jdk/src/share/native/sun/security/ec/ec2_163.c
changeset 3492 e549cea58864
equal deleted inserted replaced
3480:c197e38bf15a 3492:e549cea58864
       
     1 /* *********************************************************************
       
     2  *
       
     3  * Sun elects to have this file available under and governed by the
       
     4  * Mozilla Public License Version 1.1 ("MPL") (see
       
     5  * http://www.mozilla.org/MPL/ for full license text). For the avoidance
       
     6  * of doubt and subject to the following, Sun also elects to allow
       
     7  * licensees to use this file under the MPL, the GNU General Public
       
     8  * License version 2 only or the Lesser General Public License version
       
     9  * 2.1 only. Any references to the "GNU General Public License version 2
       
    10  * or later" or "GPL" in the following shall be construed to mean the
       
    11  * GNU General Public License version 2 only. Any references to the "GNU
       
    12  * Lesser General Public License version 2.1 or later" or "LGPL" in the
       
    13  * following shall be construed to mean the GNU Lesser General Public
       
    14  * License version 2.1 only. However, the following notice accompanied
       
    15  * the original version of this file:
       
    16  *
       
    17  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
       
    18  *
       
    19  * The contents of this file are subject to the Mozilla Public License Version
       
    20  * 1.1 (the "License"); you may not use this file except in compliance with
       
    21  * the License. You may obtain a copy of the License at
       
    22  * http://www.mozilla.org/MPL/
       
    23  *
       
    24  * Software distributed under the License is distributed on an "AS IS" basis,
       
    25  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
       
    26  * for the specific language governing rights and limitations under the
       
    27  * License.
       
    28  *
       
    29  * The Original Code is the elliptic curve math library for binary polynomial field curves.
       
    30  *
       
    31  * The Initial Developer of the Original Code is
       
    32  * Sun Microsystems, Inc.
       
    33  * Portions created by the Initial Developer are Copyright (C) 2003
       
    34  * the Initial Developer. All Rights Reserved.
       
    35  *
       
    36  * Contributor(s):
       
    37  *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
       
    38  *   Stephen Fung <fungstep@hotmail.com>, and
       
    39  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
       
    40  *
       
    41  * Alternatively, the contents of this file may be used under the terms of
       
    42  * either the GNU General Public License Version 2 or later (the "GPL"), or
       
    43  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
       
    44  * in which case the provisions of the GPL or the LGPL are applicable instead
       
    45  * of those above. If you wish to allow use of your version of this file only
       
    46  * under the terms of either the GPL or the LGPL, and not to allow others to
       
    47  * use your version of this file under the terms of the MPL, indicate your
       
    48  * decision by deleting the provisions above and replace them with the notice
       
    49  * and other provisions required by the GPL or the LGPL. If you do not delete
       
    50  * the provisions above, a recipient may use your version of this file under
       
    51  * the terms of any one of the MPL, the GPL or the LGPL.
       
    52  *
       
    53  *********************************************************************** */
       
    54 /*
       
    55  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
       
    56  * Use is subject to license terms.
       
    57  */
       
    58 
       
    59 #pragma ident   "%Z%%M% %I%     %E% SMI"
       
    60 
       
    61 #include "ec2.h"
       
    62 #include "mp_gf2m.h"
       
    63 #include "mp_gf2m-priv.h"
       
    64 #include "mpi.h"
       
    65 #include "mpi-priv.h"
       
    66 #ifndef _KERNEL
       
    67 #include <stdlib.h>
       
    68 #endif
       
    69 
       
    70 /* Fast reduction for polynomials over a 163-bit curve. Assumes reduction
       
    71  * polynomial with terms {163, 7, 6, 3, 0}. */
       
    72 mp_err
       
    73 ec_GF2m_163_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
       
    74 {
       
    75         mp_err res = MP_OKAY;
       
    76         mp_digit *u, z;
       
    77 
       
    78         if (a != r) {
       
    79                 MP_CHECKOK(mp_copy(a, r));
       
    80         }
       
    81 #ifdef ECL_SIXTY_FOUR_BIT
       
    82         if (MP_USED(r) < 6) {
       
    83                 MP_CHECKOK(s_mp_pad(r, 6));
       
    84         }
       
    85         u = MP_DIGITS(r);
       
    86         MP_USED(r) = 6;
       
    87 
       
    88         /* u[5] only has 6 significant bits */
       
    89         z = u[5];
       
    90         u[2] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
       
    91         z = u[4];
       
    92         u[2] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
       
    93         u[1] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
       
    94         z = u[3];
       
    95         u[1] ^= (z >> 28) ^ (z >> 29) ^ (z >> 32) ^ (z >> 35);
       
    96         u[0] ^= (z << 36) ^ (z << 35) ^ (z << 32) ^ (z << 29);
       
    97         z = u[2] >> 35;                         /* z only has 29 significant bits */
       
    98         u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
       
    99         /* clear bits above 163 */
       
   100         u[5] = u[4] = u[3] = 0;
       
   101         u[2] ^= z << 35;
       
   102 #else
       
   103         if (MP_USED(r) < 11) {
       
   104                 MP_CHECKOK(s_mp_pad(r, 11));
       
   105         }
       
   106         u = MP_DIGITS(r);
       
   107         MP_USED(r) = 11;
       
   108 
       
   109         /* u[11] only has 6 significant bits */
       
   110         z = u[10];
       
   111         u[5] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
       
   112         u[4] ^= (z << 29);
       
   113         z = u[9];
       
   114         u[5] ^= (z >> 28) ^ (z >> 29);
       
   115         u[4] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
       
   116         u[3] ^= (z << 29);
       
   117         z = u[8];
       
   118         u[4] ^= (z >> 28) ^ (z >> 29);
       
   119         u[3] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
       
   120         u[2] ^= (z << 29);
       
   121         z = u[7];
       
   122         u[3] ^= (z >> 28) ^ (z >> 29);
       
   123         u[2] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
       
   124         u[1] ^= (z << 29);
       
   125         z = u[6];
       
   126         u[2] ^= (z >> 28) ^ (z >> 29);
       
   127         u[1] ^= (z << 4) ^ (z << 3) ^ z ^ (z >> 3);
       
   128         u[0] ^= (z << 29);
       
   129         z = u[5] >> 3;                          /* z only has 29 significant bits */
       
   130         u[1] ^= (z >> 25) ^ (z >> 26);
       
   131         u[0] ^= (z << 7) ^ (z << 6) ^ (z << 3) ^ z;
       
   132         /* clear bits above 163 */
       
   133         u[11] = u[10] = u[9] = u[8] = u[7] = u[6] = 0;
       
   134         u[5] ^= z << 3;
       
   135 #endif
       
   136         s_mp_clamp(r);
       
   137 
       
   138   CLEANUP:
       
   139         return res;
       
   140 }
       
   141 
       
   142 /* Fast squaring for polynomials over a 163-bit curve. Assumes reduction
       
   143  * polynomial with terms {163, 7, 6, 3, 0}. */
       
   144 mp_err
       
   145 ec_GF2m_163_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
       
   146 {
       
   147         mp_err res = MP_OKAY;
       
   148         mp_digit *u, *v;
       
   149 
       
   150         v = MP_DIGITS(a);
       
   151 
       
   152 #ifdef ECL_SIXTY_FOUR_BIT
       
   153         if (MP_USED(a) < 3) {
       
   154                 return mp_bsqrmod(a, meth->irr_arr, r);
       
   155         }
       
   156         if (MP_USED(r) < 6) {
       
   157                 MP_CHECKOK(s_mp_pad(r, 6));
       
   158         }
       
   159         MP_USED(r) = 6;
       
   160 #else
       
   161         if (MP_USED(a) < 6) {
       
   162                 return mp_bsqrmod(a, meth->irr_arr, r);
       
   163         }
       
   164         if (MP_USED(r) < 12) {
       
   165                 MP_CHECKOK(s_mp_pad(r, 12));
       
   166         }
       
   167         MP_USED(r) = 12;
       
   168 #endif
       
   169         u = MP_DIGITS(r);
       
   170 
       
   171 #ifdef ECL_THIRTY_TWO_BIT
       
   172         u[11] = gf2m_SQR1(v[5]);
       
   173         u[10] = gf2m_SQR0(v[5]);
       
   174         u[9] = gf2m_SQR1(v[4]);
       
   175         u[8] = gf2m_SQR0(v[4]);
       
   176         u[7] = gf2m_SQR1(v[3]);
       
   177         u[6] = gf2m_SQR0(v[3]);
       
   178 #endif
       
   179         u[5] = gf2m_SQR1(v[2]);
       
   180         u[4] = gf2m_SQR0(v[2]);
       
   181         u[3] = gf2m_SQR1(v[1]);
       
   182         u[2] = gf2m_SQR0(v[1]);
       
   183         u[1] = gf2m_SQR1(v[0]);
       
   184         u[0] = gf2m_SQR0(v[0]);
       
   185         return ec_GF2m_163_mod(r, r, meth);
       
   186 
       
   187   CLEANUP:
       
   188         return res;
       
   189 }
       
   190 
       
   191 /* Fast multiplication for polynomials over a 163-bit curve. Assumes
       
   192  * reduction polynomial with terms {163, 7, 6, 3, 0}. */
       
   193 mp_err
       
   194 ec_GF2m_163_mul(const mp_int *a, const mp_int *b, mp_int *r,
       
   195                                 const GFMethod *meth)
       
   196 {
       
   197         mp_err res = MP_OKAY;
       
   198         mp_digit a2 = 0, a1 = 0, a0, b2 = 0, b1 = 0, b0;
       
   199 
       
   200 #ifdef ECL_THIRTY_TWO_BIT
       
   201         mp_digit a5 = 0, a4 = 0, a3 = 0, b5 = 0, b4 = 0, b3 = 0;
       
   202         mp_digit rm[6];
       
   203 #endif
       
   204 
       
   205         if (a == b) {
       
   206                 return ec_GF2m_163_sqr(a, r, meth);
       
   207         } else {
       
   208                 switch (MP_USED(a)) {
       
   209 #ifdef ECL_THIRTY_TWO_BIT
       
   210                 case 6:
       
   211                         a5 = MP_DIGIT(a, 5);
       
   212                 case 5:
       
   213                         a4 = MP_DIGIT(a, 4);
       
   214                 case 4:
       
   215                         a3 = MP_DIGIT(a, 3);
       
   216 #endif
       
   217                 case 3:
       
   218                         a2 = MP_DIGIT(a, 2);
       
   219                 case 2:
       
   220                         a1 = MP_DIGIT(a, 1);
       
   221                 default:
       
   222                         a0 = MP_DIGIT(a, 0);
       
   223                 }
       
   224                 switch (MP_USED(b)) {
       
   225 #ifdef ECL_THIRTY_TWO_BIT
       
   226                 case 6:
       
   227                         b5 = MP_DIGIT(b, 5);
       
   228                 case 5:
       
   229                         b4 = MP_DIGIT(b, 4);
       
   230                 case 4:
       
   231                         b3 = MP_DIGIT(b, 3);
       
   232 #endif
       
   233                 case 3:
       
   234                         b2 = MP_DIGIT(b, 2);
       
   235                 case 2:
       
   236                         b1 = MP_DIGIT(b, 1);
       
   237                 default:
       
   238                         b0 = MP_DIGIT(b, 0);
       
   239                 }
       
   240 #ifdef ECL_SIXTY_FOUR_BIT
       
   241                 MP_CHECKOK(s_mp_pad(r, 6));
       
   242                 s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
       
   243                 MP_USED(r) = 6;
       
   244                 s_mp_clamp(r);
       
   245 #else
       
   246                 MP_CHECKOK(s_mp_pad(r, 12));
       
   247                 s_bmul_3x3(MP_DIGITS(r) + 6, a5, a4, a3, b5, b4, b3);
       
   248                 s_bmul_3x3(MP_DIGITS(r), a2, a1, a0, b2, b1, b0);
       
   249                 s_bmul_3x3(rm, a5 ^ a2, a4 ^ a1, a3 ^ a0, b5 ^ b2, b4 ^ b1,
       
   250                                    b3 ^ b0);
       
   251                 rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 11);
       
   252                 rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 10);
       
   253                 rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 9);
       
   254                 rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 8);
       
   255                 rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 7);
       
   256                 rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 6);
       
   257                 MP_DIGIT(r, 8) ^= rm[5];
       
   258                 MP_DIGIT(r, 7) ^= rm[4];
       
   259                 MP_DIGIT(r, 6) ^= rm[3];
       
   260                 MP_DIGIT(r, 5) ^= rm[2];
       
   261                 MP_DIGIT(r, 4) ^= rm[1];
       
   262                 MP_DIGIT(r, 3) ^= rm[0];
       
   263                 MP_USED(r) = 12;
       
   264                 s_mp_clamp(r);
       
   265 #endif
       
   266                 return ec_GF2m_163_mod(r, r, meth);
       
   267         }
       
   268 
       
   269   CLEANUP:
       
   270         return res;
       
   271 }
       
   272 
       
   273 /* Wire in fast field arithmetic for 163-bit curves. */
       
   274 mp_err
       
   275 ec_group_set_gf2m163(ECGroup *group, ECCurveName name)
       
   276 {
       
   277         group->meth->field_mod = &ec_GF2m_163_mod;
       
   278         group->meth->field_mul = &ec_GF2m_163_mul;
       
   279         group->meth->field_sqr = &ec_GF2m_163_sqr;
       
   280         return MP_OKAY;
       
   281 }