   365                 MP_CHECKOK(mp_init(&precomp[i][0]));
       
   366                 MP_CHECKOK(mp_init(&precomp[i][1]));
       
   367         }
       
   368 
       
   369         /* fill precomputation table */
       
   370         mp_zero(&precomp[0][0]);
       
   371         mp_zero(&precomp[0][1]);
       
   372         MP_CHECKOK(mp_copy(px, &precomp[1][0]));
       
   373         MP_CHECKOK(mp_copy(py, &precomp[1][1]));
       
   374         for (i = 2; i < 16; i++) {
       
   375                 MP_CHECKOK(group->
       
   376                                    point_add(&precomp[1][0], &precomp[1][1],
       
   377                                                          &precomp[i - 1][0], &precomp[i - 1][1],
       
   378                                                          &precomp[i][0], &precomp[i][1], group));
       
   379         }
       
   380 
       
   381         d = (mpl_significant_bits(n) + 3) / 4;
       
   382 
       
   383         /* R = inf */
       
   384         MP_CHECKOK(mp_init(&rz));
       
   385         MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
       
   386 
       
   387         for (i = d - 1; i >= 0; i--) {
       
   388                 /* compute window ni */
       
   389                 ni = MP_GET_BIT(n, 4 * i + 3);
       
   390                 ni <<= 1;
       
   391                 ni |= MP_GET_BIT(n, 4 * i + 2);
       
   392                 ni <<= 1;
       
   393                 ni |= MP_GET_BIT(n, 4 * i + 1);
       
   394                 ni <<= 1;
       
   395                 ni |= MP_GET_BIT(n, 4 * i);
       
   396                 /* R = 2^4 * R */
       
   397                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
       
   398                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
       
   399                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
       
   400                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
       
   401                 /* R = R + (ni * P) */
       
   402                 MP_CHECKOK(ec_GFp_pt_add_jac_aff
       
   403                                    (rx, ry, &rz, &precomp[ni][0], &precomp[ni][1], rx, ry,
       
   404                                         &rz, group));
       
   405         }
       
   406 
       
   407         /* convert result S to affine coordinates */
       
   408         MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
       
   409 
       
   410   CLEANUP:
       
   411         mp_clear(&rz);
       
   412         for (i = 0; i < 16; i++) {
       
   413                 mp_clear(&precomp[i][0]);
       
   414                 mp_clear(&precomp[i][1]);
       
   415         }
       
   416         return res;
       
   417 }
       
   418 #endif
       
   419 
       
   420 /* Elliptic curve scalar-point multiplication. Computes R(x, y) = k1 * G +
       
   421  * k2 * P(x, y), where G is the generator (base point) of the group of
       
   422  * points on the elliptic curve. Allows k1 = NULL or { k2, P } = NULL.
       
   423  * Uses mixed Jacobian-affine coordinates. Input and output values are
       
   424  * assumed to be NOT field-encoded. Uses algorithm 15 (simultaneous
       
   425  * multiple point multiplication) from Brown, Hankerson, Lopez, Menezes.
       
   426  * Software Implementation of the NIST Elliptic Curves over Prime Fields. */
       
   427 mp_err
       
   428 ec_GFp_pts_mul_jac(const mp_int *k1, const mp_int *k2, const mp_int *px,
       
   429                                    const mp_int *py, mp_int *rx, mp_int *ry,
       
   430                                    const ECGroup *group)
       
   431 {
       
   432         mp_err res = MP_OKAY;
       
   433         mp_int precomp[4][4][2];
       
   434         mp_int rz;
       
   435         const mp_int *a, *b;
       
   436         int i, j;
       
   437         int ai, bi, d;
       
   438 
       
   439         for (i = 0; i < 4; i++) {
       
   440                 for (j = 0; j < 4; j++) {
       
   441                         MP_DIGITS(&precomp[i][j][0]) = 0;
       
   442                         MP_DIGITS(&precomp[i][j][1]) = 0;
       
   443                 }
       
   444         }
       
   445         MP_DIGITS(&rz) = 0;
       
   446 
       
   447         ARGCHK(group != NULL, MP_BADARG);
       
   448         ARGCHK(!((k1 == NULL)
       
   449                          && ((k2 == NULL) || (px == NULL)
       
   450                                  || (py == NULL))), MP_BADARG);
       
   451 
       
   452         /* if some arguments are not defined used ECPoint_mul */
       
   453         if (k1 == NULL) {
       
   454                 return ECPoint_mul(group, k2, px, py, rx, ry);
       
   455         } else if ((k2 == NULL) || (px == NULL) || (py == NULL)) {
       
   456                 return ECPoint_mul(group, k1, NULL, NULL, rx, ry);
       
   457         }
       
   458 
       
   459         /* initialize precomputation table */
       
   460         for (i = 0; i < 4; i++) {
       
   461                 for (j = 0; j < 4; j++) {
       
   462                         MP_CHECKOK(mp_init(&precomp[i][j][0], FLAG(k1)));
       
   463                         MP_CHECKOK(mp_init(&precomp[i][j][1], FLAG(k1)));
       
   464                 }
       
   465         }
       
   466 
       
   467         /* fill precomputation table */
       
   468         /* assign {k1, k2} = {a, b} such that len(a) >= len(b) */
       
   469         if (mpl_significant_bits(k1) < mpl_significant_bits(k2)) {
       
   470                 a = k2;
       
   471                 b = k1;
       
   472                 if (group->meth->field_enc) {
       
   473                         MP_CHECKOK(group->meth->
       
   474                                            field_enc(px, &precomp[1][0][0], group->meth));
       
   475                         MP_CHECKOK(group->meth->
       
   476                                            field_enc(py, &precomp[1][0][1], group->meth));
       
   477                 } else {
       
   478                         MP_CHECKOK(mp_copy(px, &precomp[1][0][0]));
       
   479                         MP_CHECKOK(mp_copy(py, &precomp[1][0][1]));
       
   480                 }
       
   481                 MP_CHECKOK(mp_copy(&group->genx, &precomp[0][1][0]));
       
   482                 MP_CHECKOK(mp_copy(&group->geny, &precomp[0][1][1]));
       
   483         } else {
       
   484                 a = k1;
       
   485                 b = k2;
       
   486                 MP_CHECKOK(mp_copy(&group->genx, &precomp[1][0][0]));
       
   487                 MP_CHECKOK(mp_copy(&group->geny, &precomp[1][0][1]));
       
   488                 if (group->meth->field_enc) {
       
   489                         MP_CHECKOK(group->meth->
       
   490                                            field_enc(px, &precomp[0][1][0], group->meth));
       
   491                         MP_CHECKOK(group->meth->
       
   492                                            field_enc(py, &precomp[0][1][1], group->meth));
       
   493                 } else {
       
   494                         MP_CHECKOK(mp_copy(px, &precomp[0][1][0]));
       
   495                         MP_CHECKOK(mp_copy(py, &precomp[0][1][1]));
       
   496                 }
       
   497         }
       
   498         /* precompute [*][0][*] */
       
   499         mp_zero(&precomp[0][0][0]);
       
   500         mp_zero(&precomp[0][0][1]);
       
   501         MP_CHECKOK(group->
       
   502                            point_dbl(&precomp[1][0][0], &precomp[1][0][1],
       
   503                                                  &precomp[2][0][0], &precomp[2][0][1], group));
       
   504         MP_CHECKOK(group->
       
   505                            point_add(&precomp[1][0][0], &precomp[1][0][1],
       
   506                                                  &precomp[2][0][0], &precomp[2][0][1],
       
   507                                                  &precomp[3][0][0], &precomp[3][0][1], group));
       
   508         /* precompute [*][1][*] */
       
   509         for (i = 1; i < 4; i++) {
       
   510                 MP_CHECKOK(group->
       
   511                                    point_add(&precomp[0][1][0], &precomp[0][1][1],
       
   512                                                          &precomp[i][0][0], &precomp[i][0][1],
       
   513                                                          &precomp[i][1][0], &precomp[i][1][1], group));
       
   514         }
       
   515         /* precompute [*][2][*] */
       
   516         MP_CHECKOK(group->
       
   517                            point_dbl(&precomp[0][1][0], &precomp[0][1][1],
       
   518                                                  &precomp[0][2][0], &precomp[0][2][1], group));
       
   519         for (i = 1; i < 4; i++) {
       
   520                 MP_CHECKOK(group->
       
   521                                    point_add(&precomp[0][2][0], &precomp[0][2][1],
       
   522                                                          &precomp[i][0][0], &precomp[i][0][1],
       
   523                                                          &precomp[i][2][0], &precomp[i][2][1], group));
       
   524         }
       
   525         /* precompute [*][3][*] */
       
   526         MP_CHECKOK(group->
       
   527                            point_add(&precomp[0][1][0], &precomp[0][1][1],
       
   528                                                  &precomp[0][2][0], &precomp[0][2][1],
       
   529                                                  &precomp[0][3][0], &precomp[0][3][1], group));
       
   530         for (i = 1; i < 4; i++) {
       
   531                 MP_CHECKOK(group->
       
   532                                    point_add(&precomp[0][3][0], &precomp[0][3][1],
       
   533                                                          &precomp[i][0][0], &precomp[i][0][1],
       
   534                                                          &precomp[i][3][0], &precomp[i][3][1], group));
       
   535         }
       
   536 
       
   537         d = (mpl_significant_bits(a) + 1) / 2;
       
   538 
       
   539         /* R = inf */
       
   540         MP_CHECKOK(mp_init(&rz, FLAG(k1)));
       
   541         MP_CHECKOK(ec_GFp_pt_set_inf_jac(rx, ry, &rz));
       
   542 
       
   543         for (i = d - 1; i >= 0; i--) {
       
   544                 ai = MP_GET_BIT(a, 2 * i + 1);
       
   545                 ai <<= 1;
       
   546                 ai |= MP_GET_BIT(a, 2 * i);
       
   547                 bi = MP_GET_BIT(b, 2 * i + 1);
       
   548                 bi <<= 1;
       
   549                 bi |= MP_GET_BIT(b, 2 * i);
       
   550                 /* R = 2^2 * R */
       
   551                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
       
   552                 MP_CHECKOK(ec_GFp_pt_dbl_jac(rx, ry, &rz, rx, ry, &rz, group));
       
   553                 /* R = R + (ai * A + bi * B) */
       
   554                 MP_CHECKOK(ec_GFp_pt_add_jac_aff
       
   555                                    (rx, ry, &rz, &precomp[ai][bi][0], &precomp[ai][bi][1],
       
   556                                         rx, ry, &rz, group));
       
   557         }
       
   558 
       
   559         MP_CHECKOK(ec_GFp_pt_jac2aff(rx, ry, &rz, rx, ry, group));
       
   560 
       
   561         if (group->meth->field_dec) {
       
   562                 MP_CHECKOK(group->meth->field_dec(rx, rx, group->meth));
       
   563                 MP_CHECKOK(group->meth->field_dec(ry, ry, group->meth));
       
   564         }
       
   565 
       
   566   CLEANUP:
       
   567         mp_clear(&rz);
       
   568         for (i = 0; i < 4; i++) {
       
   569                 for (j = 0; j < 4; j++) {
       
   570                         mp_clear(&precomp[i][j][0]);
       
   571                         mp_clear(&precomp[i][j][1]);
       
   572                 }
       
   573         }
       
   574         return res;
       
   575 }