--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/native/sun/security/ec/ec2_163.c Tue Aug 11 16:52:26 2009 +0100
@@ -0,0 +1,281 @@
+/* *********************************************************************
+ *
+ * Sun elects to have this file available under and governed by the
+ * Mozilla Public License Version 1.1 ("MPL") (see
+ * http://www.mozilla.org/MPL/ for full license text). For the avoidance
+ * of doubt and subject to the following, Sun also elects to allow
+ * licensees to use this file under the MPL, the GNU General Public
+ * License version 2 only or the Lesser General Public License version
+ * 2.1 only. Any references to the "GNU General Public License version 2
+ * or later" or "GPL" in the following shall be construed to mean the
+ * GNU General Public License version 2 only. Any references to the "GNU
+ * Lesser General Public License version 2.1 or later" or "LGPL" in the
+ * following shall be construed to mean the GNU Lesser General Public
+ * License version 2.1 only. However, the following notice accompanied
+ * the original version of this file:
+ *
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1
+ *
+ * The contents of this file are subject to the Mozilla Public License Version
+ * 1.1 (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ * http://www.mozilla.org/MPL/
+ *
+ * Software distributed under the License is distributed on an "AS IS" basis,
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
+ * for the specific language governing rights and limitations under the
+ * License.
+ *
+ * The Original Code is the elliptic curve math library for binary polynomial field curves.
+ *
+ * The Initial Developer of the Original Code is
+ * Sun Microsystems, Inc.
+ * Portions created by the Initial Developer are Copyright (C) 2003
+ * the Initial Developer. All Rights Reserved.
+ *
+ * Contributor(s):
+ * Sheueling Chang-Shantz <sheueling.chang@sun.com>,
+ * Stephen Fung <fungstep@hotmail.com>, and
+ * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
+ *
+ * Alternatively, the contents of this file may be used under the terms of
+ * either the GNU General Public License Version 2 or later (the "GPL"), or
+ * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
+ * in which case the provisions of the GPL or the LGPL are applicable instead
+ * of those above. If you wish to allow use of your version of this file only
+ * under the terms of either the GPL or the LGPL, and not to allow others to
+ * use your version of this file under the terms of the MPL, indicate your
+ * decision by deleting the provisions above and replace them with the notice
+ * and other provisions required by the GPL or the LGPL. If you do not delete
+ * the provisions above, a recipient may use your version of this file under
+ * the terms of any one of the MPL, the GPL or the LGPL.
+ *
+ *********************************************************************** */
+/*
+ * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident "%Z%%M% %I% %E% SMI"
+
+#include "ec2.h"
+#include "mp_gf2m.h"
+#include "mp_gf2m-priv.h"
+#include "mpi.h"
+#include "mpi-priv.h"
+#ifndef _KERNEL
+#include <stdlib.h>
+#endif
+
+/* Fast reduction for polynomials over a 163-bit curve. Assumes reduction
+ * polynomial with terms {163, 7, 6, 3, 0}. */
+mp_err
+ec_GF2m_163_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit *u, z;
+
+ if (a != r) {
+ MP_CHECKOK(mp_copy(a, r));
+ }
+#ifdef ECL_SIXTY_FOUR_BIT
+ if (MP_USED(r) < 6) {
+ MP_CHECKOK(s_mp_pad(r, 6));
+ }
+ u = MP_DIGITS(r);
+ MP_USED(r) = 6;
+
+ /* u[5] only has 6 significant bits */
+ z = u[5];
+ u[2] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
+ z = u[4];
+ u[2] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
+ u[1] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
+ z = u[3];
+ u[1] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
+ u[0] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
+ z = u[2] >> 35; /* z only has 29 significant bits */
+ u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
+ /* clear bits above 163 */
+ u[5] = u[4] = u[3] = 0;
+ u[2] ^= z << 35;
+#else
+ if (MP_USED(r) < 11) {
+ MP_CHECKOK(s_mp_pad(r, 11));
+ }
+ u = MP_DIGITS(r);
+ MP_USED(r) = 11;
+
+ /* u[11] only has 6 significant bits */
+ z = u[10];
+ u[5] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
+ u[4] ^= (z << 29);
+ z = u[9];
+ u[5] ^= (z >> 28) ^ (z >> 29);
+ u[4] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
+ u[3] ^= (z << 29);
+ z = u[8];
+ u[4] ^= (z >> 28) ^ (z >> 29);
+ u[3] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
+ u[2] ^= (z << 29);
+ z = u[7];
+ u[3] ^= (z >> 28) ^ (z >> 29);
+ u[2] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
+ u[1] ^= (z << 29);
+ z = u[6];
+ u[2] ^= (z >> 28) ^ (z >> 29);
+ u[1] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
+ u[0] ^= (z << 29);
+ z = u[5] >> 3; /* z only has 29 significant bits */
+ u[1] ^= (z >> 25) ^ (z >> 26);
+ u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
+ /* clear bits above 163 */
+ u[11] = u[10] = u[9] = u[8] = u[7] = u[6] = 0;
+ u[5] ^= z << 3;
+#endif
+ s_mp_clamp(r);
+
+ CLEANUP:
+ return res;
+}
+
+/* Fast squaring for polynomials over a 163-bit curve. Assumes reduction
+ * polynomial with terms {163, 7, 6, 3, 0}. */
+mp_err
+ec_GF2m_163_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit *u, *v;
+
+ v = MP_DIGITS(a);
+
+#ifdef ECL_SIXTY_FOUR_BIT
+ if (MP_USED(a) < 3) {
+ return mp_bsqrmod(a, meth->irr_arr, r);
+ }
+ if (MP_USED(r) < 6) {
+ MP_CHECKOK(s_mp_pad(r, 6));
+ }
+ MP_USED(r) = 6;
+#else
+ if (MP_USED(a) < 6) {
+ return mp_bsqrmod(a, meth->irr_arr, r);
+ }
+ if (MP_USED(r) < 12) {
+ MP_CHECKOK(s_mp_pad(r, 12));
+ }
+ MP_USED(r) = 12;
+#endif
+ u = MP_DIGITS(r);
+
+#ifdef ECL_THIRTY_TWO_BIT
+ u[11] = gf2m_SQR1(v[5]);
+ u[10] = gf2m_SQR0(v[5]);
+ u[9] = gf2m_SQR1(v[4]);
+ u[8] = gf2m_SQR0(v[4]);
+ u[7] = gf2m_SQR1(v[3]);
+ u[6] = gf2m_SQR0(v[3]);
+#endif
+ u[5] = gf2m_SQR1(v[2]);
+ u[4] = gf2m_SQR0(v[2]);
+ u[3] = gf2m_SQR1(v[1]);
+ u[2] = gf2m_SQR0(v[1]);
+ u[1] = gf2m_SQR1(v[0]);
+ u[0] = gf2m_SQR0(v[0]);
+ return ec_GF2m_163_mod(r, r, meth);
+
+ CLEANUP:
+ return res;
+}
+
+/* Fast multiplication for polynomials over a 163-bit curve. Assumes
+ * reduction polynomial with terms {163, 7, 6, 3, 0}. */
+mp_err
+ec_GF2m_163_mul(const mp_int *a, const mp_int *b, mp_int *r,
+ const GFMethod *meth)
+{
+ mp_err res = MP_OKAY;
+ mp_digit a2 = 0, a1 = 0, a0, b2 = 0, b1 = 0, b0;
+
+#ifdef ECL_THIRTY_TWO_BIT
+ mp_digit a5 = 0, a4 = 0, a3 = 0, b5 = 0, b4 = 0, b3 = 0;
+ mp_digit rm[6];
+#endif
+
+ if (a == b) {
+ return ec_GF2m_163_sqr(a, r, meth);
+ } else {
+ switch (MP_USED(a)) {
+#ifdef ECL_THIRTY_TWO_BIT
+ case 6:
+ a5 = MP_DIGIT(a, 5);
+ case 5:
+ a4 = MP_DIGIT(a, 4);
+ case 4:
+ a3 = MP_DIGIT(a, 3);
+#endif
+ case 3:
+ a2 = MP_DIGIT(a, 2);
+ case 2:
+ a1 = MP_DIGIT(a, 1);
+ default:
+ a0 = MP_DIGIT(a, 0);
+ }
+ switch (MP_USED(b)) {
+#ifdef ECL_THIRTY_TWO_BIT
+ case 6:
+ b5 = MP_DIGIT(b, 5);
+ case 5:
+ b4 = MP_DIGIT(b, 4);
+ case 4:
+ b3 = MP_DIGIT(b, 3);
+#endif
+ case 3:
+ b2 = MP_DIGIT(b, 2);
+ case 2:
+ b1 = MP_DIGIT(b, 1);
+ default:
+ b0 = MP_DIGIT(b, 0);
+ }
+#ifdef ECL_SIXTY_FOUR_BIT
+ MP_CHECKOK(s_mp_pad(r, 6));
+ s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
+ MP_USED(r) = 6;
+ s_mp_clamp(r);
+#else
+ MP_CHECKOK(s_mp_pad(r, 12));
+ s_bmul_3x3(MP_DIGITS(r) + 6, a5, a4, a3, b5, b4, b3);
+ s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
+ s_bmul_3x3(rm, a5 ^ a2, a4 ^ a1, a3 ^ a0, b5 ^ b2, b4 ^ b1,
+ b3 ^ b0);
+ rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 11);
+ rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 10);
+ rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 9);
+ rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 8);
+ rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 7);
+ rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 6);
+ MP_DIGIT(r, 8) ^= rm[5];
+ MP_DIGIT(r, 7) ^= rm[4];
+ MP_DIGIT(r, 6) ^= rm[3];
+ MP_DIGIT(r, 5) ^= rm[2];
+ MP_DIGIT(r, 4) ^= rm[1];
+ MP_DIGIT(r, 3) ^= rm[0];
+ MP_USED(r) = 12;
+ s_mp_clamp(r);
+#endif
+ return ec_GF2m_163_mod(r, r, meth);
+ }
+
+ CLEANUP:
+ return res;
+}
+
+/* Wire in fast field arithmetic for 163-bit curves. */
+mp_err
+ec_group_set_gf2m163(ECGroup *group, ECCurveName name)
+{
+ group->meth->field_mod = &ec_GF2m_163_mod;
+ group->meth->field_mul = &ec_GF2m_163_mul;
+ group->meth->field_sqr = &ec_GF2m_163_sqr;
+ return MP_OKAY;
+}