jdk/src/share/native/sun/security/ec/ec2_163.c
changeset 3492 e549cea58864
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/native/sun/security/ec/ec2_163.c	Tue Aug 11 16:52:26 2009 +0100
@@ -0,0 +1,281 @@
+/* *********************************************************************
+ *
+ * Sun elects to have this file available under and governed by the
+ * Mozilla Public License Version 1.1 ("MPL") (see
+ * http://www.mozilla.org/MPL/ for full license text). For the avoidance
+ * of doubt and subject to the following, Sun also elects to allow
+ * licensees to use this file under the MPL, the GNU General Public
+ * License version 2 only or the Lesser General Public License version
+ * 2.1 only. Any references to the "GNU General Public License version 2
+ * or later" or "GPL" in the following shall be construed to mean the
+ * GNU General Public License version 2 only. Any references to the "GNU
+ * Lesser General Public License version 2.1 or later" or "LGPL" in the
+ * following shall be construed to mean the GNU Lesser General Public
+ * License version 2.1 only. However, the following notice accompanied
+ * the original version of this file:
+ *
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1
+ *
+ * The contents of this file are subject to the Mozilla Public License Version
+ * 1.1 (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * Software distributed under the License is distributed on an "AS IS" basis,
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
+ * for the specific language governing rights and limitations under the
+ * License.
+ *
+ * The Original Code is the elliptic curve math library for binary polynomial field curves.
+ *
+ * The Initial Developer of the Original Code is
+ * Sun Microsystems, Inc.
+ * Portions created by the Initial Developer are Copyright (C) 2003
+ * the Initial Developer. All Rights Reserved.
+ *
+ * Contributor(s):
+ *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
+ *   Stephen Fung <fungstep@hotmail.com>, and
+ *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
+ *
+ * Alternatively, the contents of this file may be used under the terms of
+ * either the GNU General Public License Version 2 or later (the "GPL"), or
+ * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
+ * in which case the provisions of the GPL or the LGPL are applicable instead
+ * of those above. If you wish to allow use of your version of this file only
+ * under the terms of either the GPL or the LGPL, and not to allow others to
+ * use your version of this file under the terms of the MPL, indicate your
+ * decision by deleting the provisions above and replace them with the notice
+ * and other provisions required by the GPL or the LGPL. If you do not delete
+ * the provisions above, a recipient may use your version of this file under
+ * the terms of any one of the MPL, the GPL or the LGPL.
+ *
+ *********************************************************************** */
+/*
+ * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident   "%Z%%M% %I%     %E% SMI"
+
+#include "ec2.h"
+#include "mp_gf2m.h"
+#include "mp_gf2m-priv.h"
+#include "mpi.h"
+#include "mpi-priv.h"
+#ifndef _KERNEL
+#include <stdlib.h>
+#endif
+
+/* Fast reduction for polynomials over a 163-bit curve. Assumes reduction
+ * polynomial with terms {163, 7, 6, 3, 0}. */
+mp_err
+ec_GF2m_163_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+        mp_err res = MP_OKAY;
+        mp_digit *u, z;
+
+        if (a != r) {
+                MP_CHECKOK(mp_copy(a, r));
+        }
+#ifdef ECL_SIXTY_FOUR_BIT
+        if (MP_USED(r) < 6) {
+                MP_CHECKOK(s_mp_pad(r, 6));
+        }
+        u = MP_DIGITS(r);
+        MP_USED(r) = 6;
+
+        /* u[5] only has 6 significant bits */
+        z = u[5];
+        u[2] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
+        z = u[4];
+        u[2] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
+        u[1] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
+        z = u[3];
+        u[1] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
+        u[0] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
+        z = u[2] >> 35;                         /* z only has 29 significant bits */
+        u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
+        /* clear bits above 163 */
+        u[5] = u[4] = u[3] = 0;
+        u[2] ^= z << 35;
+#else
+        if (MP_USED(r) < 11) {
+                MP_CHECKOK(s_mp_pad(r, 11));
+        }
+        u = MP_DIGITS(r);
+        MP_USED(r) = 11;
+
+        /* u[11] only has 6 significant bits */
+        z = u[10];
+        u[5] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
+        u[4] ^= (z << 29);
+        z = u[9];
+        u[5] ^= (z >> 28) ^ (z >> 29);
+        u[4] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
+        u[3] ^= (z << 29);
+        z = u[8];
+        u[4] ^= (z >> 28) ^ (z >> 29);
+        u[3] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
+        u[2] ^= (z << 29);
+        z = u[7];
+        u[3] ^= (z >> 28) ^ (z >> 29);
+        u[2] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
+        u[1] ^= (z << 29);
+        z = u[6];
+        u[2] ^= (z >> 28) ^ (z >> 29);
+        u[1] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
+        u[0] ^= (z << 29);
+        z = u[5] >> 3;                          /* z only has 29 significant bits */
+        u[1] ^= (z >> 25) ^ (z >> 26);
+        u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
+        /* clear bits above 163 */
+        u[11] = u[10] = u[9] = u[8] = u[7] = u[6] = 0;
+        u[5] ^= z << 3;
+#endif
+        s_mp_clamp(r);
+
+  CLEANUP:
+        return res;
+}
+
+/* Fast squaring for polynomials over a 163-bit curve. Assumes reduction
+ * polynomial with terms {163, 7, 6, 3, 0}. */
+mp_err
+ec_GF2m_163_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+        mp_err res = MP_OKAY;
+        mp_digit *u, *v;
+
+        v = MP_DIGITS(a);
+
+#ifdef ECL_SIXTY_FOUR_BIT
+        if (MP_USED(a) < 3) {
+                return mp_bsqrmod(a, meth->irr_arr, r);
+        }
+        if (MP_USED(r) < 6) {
+                MP_CHECKOK(s_mp_pad(r, 6));
+        }
+        MP_USED(r) = 6;
+#else
+        if (MP_USED(a) < 6) {
+                return mp_bsqrmod(a, meth->irr_arr, r);
+        }
+        if (MP_USED(r) < 12) {
+                MP_CHECKOK(s_mp_pad(r, 12));
+        }
+        MP_USED(r) = 12;
+#endif
+        u = MP_DIGITS(r);
+
+#ifdef ECL_THIRTY_TWO_BIT
+        u[11] = gf2m_SQR1(v[5]);
+        u[10] = gf2m_SQR0(v[5]);
+        u[9] = gf2m_SQR1(v[4]);
+        u[8] = gf2m_SQR0(v[4]);
+        u[7] = gf2m_SQR1(v[3]);
+        u[6] = gf2m_SQR0(v[3]);
+#endif
+        u[5] = gf2m_SQR1(v[2]);
+        u[4] = gf2m_SQR0(v[2]);
+        u[3] = gf2m_SQR1(v[1]);
+        u[2] = gf2m_SQR0(v[1]);
+        u[1] = gf2m_SQR1(v[0]);
+        u[0] = gf2m_SQR0(v[0]);
+        return ec_GF2m_163_mod(r, r, meth);
+
+  CLEANUP:
+        return res;
+}
+
+/* Fast multiplication for polynomials over a 163-bit curve. Assumes
+ * reduction polynomial with terms {163, 7, 6, 3, 0}. */
+mp_err
+ec_GF2m_163_mul(const mp_int *a, const mp_int *b, mp_int *r,
+                                const GFMethod *meth)
+{
+        mp_err res = MP_OKAY;
+        mp_digit a2 = 0, a1 = 0, a0, b2 = 0, b1 = 0, b0;
+
+#ifdef ECL_THIRTY_TWO_BIT
+        mp_digit a5 = 0, a4 = 0, a3 = 0, b5 = 0, b4 = 0, b3 = 0;
+        mp_digit rm[6];
+#endif
+
+        if (a == b) {
+                return ec_GF2m_163_sqr(a, r, meth);
+        } else {
+                switch (MP_USED(a)) {
+#ifdef ECL_THIRTY_TWO_BIT
+                case 6:
+                        a5 = MP_DIGIT(a, 5);
+                case 5:
+                        a4 = MP_DIGIT(a, 4);
+                case 4:
+                        a3 = MP_DIGIT(a, 3);
+#endif
+                case 3:
+                        a2 = MP_DIGIT(a, 2);
+                case 2:
+                        a1 = MP_DIGIT(a, 1);
+                default:
+                        a0 = MP_DIGIT(a, 0);
+                }
+                switch (MP_USED(b)) {
+#ifdef ECL_THIRTY_TWO_BIT
+                case 6:
+                        b5 = MP_DIGIT(b, 5);
+                case 5:
+                        b4 = MP_DIGIT(b, 4);
+                case 4:
+                        b3 = MP_DIGIT(b, 3);
+#endif
+                case 3:
+                        b2 = MP_DIGIT(b, 2);
+                case 2:
+                        b1 = MP_DIGIT(b, 1);
+                default:
+                        b0 = MP_DIGIT(b, 0);
+                }
+#ifdef ECL_SIXTY_FOUR_BIT
+                MP_CHECKOK(s_mp_pad(r, 6));
+                s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
+                MP_USED(r) = 6;
+                s_mp_clamp(r);
+#else
+                MP_CHECKOK(s_mp_pad(r, 12));
+                s_bmul_3x3(MP_DIGITS(r) + 6, a5, a4, a3, b5, b4, b3);
+                s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
+                s_bmul_3x3(rm, a5 ^ a2, a4 ^ a1, a3 ^ a0, b5 ^ b2, b4 ^ b1,
+                                   b3 ^ b0);
+                rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 11);
+                rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 10);
+                rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 9);
+                rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 8);
+                rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 7);
+                rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 6);
+                MP_DIGIT(r, 8) ^= rm[5];
+                MP_DIGIT(r, 7) ^= rm[4];
+                MP_DIGIT(r, 6) ^= rm[3];
+                MP_DIGIT(r, 5) ^= rm[2];
+                MP_DIGIT(r, 4) ^= rm[1];
+                MP_DIGIT(r, 3) ^= rm[0];
+                MP_USED(r) = 12;
+                s_mp_clamp(r);
+#endif
+                return ec_GF2m_163_mod(r, r, meth);
+        }
+
+  CLEANUP:
+        return res;
+}
+
+/* Wire in fast field arithmetic for 163-bit curves. */
+mp_err
+ec_group_set_gf2m163(ECGroup *group, ECCurveName name)
+{
+        group->meth->field_mod = &ec_GF2m_163_mod;
+        group->meth->field_mul = &ec_GF2m_163_mul;
+        group->meth->field_sqr = &ec_GF2m_163_sqr;
+        return MP_OKAY;
+}