hotspot/src/share/vm/runtime/synchronizer.cpp
changeset 6975 dc9b63952682
parent 5920 8fdbb85e62d3
child 7397 5b173b4ca846
--- a/hotspot/src/share/vm/runtime/synchronizer.cpp	Mon Oct 18 09:33:24 2010 -0700
+++ b/hotspot/src/share/vm/runtime/synchronizer.cpp	Fri Oct 22 15:59:34 2010 -0400
@@ -32,15 +32,12 @@
   #define ATTR
 #endif
 
-// Native markword accessors for synchronization and hashCode().
-//
 // The "core" versions of monitor enter and exit reside in this file.
 // The interpreter and compilers contain specialized transliterated
 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
 // for instance.  If you make changes here, make sure to modify the
 // interpreter, and both C1 and C2 fast-path inline locking code emission.
 //
-// TODO: merge the objectMonitor and synchronizer classes.
 //
 // -----------------------------------------------------------------------------
 
@@ -53,16 +50,6 @@
   jlong, uintptr_t, char*, int, long);
 HS_DTRACE_PROBE_DECL4(hotspot, monitor__waited,
   jlong, uintptr_t, char*, int);
-HS_DTRACE_PROBE_DECL4(hotspot, monitor__notify,
-  jlong, uintptr_t, char*, int);
-HS_DTRACE_PROBE_DECL4(hotspot, monitor__notifyAll,
-  jlong, uintptr_t, char*, int);
-HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__enter,
-  jlong, uintptr_t, char*, int);
-HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__entered,
-  jlong, uintptr_t, char*, int);
-HS_DTRACE_PROBE_DECL4(hotspot, monitor__contended__exit,
-  jlong, uintptr_t, char*, int);
 
 #define DTRACE_MONITOR_PROBE_COMMON(klassOop, thread)                      \
   char* bytes = NULL;                                                      \
@@ -99,61 +86,300 @@
 
 #endif // ndef DTRACE_ENABLED
 
-// ObjectWaiter serves as a "proxy" or surrogate thread.
-// TODO-FIXME: Eliminate ObjectWaiter and use the thread-specific
-// ParkEvent instead.  Beware, however, that the JVMTI code
-// knows about ObjectWaiters, so we'll have to reconcile that code.
-// See next_waiter(), first_waiter(), etc.
+// This exists only as a workaround of dtrace bug 6254741
+int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
+  DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
+  return 0;
+}
+
+#define NINFLATIONLOCKS 256
+static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
+
+ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
+ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
+ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
+int ObjectSynchronizer::gOmInUseCount = 0;
+static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
+static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
+static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
+#define CHAINMARKER ((oop)-1)
+
+// -----------------------------------------------------------------------------
+//  Fast Monitor Enter/Exit
+// This the fast monitor enter. The interpreter and compiler use
+// some assembly copies of this code. Make sure update those code
+// if the following function is changed. The implementation is
+// extremely sensitive to race condition. Be careful.
+
+void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
+ if (UseBiasedLocking) {
+    if (!SafepointSynchronize::is_at_safepoint()) {
+      BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
+      if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
+        return;
+      }
+    } else {
+      assert(!attempt_rebias, "can not rebias toward VM thread");
+      BiasedLocking::revoke_at_safepoint(obj);
+    }
+    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
+ }
+
+ slow_enter (obj, lock, THREAD) ;
+}
+
+void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
+  assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
+  // if displaced header is null, the previous enter is recursive enter, no-op
+  markOop dhw = lock->displaced_header();
+  markOop mark ;
+  if (dhw == NULL) {
+     // Recursive stack-lock.
+     // Diagnostics -- Could be: stack-locked, inflating, inflated.
+     mark = object->mark() ;
+     assert (!mark->is_neutral(), "invariant") ;
+     if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
+        assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
+     }
+     if (mark->has_monitor()) {
+        ObjectMonitor * m = mark->monitor() ;
+        assert(((oop)(m->object()))->mark() == mark, "invariant") ;
+        assert(m->is_entered(THREAD), "invariant") ;
+     }
+     return ;
+  }
+
+  mark = object->mark() ;
 
-class ObjectWaiter : public StackObj {
- public:
-  enum TStates { TS_UNDEF, TS_READY, TS_RUN, TS_WAIT, TS_ENTER, TS_CXQ } ;
-  enum Sorted  { PREPEND, APPEND, SORTED } ;
-  ObjectWaiter * volatile _next;
-  ObjectWaiter * volatile _prev;
-  Thread*       _thread;
-  ParkEvent *   _event;
-  volatile int  _notified ;
-  volatile TStates TState ;
-  Sorted        _Sorted ;           // List placement disposition
-  bool          _active ;           // Contention monitoring is enabled
- public:
-  ObjectWaiter(Thread* thread) {
-    _next     = NULL;
-    _prev     = NULL;
-    _notified = 0;
-    TState    = TS_RUN ;
-    _thread   = thread;
-    _event    = thread->_ParkEvent ;
-    _active   = false;
-    assert (_event != NULL, "invariant") ;
+  // If the object is stack-locked by the current thread, try to
+  // swing the displaced header from the box back to the mark.
+  if (mark == (markOop) lock) {
+     assert (dhw->is_neutral(), "invariant") ;
+     if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
+        TEVENT (fast_exit: release stacklock) ;
+        return;
+     }
+  }
+
+  ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
+}
+
+// -----------------------------------------------------------------------------
+// Interpreter/Compiler Slow Case
+// This routine is used to handle interpreter/compiler slow case
+// We don't need to use fast path here, because it must have been
+// failed in the interpreter/compiler code.
+void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
+  markOop mark = obj->mark();
+  assert(!mark->has_bias_pattern(), "should not see bias pattern here");
+
+  if (mark->is_neutral()) {
+    // Anticipate successful CAS -- the ST of the displaced mark must
+    // be visible <= the ST performed by the CAS.
+    lock->set_displaced_header(mark);
+    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
+      TEVENT (slow_enter: release stacklock) ;
+      return ;
+    }
+    // Fall through to inflate() ...
+  } else
+  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
+    assert(lock != mark->locker(), "must not re-lock the same lock");
+    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
+    lock->set_displaced_header(NULL);
+    return;
+  }
+
+#if 0
+  // The following optimization isn't particularly useful.
+  if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
+    lock->set_displaced_header (NULL) ;
+    return ;
+  }
+#endif
+
+  // The object header will never be displaced to this lock,
+  // so it does not matter what the value is, except that it
+  // must be non-zero to avoid looking like a re-entrant lock,
+  // and must not look locked either.
+  lock->set_displaced_header(markOopDesc::unused_mark());
+  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
+}
+
+// This routine is used to handle interpreter/compiler slow case
+// We don't need to use fast path here, because it must have
+// failed in the interpreter/compiler code. Simply use the heavy
+// weight monitor should be ok, unless someone find otherwise.
+void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
+  fast_exit (object, lock, THREAD) ;
+}
+
+// -----------------------------------------------------------------------------
+// Class Loader  support to workaround deadlocks on the class loader lock objects
+// Also used by GC
+// complete_exit()/reenter() are used to wait on a nested lock
+// i.e. to give up an outer lock completely and then re-enter
+// Used when holding nested locks - lock acquisition order: lock1 then lock2
+//  1) complete_exit lock1 - saving recursion count
+//  2) wait on lock2
+//  3) when notified on lock2, unlock lock2
+//  4) reenter lock1 with original recursion count
+//  5) lock lock2
+// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
+intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
+  TEVENT (complete_exit) ;
+  if (UseBiasedLocking) {
+    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
+    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   }
 
-  void wait_reenter_begin(ObjectMonitor *mon) {
-    JavaThread *jt = (JavaThread *)this->_thread;
-    _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(jt, mon);
+  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
+
+  return monitor->complete_exit(THREAD);
+}
+
+// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
+void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
+  TEVENT (reenter) ;
+  if (UseBiasedLocking) {
+    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
+    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
+  }
+
+  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
+
+  monitor->reenter(recursion, THREAD);
+}
+// -----------------------------------------------------------------------------
+// JNI locks on java objects
+// NOTE: must use heavy weight monitor to handle jni monitor enter
+void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
+  // the current locking is from JNI instead of Java code
+  TEVENT (jni_enter) ;
+  if (UseBiasedLocking) {
+    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
+    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
+  }
+  THREAD->set_current_pending_monitor_is_from_java(false);
+  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
+  THREAD->set_current_pending_monitor_is_from_java(true);
+}
+
+// NOTE: must use heavy weight monitor to handle jni monitor enter
+bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
+  if (UseBiasedLocking) {
+    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
+    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
   }
 
-  void wait_reenter_end(ObjectMonitor *mon) {
-    JavaThread *jt = (JavaThread *)this->_thread;
-    JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(jt, _active);
+  ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
+  return monitor->try_enter(THREAD);
+}
+
+
+// NOTE: must use heavy weight monitor to handle jni monitor exit
+void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
+  TEVENT (jni_exit) ;
+  if (UseBiasedLocking) {
+    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
+  }
+  assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
+
+  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
+  // If this thread has locked the object, exit the monitor.  Note:  can't use
+  // monitor->check(CHECK); must exit even if an exception is pending.
+  if (monitor->check(THREAD)) {
+     monitor->exit(THREAD);
   }
-};
+}
+
+// -----------------------------------------------------------------------------
+// Internal VM locks on java objects
+// standard constructor, allows locking failures
+ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
+  _dolock = doLock;
+  _thread = thread;
+  debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
+  _obj = obj;
 
-enum ManifestConstants {
-    ClearResponsibleAtSTW   = 0,
-    MaximumRecheckInterval  = 1000
-} ;
+  if (_dolock) {
+    TEVENT (ObjectLocker) ;
+
+    ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
+  }
+}
+
+ObjectLocker::~ObjectLocker() {
+  if (_dolock) {
+    ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
+  }
+}
 
 
-#undef TEVENT
-#define TEVENT(nom) {if (SyncVerbose) FEVENT(nom); }
+// -----------------------------------------------------------------------------
+//  Wait/Notify/NotifyAll
+// NOTE: must use heavy weight monitor to handle wait()
+void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
+  if (UseBiasedLocking) {
+    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
+    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
+  }
+  if (millis < 0) {
+    TEVENT (wait - throw IAX) ;
+    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
+  }
+  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
+  DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
+  monitor->wait(millis, true, THREAD);
+
+  /* This dummy call is in place to get around dtrace bug 6254741.  Once
+     that's fixed we can uncomment the following line and remove the call */
+  // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
+  dtrace_waited_probe(monitor, obj, THREAD);
+}
 
-#define FEVENT(nom) { static volatile int ctr = 0 ; int v = ++ctr ; if ((v & (v-1)) == 0) { ::printf (#nom " : %d \n", v); ::fflush(stdout); }}
+void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
+  if (UseBiasedLocking) {
+    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
+    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
+  }
+  if (millis < 0) {
+    TEVENT (wait - throw IAX) ;
+    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
+  }
+  ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
+}
+
+void ObjectSynchronizer::notify(Handle obj, TRAPS) {
+ if (UseBiasedLocking) {
+    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
+    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
+  }
 
-#undef  TEVENT
-#define TEVENT(nom) {;}
+  markOop mark = obj->mark();
+  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
+    return;
+  }
+  ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
+}
 
+// NOTE: see comment of notify()
+void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
+  if (UseBiasedLocking) {
+    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
+    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
+  }
+
+  markOop mark = obj->mark();
+  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
+    return;
+  }
+  ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
+}
+
+// -----------------------------------------------------------------------------
+// Hash Code handling
+//
 // Performance concern:
 // OrderAccess::storestore() calls release() which STs 0 into the global volatile
 // OrderAccess::Dummy variable.  This store is unnecessary for correctness.
@@ -188,44 +414,73 @@
 static int MonitorScavengeThreshold = 1000000 ;
 static volatile int ForceMonitorScavenge = 0 ; // Scavenge required and pending
 
-
-// Tunables ...
-// The knob* variables are effectively final.  Once set they should
-// never be modified hence.  Consider using __read_mostly with GCC.
+static markOop ReadStableMark (oop obj) {
+  markOop mark = obj->mark() ;
+  if (!mark->is_being_inflated()) {
+    return mark ;       // normal fast-path return
+  }
 
-static int Knob_LogSpins           = 0 ;       // enable jvmstat tally for spins
-static int Knob_HandOff            = 0 ;
-static int Knob_Verbose            = 0 ;
-static int Knob_ReportSettings     = 0 ;
+  int its = 0 ;
+  for (;;) {
+    markOop mark = obj->mark() ;
+    if (!mark->is_being_inflated()) {
+      return mark ;    // normal fast-path return
+    }
+
+    // The object is being inflated by some other thread.
+    // The caller of ReadStableMark() must wait for inflation to complete.
+    // Avoid live-lock
+    // TODO: consider calling SafepointSynchronize::do_call_back() while
+    // spinning to see if there's a safepoint pending.  If so, immediately
+    // yielding or blocking would be appropriate.  Avoid spinning while
+    // there is a safepoint pending.
+    // TODO: add inflation contention performance counters.
+    // TODO: restrict the aggregate number of spinners.
 
-static int Knob_SpinLimit          = 5000 ;    // derived by an external tool -
-static int Knob_SpinBase           = 0 ;       // Floor AKA SpinMin
-static int Knob_SpinBackOff        = 0 ;       // spin-loop backoff
-static int Knob_CASPenalty         = -1 ;      // Penalty for failed CAS
-static int Knob_OXPenalty          = -1 ;      // Penalty for observed _owner change
-static int Knob_SpinSetSucc        = 1 ;       // spinners set the _succ field
-static int Knob_SpinEarly          = 1 ;
-static int Knob_SuccEnabled        = 1 ;       // futile wake throttling
-static int Knob_SuccRestrict       = 0 ;       // Limit successors + spinners to at-most-one
-static int Knob_MaxSpinners        = -1 ;      // Should be a function of # CPUs
-static int Knob_Bonus              = 100 ;     // spin success bonus
-static int Knob_BonusB             = 100 ;     // spin success bonus
-static int Knob_Penalty            = 200 ;     // spin failure penalty
-static int Knob_Poverty            = 1000 ;
-static int Knob_SpinAfterFutile    = 1 ;       // Spin after returning from park()
-static int Knob_FixedSpin          = 0 ;
-static int Knob_OState             = 3 ;       // Spinner checks thread state of _owner
-static int Knob_UsePause           = 1 ;
-static int Knob_ExitPolicy         = 0 ;
-static int Knob_PreSpin            = 10 ;      // 20-100 likely better
-static int Knob_ResetEvent         = 0 ;
-static int BackOffMask             = 0 ;
-
-static int Knob_FastHSSEC          = 0 ;
-static int Knob_MoveNotifyee       = 2 ;       // notify() - disposition of notifyee
-static int Knob_QMode              = 0 ;       // EntryList-cxq policy - queue discipline
-static volatile int InitDone       = 0 ;
-
+    ++its ;
+    if (its > 10000 || !os::is_MP()) {
+       if (its & 1) {
+         os::NakedYield() ;
+         TEVENT (Inflate: INFLATING - yield) ;
+       } else {
+         // Note that the following code attenuates the livelock problem but is not
+         // a complete remedy.  A more complete solution would require that the inflating
+         // thread hold the associated inflation lock.  The following code simply restricts
+         // the number of spinners to at most one.  We'll have N-2 threads blocked
+         // on the inflationlock, 1 thread holding the inflation lock and using
+         // a yield/park strategy, and 1 thread in the midst of inflation.
+         // A more refined approach would be to change the encoding of INFLATING
+         // to allow encapsulation of a native thread pointer.  Threads waiting for
+         // inflation to complete would use CAS to push themselves onto a singly linked
+         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
+         // and calling park().  When inflation was complete the thread that accomplished inflation
+         // would detach the list and set the markword to inflated with a single CAS and
+         // then for each thread on the list, set the flag and unpark() the thread.
+         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
+         // wakes at most one thread whereas we need to wake the entire list.
+         int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
+         int YieldThenBlock = 0 ;
+         assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
+         assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
+         Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
+         while (obj->mark() == markOopDesc::INFLATING()) {
+           // Beware: NakedYield() is advisory and has almost no effect on some platforms
+           // so we periodically call Self->_ParkEvent->park(1).
+           // We use a mixed spin/yield/block mechanism.
+           if ((YieldThenBlock++) >= 16) {
+              Thread::current()->_ParkEvent->park(1) ;
+           } else {
+              os::NakedYield() ;
+           }
+         }
+         Thread::muxRelease (InflationLocks + ix ) ;
+         TEVENT (Inflate: INFLATING - yield/park) ;
+       }
+    } else {
+       SpinPause() ;       // SMP-polite spinning
+    }
+  }
+}
 
 // hashCode() generation :
 //
@@ -290,416 +545,272 @@
   TEVENT (hashCode: GENERATE) ;
   return value;
 }
+//
+intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
+  if (UseBiasedLocking) {
+    // NOTE: many places throughout the JVM do not expect a safepoint
+    // to be taken here, in particular most operations on perm gen
+    // objects. However, we only ever bias Java instances and all of
+    // the call sites of identity_hash that might revoke biases have
+    // been checked to make sure they can handle a safepoint. The
+    // added check of the bias pattern is to avoid useless calls to
+    // thread-local storage.
+    if (obj->mark()->has_bias_pattern()) {
+      // Box and unbox the raw reference just in case we cause a STW safepoint.
+      Handle hobj (Self, obj) ;
+      // Relaxing assertion for bug 6320749.
+      assert (Universe::verify_in_progress() ||
+              !SafepointSynchronize::is_at_safepoint(),
+             "biases should not be seen by VM thread here");
+      BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
+      obj = hobj() ;
+      assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
+    }
+  }
 
-void BasicLock::print_on(outputStream* st) const {
-  st->print("monitor");
+  // hashCode() is a heap mutator ...
+  // Relaxing assertion for bug 6320749.
+  assert (Universe::verify_in_progress() ||
+          !SafepointSynchronize::is_at_safepoint(), "invariant") ;
+  assert (Universe::verify_in_progress() ||
+          Self->is_Java_thread() , "invariant") ;
+  assert (Universe::verify_in_progress() ||
+         ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
+
+  ObjectMonitor* monitor = NULL;
+  markOop temp, test;
+  intptr_t hash;
+  markOop mark = ReadStableMark (obj);
+
+  // object should remain ineligible for biased locking
+  assert (!mark->has_bias_pattern(), "invariant") ;
+
+  if (mark->is_neutral()) {
+    hash = mark->hash();              // this is a normal header
+    if (hash) {                       // if it has hash, just return it
+      return hash;
+    }
+    hash = get_next_hash(Self, obj);  // allocate a new hash code
+    temp = mark->copy_set_hash(hash); // merge the hash code into header
+    // use (machine word version) atomic operation to install the hash
+    test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
+    if (test == mark) {
+      return hash;
+    }
+    // If atomic operation failed, we must inflate the header
+    // into heavy weight monitor. We could add more code here
+    // for fast path, but it does not worth the complexity.
+  } else if (mark->has_monitor()) {
+    monitor = mark->monitor();
+    temp = monitor->header();
+    assert (temp->is_neutral(), "invariant") ;
+    hash = temp->hash();
+    if (hash) {
+      return hash;
+    }
+    // Skip to the following code to reduce code size
+  } else if (Self->is_lock_owned((address)mark->locker())) {
+    temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
+    assert (temp->is_neutral(), "invariant") ;
+    hash = temp->hash();              // by current thread, check if the displaced
+    if (hash) {                       // header contains hash code
+      return hash;
+    }
+    // WARNING:
+    //   The displaced header is strictly immutable.
+    // It can NOT be changed in ANY cases. So we have
+    // to inflate the header into heavyweight monitor
+    // even the current thread owns the lock. The reason
+    // is the BasicLock (stack slot) will be asynchronously
+    // read by other threads during the inflate() function.
+    // Any change to stack may not propagate to other threads
+    // correctly.
+  }
+
+  // Inflate the monitor to set hash code
+  monitor = ObjectSynchronizer::inflate(Self, obj);
+  // Load displaced header and check it has hash code
+  mark = monitor->header();
+  assert (mark->is_neutral(), "invariant") ;
+  hash = mark->hash();
+  if (hash == 0) {
+    hash = get_next_hash(Self, obj);
+    temp = mark->copy_set_hash(hash); // merge hash code into header
+    assert (temp->is_neutral(), "invariant") ;
+    test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
+    if (test != mark) {
+      // The only update to the header in the monitor (outside GC)
+      // is install the hash code. If someone add new usage of
+      // displaced header, please update this code
+      hash = test->hash();
+      assert (test->is_neutral(), "invariant") ;
+      assert (hash != 0, "Trivial unexpected object/monitor header usage.");
+    }
+  }
+  // We finally get the hash
+  return hash;
 }
 
-void BasicLock::move_to(oop obj, BasicLock* dest) {
-  // Check to see if we need to inflate the lock. This is only needed
-  // if an object is locked using "this" lightweight monitor. In that
-  // case, the displaced_header() is unlocked, because the
-  // displaced_header() contains the header for the originally unlocked
-  // object. However the object could have already been inflated. But it
-  // does not matter, the inflation will just a no-op. For other cases,
-  // the displaced header will be either 0x0 or 0x3, which are location
-  // independent, therefore the BasicLock is free to move.
-  //
-  // During OSR we may need to relocate a BasicLock (which contains a
-  // displaced word) from a location in an interpreter frame to a
-  // new location in a compiled frame.  "this" refers to the source
-  // basiclock in the interpreter frame.  "dest" refers to the destination
-  // basiclock in the new compiled frame.  We *always* inflate in move_to().
-  // The always-Inflate policy works properly, but in 1.5.0 it can sometimes
-  // cause performance problems in code that makes heavy use of a small # of
-  // uncontended locks.   (We'd inflate during OSR, and then sync performance
-  // would subsequently plummet because the thread would be forced thru the slow-path).
-  // This problem has been made largely moot on IA32 by inlining the inflated fast-path
-  // operations in Fast_Lock and Fast_Unlock in i486.ad.
-  //
-  // Note that there is a way to safely swing the object's markword from
-  // one stack location to another.  This avoids inflation.  Obviously,
-  // we need to ensure that both locations refer to the current thread's stack.
-  // There are some subtle concurrency issues, however, and since the benefit is
-  // is small (given the support for inflated fast-path locking in the fast_lock, etc)
-  // we'll leave that optimization for another time.
+// Deprecated -- use FastHashCode() instead.
 
-  if (displaced_header()->is_neutral()) {
-    ObjectSynchronizer::inflate_helper(obj);
-    // WARNING: We can not put check here, because the inflation
-    // will not update the displaced header. Once BasicLock is inflated,
-    // no one should ever look at its content.
-  } else {
-    // Typically the displaced header will be 0 (recursive stack lock) or
-    // unused_mark.  Naively we'd like to assert that the displaced mark
-    // value is either 0, neutral, or 3.  But with the advent of the
-    // store-before-CAS avoidance in fast_lock/compiler_lock_object
-    // we can find any flavor mark in the displaced mark.
-  }
-// [RGV] The next line appears to do nothing!
-  intptr_t dh = (intptr_t) displaced_header();
-  dest->set_displaced_header(displaced_header());
+intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
+  return FastHashCode (Thread::current(), obj()) ;
 }
 
-// -----------------------------------------------------------------------------
 
-// standard constructor, allows locking failures
-ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
-  _dolock = doLock;
-  _thread = thread;
-  debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
-  _obj = obj;
+bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
+                                                   Handle h_obj) {
+  if (UseBiasedLocking) {
+    BiasedLocking::revoke_and_rebias(h_obj, false, thread);
+    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
+  }
+
+  assert(thread == JavaThread::current(), "Can only be called on current thread");
+  oop obj = h_obj();
+
+  markOop mark = ReadStableMark (obj) ;
 
-  if (_dolock) {
-    TEVENT (ObjectLocker) ;
-
-    ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
+  // Uncontended case, header points to stack
+  if (mark->has_locker()) {
+    return thread->is_lock_owned((address)mark->locker());
   }
-}
-
-ObjectLocker::~ObjectLocker() {
-  if (_dolock) {
-    ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
+  // Contended case, header points to ObjectMonitor (tagged pointer)
+  if (mark->has_monitor()) {
+    ObjectMonitor* monitor = mark->monitor();
+    return monitor->is_entered(thread) != 0 ;
   }
+  // Unlocked case, header in place
+  assert(mark->is_neutral(), "sanity check");
+  return false;
 }
 
-// -----------------------------------------------------------------------------
+// Be aware of this method could revoke bias of the lock object.
+// This method querys the ownership of the lock handle specified by 'h_obj'.
+// If the current thread owns the lock, it returns owner_self. If no
+// thread owns the lock, it returns owner_none. Otherwise, it will return
+// ower_other.
+ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
+(JavaThread *self, Handle h_obj) {
+  // The caller must beware this method can revoke bias, and
+  // revocation can result in a safepoint.
+  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
+  assert (self->thread_state() != _thread_blocked , "invariant") ;
 
+  // Possible mark states: neutral, biased, stack-locked, inflated
+
+  if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
+    // CASE: biased
+    BiasedLocking::revoke_and_rebias(h_obj, false, self);
+    assert(!h_obj->mark()->has_bias_pattern(),
+           "biases should be revoked by now");
+  }
 
-PerfCounter * ObjectSynchronizer::_sync_Inflations                  = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_Deflations                  = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_ContendedLockAttempts       = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_FutileWakeups               = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_Parks                       = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_EmptyNotifications          = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_Notifications               = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_PrivateA                    = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_PrivateB                    = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_SlowExit                    = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_SlowEnter                   = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_SlowNotify                  = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_SlowNotifyAll               = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_FailedSpins                 = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_SuccessfulSpins             = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_MonInCirculation            = NULL ;
-PerfCounter * ObjectSynchronizer::_sync_MonScavenged                = NULL ;
-PerfLongVariable * ObjectSynchronizer::_sync_MonExtant              = NULL ;
+  assert(self == JavaThread::current(), "Can only be called on current thread");
+  oop obj = h_obj();
+  markOop mark = ReadStableMark (obj) ;
+
+  // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
+  if (mark->has_locker()) {
+    return self->is_lock_owned((address)mark->locker()) ?
+      owner_self : owner_other;
+  }
 
-// One-shot global initialization for the sync subsystem.
-// We could also defer initialization and initialize on-demand
-// the first time we call inflate().  Initialization would
-// be protected - like so many things - by the MonitorCache_lock.
+  // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
+  // The Object:ObjectMonitor relationship is stable as long as we're
+  // not at a safepoint.
+  if (mark->has_monitor()) {
+    void * owner = mark->monitor()->_owner ;
+    if (owner == NULL) return owner_none ;
+    return (owner == self ||
+            self->is_lock_owned((address)owner)) ? owner_self : owner_other;
+  }
+
+  // CASE: neutral
+  assert(mark->is_neutral(), "sanity check");
+  return owner_none ;           // it's unlocked
+}
 
-void ObjectSynchronizer::Initialize () {
-  static int InitializationCompleted = 0 ;
-  assert (InitializationCompleted == 0, "invariant") ;
-  InitializationCompleted = 1 ;
-  if (UsePerfData) {
-      EXCEPTION_MARK ;
-      #define NEWPERFCOUNTER(n)   {n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,CHECK); }
-      #define NEWPERFVARIABLE(n)  {n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,CHECK); }
-      NEWPERFCOUNTER(_sync_Inflations) ;
-      NEWPERFCOUNTER(_sync_Deflations) ;
-      NEWPERFCOUNTER(_sync_ContendedLockAttempts) ;
-      NEWPERFCOUNTER(_sync_FutileWakeups) ;
-      NEWPERFCOUNTER(_sync_Parks) ;
-      NEWPERFCOUNTER(_sync_EmptyNotifications) ;
-      NEWPERFCOUNTER(_sync_Notifications) ;
-      NEWPERFCOUNTER(_sync_SlowEnter) ;
-      NEWPERFCOUNTER(_sync_SlowExit) ;
-      NEWPERFCOUNTER(_sync_SlowNotify) ;
-      NEWPERFCOUNTER(_sync_SlowNotifyAll) ;
-      NEWPERFCOUNTER(_sync_FailedSpins) ;
-      NEWPERFCOUNTER(_sync_SuccessfulSpins) ;
-      NEWPERFCOUNTER(_sync_PrivateA) ;
-      NEWPERFCOUNTER(_sync_PrivateB) ;
-      NEWPERFCOUNTER(_sync_MonInCirculation) ;
-      NEWPERFCOUNTER(_sync_MonScavenged) ;
-      NEWPERFVARIABLE(_sync_MonExtant) ;
-      #undef NEWPERFCOUNTER
+// FIXME: jvmti should call this
+JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
+  if (UseBiasedLocking) {
+    if (SafepointSynchronize::is_at_safepoint()) {
+      BiasedLocking::revoke_at_safepoint(h_obj);
+    } else {
+      BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
+    }
+    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
+  }
+
+  oop obj = h_obj();
+  address owner = NULL;
+
+  markOop mark = ReadStableMark (obj) ;
+
+  // Uncontended case, header points to stack
+  if (mark->has_locker()) {
+    owner = (address) mark->locker();
+  }
+
+  // Contended case, header points to ObjectMonitor (tagged pointer)
+  if (mark->has_monitor()) {
+    ObjectMonitor* monitor = mark->monitor();
+    assert(monitor != NULL, "monitor should be non-null");
+    owner = (address) monitor->owner();
+  }
+
+  if (owner != NULL) {
+    return Threads::owning_thread_from_monitor_owner(owner, doLock);
+  }
+
+  // Unlocked case, header in place
+  // Cannot have assertion since this object may have been
+  // locked by another thread when reaching here.
+  // assert(mark->is_neutral(), "sanity check");
+
+  return NULL;
+}
+// Visitors ...
+
+void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
+  ObjectMonitor* block = gBlockList;
+  ObjectMonitor* mid;
+  while (block) {
+    assert(block->object() == CHAINMARKER, "must be a block header");
+    for (int i = _BLOCKSIZE - 1; i > 0; i--) {
+      mid = block + i;
+      oop object = (oop) mid->object();
+      if (object != NULL) {
+        closure->do_monitor(mid);
+      }
+    }
+    block = (ObjectMonitor*) block->FreeNext;
   }
 }
 
-// Compile-time asserts
-// When possible, it's better to catch errors deterministically at
-// compile-time than at runtime.  The down-side to using compile-time
-// asserts is that error message -- often something about negative array
-// indices -- is opaque.
-
-#define CTASSERT(x) { int tag[1-(2*!(x))]; printf ("Tag @" INTPTR_FORMAT "\n", (intptr_t)tag); }
-
-void ObjectMonitor::ctAsserts() {
-  CTASSERT(offset_of (ObjectMonitor, _header) == 0);
-}
-
-static int Adjust (volatile int * adr, int dx) {
-  int v ;
-  for (v = *adr ; Atomic::cmpxchg (v + dx, adr, v) != v; v = *adr) ;
-  return v ;
-}
-
-// Ad-hoc mutual exclusion primitives: SpinLock and Mux
-//
-// We employ SpinLocks _only for low-contention, fixed-length
-// short-duration critical sections where we're concerned
-// about native mutex_t or HotSpot Mutex:: latency.
-// The mux construct provides a spin-then-block mutual exclusion
-// mechanism.
-//
-// Testing has shown that contention on the ListLock guarding gFreeList
-// is common.  If we implement ListLock as a simple SpinLock it's common
-// for the JVM to devolve to yielding with little progress.  This is true
-// despite the fact that the critical sections protected by ListLock are
-// extremely short.
-//
-// TODO-FIXME: ListLock should be of type SpinLock.
-// We should make this a 1st-class type, integrated into the lock
-// hierarchy as leaf-locks.  Critically, the SpinLock structure
-// should have sufficient padding to avoid false-sharing and excessive
-// cache-coherency traffic.
-
-
-typedef volatile int SpinLockT ;
-
-void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
-  if (Atomic::cmpxchg (1, adr, 0) == 0) {
-     return ;   // normal fast-path return
-  }
-
-  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
-  TEVENT (SpinAcquire - ctx) ;
-  int ctr = 0 ;
-  int Yields = 0 ;
-  for (;;) {
-     while (*adr != 0) {
-        ++ctr ;
-        if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
-           if (Yields > 5) {
-             // Consider using a simple NakedSleep() instead.
-             // Then SpinAcquire could be called by non-JVM threads
-             Thread::current()->_ParkEvent->park(1) ;
-           } else {
-             os::NakedYield() ;
-             ++Yields ;
-           }
-        } else {
-           SpinPause() ;
-        }
-     }
-     if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
-  }
-}
-
-void Thread::SpinRelease (volatile int * adr) {
-  assert (*adr != 0, "invariant") ;
-  OrderAccess::fence() ;      // guarantee at least release consistency.
-  // Roach-motel semantics.
-  // It's safe if subsequent LDs and STs float "up" into the critical section,
-  // but prior LDs and STs within the critical section can't be allowed
-  // to reorder or float past the ST that releases the lock.
-  *adr = 0 ;
+// Get the next block in the block list.
+static inline ObjectMonitor* next(ObjectMonitor* block) {
+  assert(block->object() == CHAINMARKER, "must be a block header");
+  block = block->FreeNext ;
+  assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
+  return block;
 }
 
-// muxAcquire and muxRelease:
-//
-// *  muxAcquire and muxRelease support a single-word lock-word construct.
-//    The LSB of the word is set IFF the lock is held.
-//    The remainder of the word points to the head of a singly-linked list
-//    of threads blocked on the lock.
-//
-// *  The current implementation of muxAcquire-muxRelease uses its own
-//    dedicated Thread._MuxEvent instance.  If we're interested in
-//    minimizing the peak number of extant ParkEvent instances then
-//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
-//    as certain invariants were satisfied.  Specifically, care would need
-//    to be taken with regards to consuming unpark() "permits".
-//    A safe rule of thumb is that a thread would never call muxAcquire()
-//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
-//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
-//    consume an unpark() permit intended for monitorenter, for instance.
-//    One way around this would be to widen the restricted-range semaphore
-//    implemented in park().  Another alternative would be to provide
-//    multiple instances of the PlatformEvent() for each thread.  One
-//    instance would be dedicated to muxAcquire-muxRelease, for instance.
-//
-// *  Usage:
-//    -- Only as leaf locks
-//    -- for short-term locking only as muxAcquire does not perform
-//       thread state transitions.
-//
-// Alternatives:
-// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
-//    but with parking or spin-then-park instead of pure spinning.
-// *  Use Taura-Oyama-Yonenzawa locks.
-// *  It's possible to construct a 1-0 lock if we encode the lockword as
-//    (List,LockByte).  Acquire will CAS the full lockword while Release
-//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
-//    acquiring threads use timers (ParkTimed) to detect and recover from
-//    the stranding window.  Thread/Node structures must be aligned on 256-byte
-//    boundaries by using placement-new.
-// *  Augment MCS with advisory back-link fields maintained with CAS().
-//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
-//    The validity of the backlinks must be ratified before we trust the value.
-//    If the backlinks are invalid the exiting thread must back-track through the
-//    the forward links, which are always trustworthy.
-// *  Add a successor indication.  The LockWord is currently encoded as
-//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
-//    to provide the usual futile-wakeup optimization.
-//    See RTStt for details.
-// *  Consider schedctl.sc_nopreempt to cover the critical section.
-//
 
-
-typedef volatile intptr_t MutexT ;      // Mux Lock-word
-enum MuxBits { LOCKBIT = 1 } ;
-
-void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
-  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
-  if (w == 0) return ;
-  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
-     return ;
-  }
-
-  TEVENT (muxAcquire - Contention) ;
-  ParkEvent * const Self = Thread::current()->_MuxEvent ;
-  assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
-  for (;;) {
-     int its = (os::is_MP() ? 100 : 0) + 1 ;
-
-     // Optional spin phase: spin-then-park strategy
-     while (--its >= 0) {
-       w = *Lock ;
-       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
-          return ;
-       }
-     }
-
-     Self->reset() ;
-     Self->OnList = intptr_t(Lock) ;
-     // The following fence() isn't _strictly necessary as the subsequent
-     // CAS() both serializes execution and ratifies the fetched *Lock value.
-     OrderAccess::fence();
-     for (;;) {
-        w = *Lock ;
-        if ((w & LOCKBIT) == 0) {
-            if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
-                Self->OnList = 0 ;   // hygiene - allows stronger asserts
-                return ;
-            }
-            continue ;      // Interference -- *Lock changed -- Just retry
-        }
-        assert (w & LOCKBIT, "invariant") ;
-        Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
-        if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
-     }
-
-     while (Self->OnList != 0) {
-        Self->park() ;
-     }
-  }
-}
-
-void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
-  intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
-  if (w == 0) return ;
-  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
-    return ;
-  }
-
-  TEVENT (muxAcquire - Contention) ;
-  ParkEvent * ReleaseAfter = NULL ;
-  if (ev == NULL) {
-    ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
-  }
-  assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
-  for (;;) {
-    guarantee (ev->OnList == 0, "invariant") ;
-    int its = (os::is_MP() ? 100 : 0) + 1 ;
-
-    // Optional spin phase: spin-then-park strategy
-    while (--its >= 0) {
-      w = *Lock ;
-      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
-        if (ReleaseAfter != NULL) {
-          ParkEvent::Release (ReleaseAfter) ;
-        }
-        return ;
+void ObjectSynchronizer::oops_do(OopClosure* f) {
+  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
+  for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
+    assert(block->object() == CHAINMARKER, "must be a block header");
+    for (int i = 1; i < _BLOCKSIZE; i++) {
+      ObjectMonitor* mid = &block[i];
+      if (mid->object() != NULL) {
+        f->do_oop((oop*)mid->object_addr());
       }
     }
-
-    ev->reset() ;
-    ev->OnList = intptr_t(Lock) ;
-    // The following fence() isn't _strictly necessary as the subsequent
-    // CAS() both serializes execution and ratifies the fetched *Lock value.
-    OrderAccess::fence();
-    for (;;) {
-      w = *Lock ;
-      if ((w & LOCKBIT) == 0) {
-        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
-          ev->OnList = 0 ;
-          // We call ::Release while holding the outer lock, thus
-          // artificially lengthening the critical section.
-          // Consider deferring the ::Release() until the subsequent unlock(),
-          // after we've dropped the outer lock.
-          if (ReleaseAfter != NULL) {
-            ParkEvent::Release (ReleaseAfter) ;
-          }
-          return ;
-        }
-        continue ;      // Interference -- *Lock changed -- Just retry
-      }
-      assert (w & LOCKBIT, "invariant") ;
-      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
-      if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
-    }
-
-    while (ev->OnList != 0) {
-      ev->park() ;
-    }
   }
 }
 
-// Release() must extract a successor from the list and then wake that thread.
-// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
-// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
-// Release() would :
-// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
-// (B) Extract a successor from the private list "in-hand"
-// (C) attempt to CAS() the residual back into *Lock over null.
-//     If there were any newly arrived threads and the CAS() would fail.
-//     In that case Release() would detach the RATs, re-merge the list in-hand
-//     with the RATs and repeat as needed.  Alternately, Release() might
-//     detach and extract a successor, but then pass the residual list to the wakee.
-//     The wakee would be responsible for reattaching and remerging before it
-//     competed for the lock.
-//
-// Both "pop" and DMR are immune from ABA corruption -- there can be
-// multiple concurrent pushers, but only one popper or detacher.
-// This implementation pops from the head of the list.  This is unfair,
-// but tends to provide excellent throughput as hot threads remain hot.
-// (We wake recently run threads first).
 
-void Thread::muxRelease (volatile intptr_t * Lock)  {
-  for (;;) {
-    const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
-    assert (w & LOCKBIT, "invariant") ;
-    if (w == LOCKBIT) return ;
-    ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
-    assert (List != NULL, "invariant") ;
-    assert (List->OnList == intptr_t(Lock), "invariant") ;
-    ParkEvent * nxt = List->ListNext ;
-
-    // The following CAS() releases the lock and pops the head element.
-    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
-      continue ;
-    }
-    List->OnList = 0 ;
-    OrderAccess::fence() ;
-    List->unpark () ;
-    return ;
-  }
-}
-
+// -----------------------------------------------------------------------------
 // ObjectMonitor Lifecycle
 // -----------------------
 // Inflation unlinks monitors from the global gFreeList and
@@ -718,41 +829,7 @@
 // --   assigned to an object.  The object is inflated and the mark refers
 //      to the objectmonitor.
 //
-// TODO-FIXME:
-//
-// *  We currently protect the gFreeList with a simple lock.
-//    An alternate lock-free scheme would be to pop elements from the gFreeList
-//    with CAS.  This would be safe from ABA corruption as long we only
-//    recycled previously appearing elements onto the list in deflate_idle_monitors()
-//    at STW-time.  Completely new elements could always be pushed onto the gFreeList
-//    with CAS.  Elements that appeared previously on the list could only
-//    be installed at STW-time.
-//
-// *  For efficiency and to help reduce the store-before-CAS penalty
-//    the objectmonitors on gFreeList or local free lists should be ready to install
-//    with the exception of _header and _object.  _object can be set after inflation.
-//    In particular, keep all objectMonitors on a thread's private list in ready-to-install
-//    state with m.Owner set properly.
-//
-// *  We could all diffuse contention by using multiple global (FreeList, Lock)
-//    pairs -- threads could use trylock() and a cyclic-scan strategy to search for
-//    an unlocked free list.
-//
-// *  Add lifecycle tags and assert()s.
-//
-// *  Be more consistent about when we clear an objectmonitor's fields:
-//    A.  After extracting the objectmonitor from a free list.
-//    B.  After adding an objectmonitor to a free list.
-//
 
-ObjectMonitor * ObjectSynchronizer::gBlockList = NULL ;
-ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL ;
-ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL ;
-int ObjectSynchronizer::gOmInUseCount = 0;
-static volatile intptr_t ListLock = 0 ;      // protects global monitor free-list cache
-static volatile int MonitorFreeCount  = 0 ;      // # on gFreeList
-static volatile int MonitorPopulation = 0 ;      // # Extant -- in circulation
-#define CHAINMARKER ((oop)-1)
 
 // Constraining monitor pool growth via MonitorBound ...
 //
@@ -768,41 +845,8 @@
 // we'll incur more safepoints, which are harmful to performance.
 // See also: GuaranteedSafepointInterval
 //
-// As noted elsewhere, the correct long-term solution is to deflate at
-// monitorexit-time, in which case the number of inflated objects is bounded
-// by the number of threads.  That policy obviates the need for scavenging at
-// STW safepoint time.   As an aside, scavenging can be time-consuming when the
-// # of extant monitors is large.   Unfortunately there's a day-1 assumption baked
-// into much HotSpot code that the object::monitor relationship, once established
-// or observed, will remain stable except over potential safepoints.
-//
-// We can use either a blocking synchronous VM operation or an async VM operation.
-// -- If we use a blocking VM operation :
-//    Calls to ScavengeCheck() should be inserted only into 'safe' locations in paths
-//    that lead to ::inflate() or ::omAlloc().
-//    Even though the safepoint will not directly induce GC, a GC might
-//    piggyback on the safepoint operation, so the caller should hold no naked oops.
-//    Furthermore, monitor::object relationships are NOT necessarily stable over this call
-//    unless the caller has made provisions to "pin" the object to the monitor, say
-//    by incrementing the monitor's _count field.
-// -- If we use a non-blocking asynchronous VM operation :
-//    the constraints above don't apply.  The safepoint will fire in the future
-//    at a more convenient time.  On the other hand the latency between posting and
-//    running the safepoint introduces or admits "slop" or laxity during which the
-//    monitor population can climb further above the threshold.  The monitor population,
-//    however, tends to converge asymptotically over time to a count that's slightly
-//    above the target value specified by MonitorBound.   That is, we avoid unbounded
-//    growth, albeit with some imprecision.
-//
 // The current implementation uses asynchronous VM operations.
 //
-// Ideally we'd check if (MonitorPopulation > MonitorBound) in omAlloc()
-// immediately before trying to grow the global list via allocation.
-// If the predicate was true then we'd induce a synchronous safepoint, wait
-// for the safepoint to complete, and then again to allocate from the global
-// free list.  This approach is much simpler and precise, admitting no "slop".
-// Unfortunately we can't safely safepoint in the midst of omAlloc(), so
-// instead we use asynchronous safepoints.
 
 static void InduceScavenge (Thread * Self, const char * Whence) {
   // Induce STW safepoint to trim monitors
@@ -812,7 +856,7 @@
   // TODO: assert thread state is reasonable
 
   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
-    if (Knob_Verbose) {
+    if (ObjectMonitor::Knob_Verbose) {
       ::printf ("Monitor scavenge - Induced STW @%s (%d)\n", Whence, ForceMonitorScavenge) ;
       ::fflush(stdout) ;
     }
@@ -822,7 +866,7 @@
     // The VMThread will delete the op when completed.
     VMThread::execute (new VM_ForceAsyncSafepoint()) ;
 
-    if (Knob_Verbose) {
+    if (ObjectMonitor::Knob_Verbose) {
       ::printf ("Monitor scavenge - STW posted @%s (%d)\n", Whence, ForceMonitorScavenge) ;
       ::fflush(stdout) ;
     }
@@ -844,7 +888,6 @@
    assert(freetally == Self->omFreeCount, "free count off");
 }
 */
-
 ObjectMonitor * ATTR ObjectSynchronizer::omAlloc (Thread * Self) {
     // A large MAXPRIVATE value reduces both list lock contention
     // and list coherency traffic, but also tends to increase the
@@ -974,12 +1017,6 @@
 // attempt failed.  This doesn't allow unbounded #s of monitors to
 // accumulate on a thread's free list.
 //
-// In the future the usage of omRelease() might change and monitors
-// could migrate between free lists.  In that case to avoid excessive
-// accumulation we could  limit omCount to (omProvision*2), otherwise return
-// the objectMonitor to the global list.  We should drain (return) in reasonable chunks.
-// That is, *not* one-at-a-time.
-
 
 void ObjectSynchronizer::omRelease (Thread * Self, ObjectMonitor * m, bool fromPerThreadAlloc) {
     guarantee (m->object() == NULL, "invariant") ;
@@ -1082,15 +1119,6 @@
     TEVENT (omFlush) ;
 }
 
-
-// Get the next block in the block list.
-static inline ObjectMonitor* next(ObjectMonitor* block) {
-  assert(block->object() == CHAINMARKER, "must be a block header");
-  block = block->FreeNext ;
-  assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
-  return block;
-}
-
 // Fast path code shared by multiple functions
 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
   markOop mark = obj->mark();
@@ -1102,79 +1130,10 @@
   return ObjectSynchronizer::inflate(Thread::current(), obj);
 }
 
+
 // Note that we could encounter some performance loss through false-sharing as
 // multiple locks occupy the same $ line.  Padding might be appropriate.
 
-#define NINFLATIONLOCKS 256
-static volatile intptr_t InflationLocks [NINFLATIONLOCKS] ;
-
-static markOop ReadStableMark (oop obj) {
-  markOop mark = obj->mark() ;
-  if (!mark->is_being_inflated()) {
-    return mark ;       // normal fast-path return
-  }
-
-  int its = 0 ;
-  for (;;) {
-    markOop mark = obj->mark() ;
-    if (!mark->is_being_inflated()) {
-      return mark ;    // normal fast-path return
-    }
-
-    // The object is being inflated by some other thread.
-    // The caller of ReadStableMark() must wait for inflation to complete.
-    // Avoid live-lock
-    // TODO: consider calling SafepointSynchronize::do_call_back() while
-    // spinning to see if there's a safepoint pending.  If so, immediately
-    // yielding or blocking would be appropriate.  Avoid spinning while
-    // there is a safepoint pending.
-    // TODO: add inflation contention performance counters.
-    // TODO: restrict the aggregate number of spinners.
-
-    ++its ;
-    if (its > 10000 || !os::is_MP()) {
-       if (its & 1) {
-         os::NakedYield() ;
-         TEVENT (Inflate: INFLATING - yield) ;
-       } else {
-         // Note that the following code attenuates the livelock problem but is not
-         // a complete remedy.  A more complete solution would require that the inflating
-         // thread hold the associated inflation lock.  The following code simply restricts
-         // the number of spinners to at most one.  We'll have N-2 threads blocked
-         // on the inflationlock, 1 thread holding the inflation lock and using
-         // a yield/park strategy, and 1 thread in the midst of inflation.
-         // A more refined approach would be to change the encoding of INFLATING
-         // to allow encapsulation of a native thread pointer.  Threads waiting for
-         // inflation to complete would use CAS to push themselves onto a singly linked
-         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
-         // and calling park().  When inflation was complete the thread that accomplished inflation
-         // would detach the list and set the markword to inflated with a single CAS and
-         // then for each thread on the list, set the flag and unpark() the thread.
-         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
-         // wakes at most one thread whereas we need to wake the entire list.
-         int ix = (intptr_t(obj) >> 5) & (NINFLATIONLOCKS-1) ;
-         int YieldThenBlock = 0 ;
-         assert (ix >= 0 && ix < NINFLATIONLOCKS, "invariant") ;
-         assert ((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant") ;
-         Thread::muxAcquire (InflationLocks + ix, "InflationLock") ;
-         while (obj->mark() == markOopDesc::INFLATING()) {
-           // Beware: NakedYield() is advisory and has almost no effect on some platforms
-           // so we periodically call Self->_ParkEvent->park(1).
-           // We use a mixed spin/yield/block mechanism.
-           if ((YieldThenBlock++) >= 16) {
-              Thread::current()->_ParkEvent->park(1) ;
-           } else {
-              os::NakedYield() ;
-           }
-         }
-         Thread::muxRelease (InflationLocks + ix ) ;
-         TEVENT (Inflate: INFLATING - yield/park) ;
-       }
-    } else {
-       SpinPause() ;       // SMP-polite spinning
-    }
-  }
-}
 
 ObjectMonitor * ATTR ObjectSynchronizer::inflate (Thread * Self, oop object) {
   // Inflate mutates the heap ...
@@ -1242,7 +1201,7 @@
           m->_Responsible  = NULL ;
           m->OwnerIsThread = 0 ;
           m->_recursions   = 0 ;
-          m->_SpinDuration = Knob_SpinLimit ;   // Consider: maintain by type/class
+          m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;   // Consider: maintain by type/class
 
           markOop cmp = (markOop) Atomic::cmpxchg_ptr (markOopDesc::INFLATING(), object->mark_addr(), mark) ;
           if (cmp != mark) {
@@ -1302,7 +1261,7 @@
 
           // Hopefully the performance counters are allocated on distinct cache lines
           // to avoid false sharing on MP systems ...
-          if (_sync_Inflations != NULL) _sync_Inflations->inc() ;
+          if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
           TEVENT(Inflate: overwrite stacklock) ;
           if (TraceMonitorInflation) {
             if (object->is_instance()) {
@@ -1335,7 +1294,7 @@
       m->OwnerIsThread = 1 ;
       m->_recursions   = 0 ;
       m->_Responsible  = NULL ;
-      m->_SpinDuration = Knob_SpinLimit ;       // consider: keep metastats by type/class
+      m->_SpinDuration = ObjectMonitor::Knob_SpinLimit ;       // consider: keep metastats by type/class
 
       if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
           m->set_object (NULL) ;
@@ -1352,7 +1311,7 @@
 
       // Hopefully the performance counters are allocated on distinct
       // cache lines to avoid false sharing on MP systems ...
-      if (_sync_Inflations != NULL) _sync_Inflations->inc() ;
+      if (ObjectMonitor::_sync_Inflations != NULL) ObjectMonitor::_sync_Inflations->inc() ;
       TEVENT(Inflate: overwrite neutral) ;
       if (TraceMonitorInflation) {
         if (object->is_instance()) {
@@ -1366,547 +1325,9 @@
   }
 }
 
-
-// This the fast monitor enter. The interpreter and compiler use
-// some assembly copies of this code. Make sure update those code
-// if the following function is changed. The implementation is
-// extremely sensitive to race condition. Be careful.
-
-void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, bool attempt_rebias, TRAPS) {
- if (UseBiasedLocking) {
-    if (!SafepointSynchronize::is_at_safepoint()) {
-      BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
-      if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
-        return;
-      }
-    } else {
-      assert(!attempt_rebias, "can not rebias toward VM thread");
-      BiasedLocking::revoke_at_safepoint(obj);
-    }
-    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
- }
-
- slow_enter (obj, lock, THREAD) ;
-}
-
-void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
-  assert(!object->mark()->has_bias_pattern(), "should not see bias pattern here");
-  // if displaced header is null, the previous enter is recursive enter, no-op
-  markOop dhw = lock->displaced_header();
-  markOop mark ;
-  if (dhw == NULL) {
-     // Recursive stack-lock.
-     // Diagnostics -- Could be: stack-locked, inflating, inflated.
-     mark = object->mark() ;
-     assert (!mark->is_neutral(), "invariant") ;
-     if (mark->has_locker() && mark != markOopDesc::INFLATING()) {
-        assert(THREAD->is_lock_owned((address)mark->locker()), "invariant") ;
-     }
-     if (mark->has_monitor()) {
-        ObjectMonitor * m = mark->monitor() ;
-        assert(((oop)(m->object()))->mark() == mark, "invariant") ;
-        assert(m->is_entered(THREAD), "invariant") ;
-     }
-     return ;
-  }
-
-  mark = object->mark() ;
-
-  // If the object is stack-locked by the current thread, try to
-  // swing the displaced header from the box back to the mark.
-  if (mark == (markOop) lock) {
-     assert (dhw->is_neutral(), "invariant") ;
-     if ((markOop) Atomic::cmpxchg_ptr (dhw, object->mark_addr(), mark) == mark) {
-        TEVENT (fast_exit: release stacklock) ;
-        return;
-     }
-  }
-
-  ObjectSynchronizer::inflate(THREAD, object)->exit (THREAD) ;
-}
-
-// This routine is used to handle interpreter/compiler slow case
-// We don't need to use fast path here, because it must have been
-// failed in the interpreter/compiler code.
-void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
-  markOop mark = obj->mark();
-  assert(!mark->has_bias_pattern(), "should not see bias pattern here");
-
-  if (mark->is_neutral()) {
-    // Anticipate successful CAS -- the ST of the displaced mark must
-    // be visible <= the ST performed by the CAS.
-    lock->set_displaced_header(mark);
-    if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
-      TEVENT (slow_enter: release stacklock) ;
-      return ;
-    }
-    // Fall through to inflate() ...
-  } else
-  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
-    assert(lock != mark->locker(), "must not re-lock the same lock");
-    assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
-    lock->set_displaced_header(NULL);
-    return;
-  }
-
-#if 0
-  // The following optimization isn't particularly useful.
-  if (mark->has_monitor() && mark->monitor()->is_entered(THREAD)) {
-    lock->set_displaced_header (NULL) ;
-    return ;
-  }
-#endif
-
-  // The object header will never be displaced to this lock,
-  // so it does not matter what the value is, except that it
-  // must be non-zero to avoid looking like a re-entrant lock,
-  // and must not look locked either.
-  lock->set_displaced_header(markOopDesc::unused_mark());
-  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
-}
-
-// This routine is used to handle interpreter/compiler slow case
-// We don't need to use fast path here, because it must have
-// failed in the interpreter/compiler code. Simply use the heavy
-// weight monitor should be ok, unless someone find otherwise.
-void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
-  fast_exit (object, lock, THREAD) ;
-}
-
-// NOTE: must use heavy weight monitor to handle jni monitor enter
-void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { // possible entry from jni enter
-  // the current locking is from JNI instead of Java code
-  TEVENT (jni_enter) ;
-  if (UseBiasedLocking) {
-    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
-    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-  }
-  THREAD->set_current_pending_monitor_is_from_java(false);
-  ObjectSynchronizer::inflate(THREAD, obj())->enter(THREAD);
-  THREAD->set_current_pending_monitor_is_from_java(true);
-}
-
-// NOTE: must use heavy weight monitor to handle jni monitor enter
-bool ObjectSynchronizer::jni_try_enter(Handle obj, Thread* THREAD) {
-  if (UseBiasedLocking) {
-    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
-    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-  }
-
-  ObjectMonitor* monitor = ObjectSynchronizer::inflate_helper(obj());
-  return monitor->try_enter(THREAD);
-}
-
-
-// NOTE: must use heavy weight monitor to handle jni monitor exit
-void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
-  TEVENT (jni_exit) ;
-  if (UseBiasedLocking) {
-    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
-  }
-  assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-
-  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj);
-  // If this thread has locked the object, exit the monitor.  Note:  can't use
-  // monitor->check(CHECK); must exit even if an exception is pending.
-  if (monitor->check(THREAD)) {
-     monitor->exit(THREAD);
-  }
-}
-
-// complete_exit()/reenter() are used to wait on a nested lock
-// i.e. to give up an outer lock completely and then re-enter
-// Used when holding nested locks - lock acquisition order: lock1 then lock2
-//  1) complete_exit lock1 - saving recursion count
-//  2) wait on lock2
-//  3) when notified on lock2, unlock lock2
-//  4) reenter lock1 with original recursion count
-//  5) lock lock2
-// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
-intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
-  TEVENT (complete_exit) ;
-  if (UseBiasedLocking) {
-    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
-    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-  }
-
-  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
-
-  return monitor->complete_exit(THREAD);
-}
-
-// NOTE: must use heavy weight monitor to handle complete_exit/reenter()
-void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
-  TEVENT (reenter) ;
-  if (UseBiasedLocking) {
-    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
-    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-  }
-
-  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
-
-  monitor->reenter(recursion, THREAD);
-}
-
-// This exists only as a workaround of dtrace bug 6254741
-int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
-  DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
-  return 0;
-}
-
-// NOTE: must use heavy weight monitor to handle wait()
-void ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
-  if (UseBiasedLocking) {
-    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
-    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-  }
-  if (millis < 0) {
-    TEVENT (wait - throw IAX) ;
-    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
-  }
-  ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD, obj());
-  DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
-  monitor->wait(millis, true, THREAD);
-
-  /* This dummy call is in place to get around dtrace bug 6254741.  Once
-     that's fixed we can uncomment the following line and remove the call */
-  // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
-  dtrace_waited_probe(monitor, obj, THREAD);
-}
-
-void ObjectSynchronizer::waitUninterruptibly (Handle obj, jlong millis, TRAPS) {
-  if (UseBiasedLocking) {
-    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
-    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-  }
-  if (millis < 0) {
-    TEVENT (wait - throw IAX) ;
-    THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
-  }
-  ObjectSynchronizer::inflate(THREAD, obj()) -> wait(millis, false, THREAD) ;
-}
-
-void ObjectSynchronizer::notify(Handle obj, TRAPS) {
- if (UseBiasedLocking) {
-    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
-    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-  }
-
-  markOop mark = obj->mark();
-  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
-    return;
-  }
-  ObjectSynchronizer::inflate(THREAD, obj())->notify(THREAD);
-}
-
-// NOTE: see comment of notify()
-void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
-  if (UseBiasedLocking) {
-    BiasedLocking::revoke_and_rebias(obj, false, THREAD);
-    assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-  }
-
-  markOop mark = obj->mark();
-  if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
-    return;
-  }
-  ObjectSynchronizer::inflate(THREAD, obj())->notifyAll(THREAD);
-}
-
-intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
-  if (UseBiasedLocking) {
-    // NOTE: many places throughout the JVM do not expect a safepoint
-    // to be taken here, in particular most operations on perm gen
-    // objects. However, we only ever bias Java instances and all of
-    // the call sites of identity_hash that might revoke biases have
-    // been checked to make sure they can handle a safepoint. The
-    // added check of the bias pattern is to avoid useless calls to
-    // thread-local storage.
-    if (obj->mark()->has_bias_pattern()) {
-      // Box and unbox the raw reference just in case we cause a STW safepoint.
-      Handle hobj (Self, obj) ;
-      // Relaxing assertion for bug 6320749.
-      assert (Universe::verify_in_progress() ||
-              !SafepointSynchronize::is_at_safepoint(),
-             "biases should not be seen by VM thread here");
-      BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
-      obj = hobj() ;
-      assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-    }
-  }
+// Note that we could encounter some performance loss through false-sharing as
+// multiple locks occupy the same $ line.  Padding might be appropriate.
 
-  // hashCode() is a heap mutator ...
-  // Relaxing assertion for bug 6320749.
-  assert (Universe::verify_in_progress() ||
-          !SafepointSynchronize::is_at_safepoint(), "invariant") ;
-  assert (Universe::verify_in_progress() ||
-          Self->is_Java_thread() , "invariant") ;
-  assert (Universe::verify_in_progress() ||
-         ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
-
-  ObjectMonitor* monitor = NULL;
-  markOop temp, test;
-  intptr_t hash;
-  markOop mark = ReadStableMark (obj);
-
-  // object should remain ineligible for biased locking
-  assert (!mark->has_bias_pattern(), "invariant") ;
-
-  if (mark->is_neutral()) {
-    hash = mark->hash();              // this is a normal header
-    if (hash) {                       // if it has hash, just return it
-      return hash;
-    }
-    hash = get_next_hash(Self, obj);  // allocate a new hash code
-    temp = mark->copy_set_hash(hash); // merge the hash code into header
-    // use (machine word version) atomic operation to install the hash
-    test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
-    if (test == mark) {
-      return hash;
-    }
-    // If atomic operation failed, we must inflate the header
-    // into heavy weight monitor. We could add more code here
-    // for fast path, but it does not worth the complexity.
-  } else if (mark->has_monitor()) {
-    monitor = mark->monitor();
-    temp = monitor->header();
-    assert (temp->is_neutral(), "invariant") ;
-    hash = temp->hash();
-    if (hash) {
-      return hash;
-    }
-    // Skip to the following code to reduce code size
-  } else if (Self->is_lock_owned((address)mark->locker())) {
-    temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
-    assert (temp->is_neutral(), "invariant") ;
-    hash = temp->hash();              // by current thread, check if the displaced
-    if (hash) {                       // header contains hash code
-      return hash;
-    }
-    // WARNING:
-    //   The displaced header is strictly immutable.
-    // It can NOT be changed in ANY cases. So we have
-    // to inflate the header into heavyweight monitor
-    // even the current thread owns the lock. The reason
-    // is the BasicLock (stack slot) will be asynchronously
-    // read by other threads during the inflate() function.
-    // Any change to stack may not propagate to other threads
-    // correctly.
-  }
-
-  // Inflate the monitor to set hash code
-  monitor = ObjectSynchronizer::inflate(Self, obj);
-  // Load displaced header and check it has hash code
-  mark = monitor->header();
-  assert (mark->is_neutral(), "invariant") ;
-  hash = mark->hash();
-  if (hash == 0) {
-    hash = get_next_hash(Self, obj);
-    temp = mark->copy_set_hash(hash); // merge hash code into header
-    assert (temp->is_neutral(), "invariant") ;
-    test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
-    if (test != mark) {
-      // The only update to the header in the monitor (outside GC)
-      // is install the hash code. If someone add new usage of
-      // displaced header, please update this code
-      hash = test->hash();
-      assert (test->is_neutral(), "invariant") ;
-      assert (hash != 0, "Trivial unexpected object/monitor header usage.");
-    }
-  }
-  // We finally get the hash
-  return hash;
-}
-
-// Deprecated -- use FastHashCode() instead.
-
-intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
-  return FastHashCode (Thread::current(), obj()) ;
-}
-
-bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
-                                                   Handle h_obj) {
-  if (UseBiasedLocking) {
-    BiasedLocking::revoke_and_rebias(h_obj, false, thread);
-    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-  }
-
-  assert(thread == JavaThread::current(), "Can only be called on current thread");
-  oop obj = h_obj();
-
-  markOop mark = ReadStableMark (obj) ;
-
-  // Uncontended case, header points to stack
-  if (mark->has_locker()) {
-    return thread->is_lock_owned((address)mark->locker());
-  }
-  // Contended case, header points to ObjectMonitor (tagged pointer)
-  if (mark->has_monitor()) {
-    ObjectMonitor* monitor = mark->monitor();
-    return monitor->is_entered(thread) != 0 ;
-  }
-  // Unlocked case, header in place
-  assert(mark->is_neutral(), "sanity check");
-  return false;
-}
-
-// Be aware of this method could revoke bias of the lock object.
-// This method querys the ownership of the lock handle specified by 'h_obj'.
-// If the current thread owns the lock, it returns owner_self. If no
-// thread owns the lock, it returns owner_none. Otherwise, it will return
-// ower_other.
-ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
-(JavaThread *self, Handle h_obj) {
-  // The caller must beware this method can revoke bias, and
-  // revocation can result in a safepoint.
-  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
-  assert (self->thread_state() != _thread_blocked , "invariant") ;
-
-  // Possible mark states: neutral, biased, stack-locked, inflated
-
-  if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
-    // CASE: biased
-    BiasedLocking::revoke_and_rebias(h_obj, false, self);
-    assert(!h_obj->mark()->has_bias_pattern(),
-           "biases should be revoked by now");
-  }
-
-  assert(self == JavaThread::current(), "Can only be called on current thread");
-  oop obj = h_obj();
-  markOop mark = ReadStableMark (obj) ;
-
-  // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
-  if (mark->has_locker()) {
-    return self->is_lock_owned((address)mark->locker()) ?
-      owner_self : owner_other;
-  }
-
-  // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
-  // The Object:ObjectMonitor relationship is stable as long as we're
-  // not at a safepoint.
-  if (mark->has_monitor()) {
-    void * owner = mark->monitor()->_owner ;
-    if (owner == NULL) return owner_none ;
-    return (owner == self ||
-            self->is_lock_owned((address)owner)) ? owner_self : owner_other;
-  }
-
-  // CASE: neutral
-  assert(mark->is_neutral(), "sanity check");
-  return owner_none ;           // it's unlocked
-}
-
-// FIXME: jvmti should call this
-JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
-  if (UseBiasedLocking) {
-    if (SafepointSynchronize::is_at_safepoint()) {
-      BiasedLocking::revoke_at_safepoint(h_obj);
-    } else {
-      BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
-    }
-    assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
-  }
-
-  oop obj = h_obj();
-  address owner = NULL;
-
-  markOop mark = ReadStableMark (obj) ;
-
-  // Uncontended case, header points to stack
-  if (mark->has_locker()) {
-    owner = (address) mark->locker();
-  }
-
-  // Contended case, header points to ObjectMonitor (tagged pointer)
-  if (mark->has_monitor()) {
-    ObjectMonitor* monitor = mark->monitor();
-    assert(monitor != NULL, "monitor should be non-null");
-    owner = (address) monitor->owner();
-  }
-
-  if (owner != NULL) {
-    return Threads::owning_thread_from_monitor_owner(owner, doLock);
-  }
-
-  // Unlocked case, header in place
-  // Cannot have assertion since this object may have been
-  // locked by another thread when reaching here.
-  // assert(mark->is_neutral(), "sanity check");
-
-  return NULL;
-}
-
-// Iterate through monitor cache and attempt to release thread's monitors
-// Gives up on a particular monitor if an exception occurs, but continues
-// the overall iteration, swallowing the exception.
-class ReleaseJavaMonitorsClosure: public MonitorClosure {
-private:
-  TRAPS;
-
-public:
-  ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
-  void do_monitor(ObjectMonitor* mid) {
-    if (mid->owner() == THREAD) {
-      (void)mid->complete_exit(CHECK);
-    }
-  }
-};
-
-// Release all inflated monitors owned by THREAD.  Lightweight monitors are
-// ignored.  This is meant to be called during JNI thread detach which assumes
-// all remaining monitors are heavyweight.  All exceptions are swallowed.
-// Scanning the extant monitor list can be time consuming.
-// A simple optimization is to add a per-thread flag that indicates a thread
-// called jni_monitorenter() during its lifetime.
-//
-// Instead of No_Savepoint_Verifier it might be cheaper to
-// use an idiom of the form:
-//   auto int tmp = SafepointSynchronize::_safepoint_counter ;
-//   <code that must not run at safepoint>
-//   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
-// Since the tests are extremely cheap we could leave them enabled
-// for normal product builds.
-
-void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
-  assert(THREAD == JavaThread::current(), "must be current Java thread");
-  No_Safepoint_Verifier nsv ;
-  ReleaseJavaMonitorsClosure rjmc(THREAD);
-  Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
-  ObjectSynchronizer::monitors_iterate(&rjmc);
-  Thread::muxRelease(&ListLock);
-  THREAD->clear_pending_exception();
-}
-
-// Visitors ...
-
-void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
-  ObjectMonitor* block = gBlockList;
-  ObjectMonitor* mid;
-  while (block) {
-    assert(block->object() == CHAINMARKER, "must be a block header");
-    for (int i = _BLOCKSIZE - 1; i > 0; i--) {
-      mid = block + i;
-      oop object = (oop) mid->object();
-      if (object != NULL) {
-        closure->do_monitor(mid);
-      }
-    }
-    block = (ObjectMonitor*) block->FreeNext;
-  }
-}
-
-void ObjectSynchronizer::oops_do(OopClosure* f) {
-  assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
-  for (ObjectMonitor* block = gBlockList; block != NULL; block = next(block)) {
-    assert(block->object() == CHAINMARKER, "must be a block header");
-    for (int i = 1; i < _BLOCKSIZE; i++) {
-      ObjectMonitor* mid = &block[i];
-      if (mid->object() != NULL) {
-        f->do_oop((oop*)mid->object_addr());
-      }
-    }
-  }
-}
 
 // Deflate_idle_monitors() is called at all safepoints, immediately
 // after all mutators are stopped, but before any objects have moved.
@@ -1936,12 +1357,11 @@
 // which in turn can mean large(r) numbers of objectmonitors in circulation.
 // This is an unfortunate aspect of this design.
 //
-// Another refinement would be to refrain from calling deflate_idle_monitors()
-// except at stop-the-world points associated with garbage collections.
-//
-// An even better solution would be to deflate on-the-fly, aggressively,
-// at monitorexit-time as is done in EVM's metalock or Relaxed Locks.
 
+enum ManifestConstants {
+    ClearResponsibleAtSTW   = 0,
+    MaximumRecheckInterval  = 1000
+} ;
 
 // Deflate a single monitor if not in use
 // Return true if deflated, false if in use
@@ -2088,7 +1508,7 @@
 
   // Consider: audit gFreeList to ensure that MonitorFreeCount and list agree.
 
-  if (Knob_Verbose) {
+  if (ObjectMonitor::Knob_Verbose) {
     ::printf ("Deflate: InCirc=%d InUse=%d Scavenged=%d ForceMonitorScavenge=%d : pop=%d free=%d\n",
         nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
         MonitorPopulation, MonitorFreeCount) ;
@@ -2107,8 +1527,8 @@
   }
   Thread::muxRelease (&ListLock) ;
 
-  if (_sync_Deflations != NULL) _sync_Deflations->inc(nScavenged) ;
-  if (_sync_MonExtant  != NULL) _sync_MonExtant ->set_value(nInCirculation);
+  if (ObjectMonitor::_sync_Deflations != NULL) ObjectMonitor::_sync_Deflations->inc(nScavenged) ;
+  if (ObjectMonitor::_sync_MonExtant  != NULL) ObjectMonitor::_sync_MonExtant ->set_value(nInCirculation);
 
   // TODO: Add objectMonitor leak detection.
   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
@@ -2116,2810 +1536,49 @@
   GVars.stwCycle ++ ;
 }
 
-// A macro is used below because there may already be a pending
-// exception which should not abort the execution of the routines
-// which use this (which is why we don't put this into check_slow and
-// call it with a CHECK argument).
-
-#define CHECK_OWNER()                                                             \
-  do {                                                                            \
-    if (THREAD != _owner) {                                                       \
-      if (THREAD->is_lock_owned((address) _owner)) {                              \
-        _owner = THREAD ;  /* Convert from basiclock addr to Thread addr */       \
-        _recursions = 0;                                                          \
-        OwnerIsThread = 1 ;                                                       \
-      } else {                                                                    \
-        TEVENT (Throw IMSX) ;                                                     \
-        THROW(vmSymbols::java_lang_IllegalMonitorStateException());               \
-      }                                                                           \
-    }                                                                             \
-  } while (false)
-
-// TODO-FIXME: eliminate ObjectWaiters.  Replace this visitor/enumerator
-// interface with a simple FirstWaitingThread(), NextWaitingThread() interface.
-
-ObjectWaiter* ObjectMonitor::first_waiter() {
-  return _WaitSet;
-}
-
-ObjectWaiter* ObjectMonitor::next_waiter(ObjectWaiter* o) {
-  return o->_next;
-}
-
-Thread* ObjectMonitor::thread_of_waiter(ObjectWaiter* o) {
-  return o->_thread;
-}
-
-// initialize the monitor, exception the semaphore, all other fields
-// are simple integers or pointers
-ObjectMonitor::ObjectMonitor() {
-  _header       = NULL;
-  _count        = 0;
-  _waiters      = 0,
-  _recursions   = 0;
-  _object       = NULL;
-  _owner        = NULL;
-  _WaitSet      = NULL;
-  _WaitSetLock  = 0 ;
-  _Responsible  = NULL ;
-  _succ         = NULL ;
-  _cxq          = NULL ;
-  FreeNext      = NULL ;
-  _EntryList    = NULL ;
-  _SpinFreq     = 0 ;
-  _SpinClock    = 0 ;
-  OwnerIsThread = 0 ;
-}
-
-ObjectMonitor::~ObjectMonitor() {
-   // TODO: Add asserts ...
-   // _cxq == 0 _succ == NULL _owner == NULL _waiters == 0
-   // _count == 0 _EntryList  == NULL etc
-}
+// Monitor cleanup on JavaThread::exit
 
-intptr_t ObjectMonitor::is_busy() const {
-  // TODO-FIXME: merge _count and _waiters.
-  // TODO-FIXME: assert _owner == null implies _recursions = 0
-  // TODO-FIXME: assert _WaitSet != null implies _count > 0
-  return _count|_waiters|intptr_t(_owner)|intptr_t(_cxq)|intptr_t(_EntryList ) ;
-}
-
-void ObjectMonitor::Recycle () {
-  // TODO: add stronger asserts ...
-  // _cxq == 0 _succ == NULL _owner == NULL _waiters == 0
-  // _count == 0 EntryList  == NULL
-  // _recursions == 0 _WaitSet == NULL
-  // TODO: assert (is_busy()|_recursions) == 0
-  _succ          = NULL ;
-  _EntryList     = NULL ;
-  _cxq           = NULL ;
-  _WaitSet       = NULL ;
-  _recursions    = 0 ;
-  _SpinFreq      = 0 ;
-  _SpinClock     = 0 ;
-  OwnerIsThread  = 0 ;
-}
-
-// WaitSet management ...
+// Iterate through monitor cache and attempt to release thread's monitors
+// Gives up on a particular monitor if an exception occurs, but continues
+// the overall iteration, swallowing the exception.
+class ReleaseJavaMonitorsClosure: public MonitorClosure {
+private:
+  TRAPS;
 
-inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
-  assert(node != NULL, "should not dequeue NULL node");
-  assert(node->_prev == NULL, "node already in list");
-  assert(node->_next == NULL, "node already in list");
-  // put node at end of queue (circular doubly linked list)
-  if (_WaitSet == NULL) {
-    _WaitSet = node;
-    node->_prev = node;
-    node->_next = node;
-  } else {
-    ObjectWaiter* head = _WaitSet ;
-    ObjectWaiter* tail = head->_prev;
-    assert(tail->_next == head, "invariant check");
-    tail->_next = node;
-    head->_prev = node;
-    node->_next = head;
-    node->_prev = tail;
-  }
-}
-
-inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
-  // dequeue the very first waiter
-  ObjectWaiter* waiter = _WaitSet;
-  if (waiter) {
-    DequeueSpecificWaiter(waiter);
-  }
-  return waiter;
-}
-
-inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
-  assert(node != NULL, "should not dequeue NULL node");
-  assert(node->_prev != NULL, "node already removed from list");
-  assert(node->_next != NULL, "node already removed from list");
-  // when the waiter has woken up because of interrupt,
-  // timeout or other spurious wake-up, dequeue the
-  // waiter from waiting list
-  ObjectWaiter* next = node->_next;
-  if (next == node) {
-    assert(node->_prev == node, "invariant check");
-    _WaitSet = NULL;
-  } else {
-    ObjectWaiter* prev = node->_prev;
-    assert(prev->_next == node, "invariant check");
-    assert(next->_prev == node, "invariant check");
-    next->_prev = prev;
-    prev->_next = next;
-    if (_WaitSet == node) {
-      _WaitSet = next;
+public:
+  ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
+  void do_monitor(ObjectMonitor* mid) {
+    if (mid->owner() == THREAD) {
+      (void)mid->complete_exit(CHECK);
     }
   }
-  node->_next = NULL;
-  node->_prev = NULL;
-}
-
-static char * kvGet (char * kvList, const char * Key) {
-    if (kvList == NULL) return NULL ;
-    size_t n = strlen (Key) ;
-    char * Search ;
-    for (Search = kvList ; *Search ; Search += strlen(Search) + 1) {
-        if (strncmp (Search, Key, n) == 0) {
-            if (Search[n] == '=') return Search + n + 1 ;
-            if (Search[n] == 0)   return (char *) "1" ;
-        }
-    }
-    return NULL ;
-}
-
-static int kvGetInt (char * kvList, const char * Key, int Default) {
-    char * v = kvGet (kvList, Key) ;
-    int rslt = v ? ::strtol (v, NULL, 0) : Default ;
-    if (Knob_ReportSettings && v != NULL) {
-        ::printf ("  SyncKnob: %s %d(%d)\n", Key, rslt, Default) ;
-        ::fflush (stdout) ;
-    }
-    return rslt ;
-}
-
-// By convention we unlink a contending thread from EntryList|cxq immediately
-// after the thread acquires the lock in ::enter().  Equally, we could defer
-// unlinking the thread until ::exit()-time.
-
-void ObjectMonitor::UnlinkAfterAcquire (Thread * Self, ObjectWaiter * SelfNode)
-{
-    assert (_owner == Self, "invariant") ;
-    assert (SelfNode->_thread == Self, "invariant") ;
-
-    if (SelfNode->TState == ObjectWaiter::TS_ENTER) {
-        // Normal case: remove Self from the DLL EntryList .
-        // This is a constant-time operation.
-        ObjectWaiter * nxt = SelfNode->_next ;
-        ObjectWaiter * prv = SelfNode->_prev ;
-        if (nxt != NULL) nxt->_prev = prv ;
-        if (prv != NULL) prv->_next = nxt ;
-        if (SelfNode == _EntryList ) _EntryList = nxt ;
-        assert (nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant") ;
-        assert (prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant") ;
-        TEVENT (Unlink from EntryList) ;
-    } else {
-        guarantee (SelfNode->TState == ObjectWaiter::TS_CXQ, "invariant") ;
-        // Inopportune interleaving -- Self is still on the cxq.
-        // This usually means the enqueue of self raced an exiting thread.
-        // Normally we'll find Self near the front of the cxq, so
-        // dequeueing is typically fast.  If needbe we can accelerate
-        // this with some MCS/CHL-like bidirectional list hints and advisory
-        // back-links so dequeueing from the interior will normally operate
-        // in constant-time.
-        // Dequeue Self from either the head (with CAS) or from the interior
-        // with a linear-time scan and normal non-atomic memory operations.
-        // CONSIDER: if Self is on the cxq then simply drain cxq into EntryList
-        // and then unlink Self from EntryList.  We have to drain eventually,
-        // so it might as well be now.
-
-        ObjectWaiter * v = _cxq ;
-        assert (v != NULL, "invariant") ;
-        if (v != SelfNode || Atomic::cmpxchg_ptr (SelfNode->_next, &_cxq, v) != v) {
-            // The CAS above can fail from interference IFF a "RAT" arrived.
-            // In that case Self must be in the interior and can no longer be
-            // at the head of cxq.
-            if (v == SelfNode) {
-                assert (_cxq != v, "invariant") ;
-                v = _cxq ;          // CAS above failed - start scan at head of list
-            }
-            ObjectWaiter * p ;
-            ObjectWaiter * q = NULL ;
-            for (p = v ; p != NULL && p != SelfNode; p = p->_next) {
-                q = p ;
-                assert (p->TState == ObjectWaiter::TS_CXQ, "invariant") ;
-            }
-            assert (v != SelfNode,  "invariant") ;
-            assert (p == SelfNode,  "Node not found on cxq") ;
-            assert (p != _cxq,      "invariant") ;
-            assert (q != NULL,      "invariant") ;
-            assert (q->_next == p,  "invariant") ;
-            q->_next = p->_next ;
-        }
-        TEVENT (Unlink from cxq) ;
-    }
-
-    // Diagnostic hygiene ...
-    SelfNode->_prev  = (ObjectWaiter *) 0xBAD ;
-    SelfNode->_next  = (ObjectWaiter *) 0xBAD ;
-    SelfNode->TState = ObjectWaiter::TS_RUN ;
-}
-
-// Caveat: TryLock() is not necessarily serializing if it returns failure.
-// Callers must compensate as needed.
-
-int ObjectMonitor::TryLock (Thread * Self) {
-   for (;;) {
-      void * own = _owner ;
-      if (own != NULL) return 0 ;
-      if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
-         // Either guarantee _recursions == 0 or set _recursions = 0.
-         assert (_recursions == 0, "invariant") ;
-         assert (_owner == Self, "invariant") ;
-         // CONSIDER: set or assert that OwnerIsThread == 1
-         return 1 ;
-      }
-      // The lock had been free momentarily, but we lost the race to the lock.
-      // Interference -- the CAS failed.
-      // We can either return -1 or retry.
-      // Retry doesn't make as much sense because the lock was just acquired.
-      if (true) return -1 ;
-   }
-}
-
-// NotRunnable() -- informed spinning
-//
-// Don't bother spinning if the owner is not eligible to drop the lock.
-// Peek at the owner's schedctl.sc_state and Thread._thread_values and
-// spin only if the owner thread is _thread_in_Java or _thread_in_vm.
-// The thread must be runnable in order to drop the lock in timely fashion.
-// If the _owner is not runnable then spinning will not likely be
-// successful (profitable).
-//
-// Beware -- the thread referenced by _owner could have died
-// so a simply fetch from _owner->_thread_state might trap.
-// Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
-// Because of the lifecycle issues the schedctl and _thread_state values
-// observed by NotRunnable() might be garbage.  NotRunnable must
-// tolerate this and consider the observed _thread_state value
-// as advisory.
-//
-// Beware too, that _owner is sometimes a BasicLock address and sometimes
-// a thread pointer.  We differentiate the two cases with OwnerIsThread.
-// Alternately, we might tag the type (thread pointer vs basiclock pointer)
-// with the LSB of _owner.  Another option would be to probablistically probe
-// the putative _owner->TypeTag value.
-//
-// Checking _thread_state isn't perfect.  Even if the thread is
-// in_java it might be blocked on a page-fault or have been preempted
-// and sitting on a ready/dispatch queue.  _thread state in conjunction
-// with schedctl.sc_state gives us a good picture of what the
-// thread is doing, however.
-//
-// TODO: check schedctl.sc_state.
-// We'll need to use SafeFetch32() to read from the schedctl block.
-// See RFE #5004247 and http://sac.sfbay.sun.com/Archives/CaseLog/arc/PSARC/2005/351/
-//
-// The return value from NotRunnable() is *advisory* -- the
-// result is based on sampling and is not necessarily coherent.
-// The caller must tolerate false-negative and false-positive errors.
-// Spinning, in general, is probabilistic anyway.
-
-
-int ObjectMonitor::NotRunnable (Thread * Self, Thread * ox) {
-    // Check either OwnerIsThread or ox->TypeTag == 2BAD.
-    if (!OwnerIsThread) return 0 ;
-
-    if (ox == NULL) return 0 ;
-
-    // Avoid transitive spinning ...
-    // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
-    // Immediately after T1 acquires L it's possible that T2, also
-    // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
-    // This occurs transiently after T1 acquired L but before
-    // T1 managed to clear T1.Stalled.  T2 does not need to abort
-    // its spin in this circumstance.
-    intptr_t BlockedOn = SafeFetchN ((intptr_t *) &ox->_Stalled, intptr_t(1)) ;
-
-    if (BlockedOn == 1) return 1 ;
-    if (BlockedOn != 0) {
-      return BlockedOn != intptr_t(this) && _owner == ox ;
-    }
-
-    assert (sizeof(((JavaThread *)ox)->_thread_state == sizeof(int)), "invariant") ;
-    int jst = SafeFetch32 ((int *) &((JavaThread *) ox)->_thread_state, -1) ; ;
-    // consider also: jst != _thread_in_Java -- but that's overspecific.
-    return jst == _thread_blocked || jst == _thread_in_native ;
-}
-
-
-// Adaptive spin-then-block - rational spinning
-//
-// Note that we spin "globally" on _owner with a classic SMP-polite TATAS
-// algorithm.  On high order SMP systems it would be better to start with
-// a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
-// a contending thread could enqueue itself on the cxq and then spin locally
-// on a thread-specific variable such as its ParkEvent._Event flag.
-// That's left as an exercise for the reader.  Note that global spinning is
-// not problematic on Niagara, as the L2$ serves the interconnect and has both
-// low latency and massive bandwidth.
-//
-// Broadly, we can fix the spin frequency -- that is, the % of contended lock
-// acquisition attempts where we opt to spin --  at 100% and vary the spin count
-// (duration) or we can fix the count at approximately the duration of
-// a context switch and vary the frequency.   Of course we could also
-// vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
-// See http://j2se.east/~dice/PERSIST/040824-AdaptiveSpinning.html.
-//
-// This implementation varies the duration "D", where D varies with
-// the success rate of recent spin attempts. (D is capped at approximately
-// length of a round-trip context switch).  The success rate for recent
-// spin attempts is a good predictor of the success rate of future spin
-// attempts.  The mechanism adapts automatically to varying critical
-// section length (lock modality), system load and degree of parallelism.
-// D is maintained per-monitor in _SpinDuration and is initialized
-// optimistically.  Spin frequency is fixed at 100%.
-//
-// Note that _SpinDuration is volatile, but we update it without locks
-// or atomics.  The code is designed so that _SpinDuration stays within
-// a reasonable range even in the presence of races.  The arithmetic
-// operations on _SpinDuration are closed over the domain of legal values,
-// so at worst a race will install and older but still legal value.
-// At the very worst this introduces some apparent non-determinism.
-// We might spin when we shouldn't or vice-versa, but since the spin
-// count are relatively short, even in the worst case, the effect is harmless.
-//
-// Care must be taken that a low "D" value does not become an
-// an absorbing state.  Transient spinning failures -- when spinning
-// is overall profitable -- should not cause the system to converge
-// on low "D" values.  We want spinning to be stable and predictable
-// and fairly responsive to change and at the same time we don't want
-// it to oscillate, become metastable, be "too" non-deterministic,
-// or converge on or enter undesirable stable absorbing states.
-//
-// We implement a feedback-based control system -- using past behavior
-// to predict future behavior.  We face two issues: (a) if the
-// input signal is random then the spin predictor won't provide optimal
-// results, and (b) if the signal frequency is too high then the control
-// system, which has some natural response lag, will "chase" the signal.
-// (b) can arise from multimodal lock hold times.  Transient preemption
-// can also result in apparent bimodal lock hold times.
-// Although sub-optimal, neither condition is particularly harmful, as
-// in the worst-case we'll spin when we shouldn't or vice-versa.
-// The maximum spin duration is rather short so the failure modes aren't bad.
-// To be conservative, I've tuned the gain in system to bias toward
-// _not spinning.  Relatedly, the system can sometimes enter a mode where it
-// "rings" or oscillates between spinning and not spinning.  This happens
-// when spinning is just on the cusp of profitability, however, so the
-// situation is not dire.  The state is benign -- there's no need to add
-// hysteresis control to damp the transition rate between spinning and
-// not spinning.
-//
-// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-//
-// Spin-then-block strategies ...
-//
-// Thoughts on ways to improve spinning :
-//
-// *  Periodically call {psr_}getloadavg() while spinning, and
-//    permit unbounded spinning if the load average is <
-//    the number of processors.  Beware, however, that getloadavg()
-//    is exceptionally fast on solaris (about 1/10 the cost of a full
-//    spin cycle, but quite expensive on linux.  Beware also, that
-//    multiple JVMs could "ring" or oscillate in a feedback loop.
-//    Sufficient damping would solve that problem.
-//
-// *  We currently use spin loops with iteration counters to approximate
-//    spinning for some interval.  Given the availability of high-precision
-//    time sources such as gethrtime(), %TICK, %STICK, RDTSC, etc., we should
-//    someday reimplement the spin loops to duration-based instead of iteration-based.
-//
-// *  Don't spin if there are more than N = (CPUs/2) threads
-//        currently spinning on the monitor (or globally).
-//    That is, limit the number of concurrent spinners.
-//    We might also limit the # of spinners in the JVM, globally.
-//
-// *  If a spinning thread observes _owner change hands it should
-//    abort the spin (and park immediately) or at least debit
-//    the spin counter by a large "penalty".
-//
-// *  Classically, the spin count is either K*(CPUs-1) or is a
-//        simple constant that approximates the length of a context switch.
-//    We currently use a value -- computed by a special utility -- that
-//    approximates round-trip context switch times.
-//
-// *  Normally schedctl_start()/_stop() is used to advise the kernel
-//    to avoid preempting threads that are running in short, bounded
-//    critical sections.  We could use the schedctl hooks in an inverted
-//    sense -- spinners would set the nopreempt flag, but poll the preempt
-//    pending flag.  If a spinner observed a pending preemption it'd immediately
-//    abort the spin and park.   As such, the schedctl service acts as
-//    a preemption warning mechanism.
-//
-// *  In lieu of spinning, if the system is running below saturation
-//    (that is, loadavg() << #cpus), we can instead suppress futile
-//    wakeup throttling, or even wake more than one successor at exit-time.
-//    The net effect is largely equivalent to spinning.  In both cases,
-//    contending threads go ONPROC and opportunistically attempt to acquire
-//    the lock, decreasing lock handover latency at the expense of wasted
-//    cycles and context switching.
-//
-// *  We might to spin less after we've parked as the thread will
-//    have less $ and TLB affinity with the processor.
-//    Likewise, we might spin less if we come ONPROC on a different
-//    processor or after a long period (>> rechose_interval).
-//
-// *  A table-driven state machine similar to Solaris' dispadmin scheduling
-//    tables might be a better design.  Instead of encoding information in
-//    _SpinDuration, _SpinFreq and _SpinClock we'd just use explicit,
-//    discrete states.   Success or failure during a spin would drive
-//    state transitions, and each state node would contain a spin count.
-//
-// *  If the processor is operating in a mode intended to conserve power
-//    (such as Intel's SpeedStep) or to reduce thermal output (thermal
-//    step-down mode) then the Java synchronization subsystem should
-//    forgo spinning.
-//
-// *  The minimum spin duration should be approximately the worst-case
-//    store propagation latency on the platform.  That is, the time
-//    it takes a store on CPU A to become visible on CPU B, where A and
-//    B are "distant".
-//
-// *  We might want to factor a thread's priority in the spin policy.
-//    Threads with a higher priority might spin for slightly longer.
-//    Similarly, if we use back-off in the TATAS loop, lower priority
-//    threads might back-off longer.  We don't currently use a
-//    thread's priority when placing it on the entry queue.  We may
-//    want to consider doing so in future releases.
-//
-// *  We might transiently drop a thread's scheduling priority while it spins.
-//    SCHED_BATCH on linux and FX scheduling class at priority=0 on Solaris
-//    would suffice.  We could even consider letting the thread spin indefinitely at
-//    a depressed or "idle" priority.  This brings up fairness issues, however --
-//    in a saturated system a thread would with a reduced priority could languish
-//    for extended periods on the ready queue.
-//
-// *  While spinning try to use the otherwise wasted time to help the VM make
-//    progress:
-//
-//    -- YieldTo() the owner, if the owner is OFFPROC but ready
-//       Done our remaining quantum directly to the ready thread.
-//       This helps "push" the lock owner through the critical section.
-//       It also tends to improve affinity/locality as the lock
-//       "migrates" less frequently between CPUs.
-//    -- Walk our own stack in anticipation of blocking.  Memoize the roots.
-//    -- Perform strand checking for other thread.  Unpark potential strandees.
-//    -- Help GC: trace or mark -- this would need to be a bounded unit of work.
-//       Unfortunately this will pollute our $ and TLBs.  Recall that we
-//       spin to avoid context switching -- context switching has an
-//       immediate cost in latency, a disruptive cost to other strands on a CMT
-//       processor, and an amortized cost because of the D$ and TLB cache
-//       reload transient when the thread comes back ONPROC and repopulates
-//       $s and TLBs.
-//    -- call getloadavg() to see if the system is saturated.  It'd probably
-//       make sense to call getloadavg() half way through the spin.
-//       If the system isn't at full capacity the we'd simply reset
-//       the spin counter to and extend the spin attempt.
-//    -- Doug points out that we should use the same "helping" policy
-//       in thread.yield().
-//
-// *  Try MONITOR-MWAIT on systems that support those instructions.
-//
-// *  The spin statistics that drive spin decisions & frequency are
-//    maintained in the objectmonitor structure so if we deflate and reinflate
-//    we lose spin state.  In practice this is not usually a concern
-//    as the default spin state after inflation is aggressive (optimistic)
-//    and tends toward spinning.  So in the worst case for a lock where
-//    spinning is not profitable we may spin unnecessarily for a brief
-//    period.  But then again, if a lock is contended it'll tend not to deflate
-//    in the first place.
-
-
-intptr_t ObjectMonitor::SpinCallbackArgument = 0 ;
-int (*ObjectMonitor::SpinCallbackFunction)(intptr_t, int) = NULL ;
-
-// Spinning: Fixed frequency (100%), vary duration
-
-int ObjectMonitor::TrySpin_VaryDuration (Thread * Self) {
-
-    // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
-    int ctr = Knob_FixedSpin ;
-    if (ctr != 0) {
-        while (--ctr >= 0) {
-            if (TryLock (Self) > 0) return 1 ;
-            SpinPause () ;
-        }
-        return 0 ;
-    }
-
-    for (ctr = Knob_PreSpin + 1; --ctr >= 0 ; ) {
-      if (TryLock(Self) > 0) {
-        // Increase _SpinDuration ...
-        // Note that we don't clamp SpinDuration precisely at SpinLimit.
-        // Raising _SpurDuration to the poverty line is key.
-        int x = _SpinDuration ;
-        if (x < Knob_SpinLimit) {
-           if (x < Knob_Poverty) x = Knob_Poverty ;
-           _SpinDuration = x + Knob_BonusB ;
-        }
-        return 1 ;
-      }
-      SpinPause () ;
-    }
-
-    // Admission control - verify preconditions for spinning
-    //
-    // We always spin a little bit, just to prevent _SpinDuration == 0 from
-    // becoming an absorbing state.  Put another way, we spin briefly to
-    // sample, just in case the system load, parallelism, contention, or lock
-    // modality changed.
-    //
-    // Consider the following alternative:
-    // Periodically set _SpinDuration = _SpinLimit and try a long/full
-    // spin attempt.  "Periodically" might mean after a tally of
-    // the # of failed spin attempts (or iterations) reaches some threshold.
-    // This takes us into the realm of 1-out-of-N spinning, where we
-    // hold the duration constant but vary the frequency.
-
-    ctr = _SpinDuration  ;
-    if (ctr < Knob_SpinBase) ctr = Knob_SpinBase ;
-    if (ctr <= 0) return 0 ;
-
-    if (Knob_SuccRestrict && _succ != NULL) return 0 ;
-    if (Knob_OState && NotRunnable (Self, (Thread *) _owner)) {
-       TEVENT (Spin abort - notrunnable [TOP]);
-       return 0 ;
-    }
-
-    int MaxSpin = Knob_MaxSpinners ;
-    if (MaxSpin >= 0) {
-       if (_Spinner > MaxSpin) {
-          TEVENT (Spin abort -- too many spinners) ;
-          return 0 ;
-       }
-       // Slighty racy, but benign ...
-       Adjust (&_Spinner, 1) ;
-    }
-
-    // We're good to spin ... spin ingress.
-    // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
-    // when preparing to LD...CAS _owner, etc and the CAS is likely
-    // to succeed.
-    int hits    = 0 ;
-    int msk     = 0 ;
-    int caspty  = Knob_CASPenalty ;
-    int oxpty   = Knob_OXPenalty ;
-    int sss     = Knob_SpinSetSucc ;
-    if (sss && _succ == NULL ) _succ = Self ;
-    Thread * prv = NULL ;
-
-    // There are three ways to exit the following loop:
-    // 1.  A successful spin where this thread has acquired the lock.
-    // 2.  Spin failure with prejudice
-    // 3.  Spin failure without prejudice
-
-    while (--ctr >= 0) {
-
-      // Periodic polling -- Check for pending GC
-      // Threads may spin while they're unsafe.
-      // We don't want spinning threads to delay the JVM from reaching
-      // a stop-the-world safepoint or to steal cycles from GC.
-      // If we detect a pending safepoint we abort in order that
-      // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
-      // this thread, if safe, doesn't steal cycles from GC.
-      // This is in keeping with the "no loitering in runtime" rule.
-      // We periodically check to see if there's a safepoint pending.
-      if ((ctr & 0xFF) == 0) {
-         if (SafepointSynchronize::do_call_back()) {
-            TEVENT (Spin: safepoint) ;
-            goto Abort ;           // abrupt spin egress
-         }
-         if (Knob_UsePause & 1) SpinPause () ;
-
-         int (*scb)(intptr_t,int) = SpinCallbackFunction ;
-         if (hits > 50 && scb != NULL) {
-            int abend = (*scb)(SpinCallbackArgument, 0) ;
-         }
-      }
-
-      if (Knob_UsePause & 2) SpinPause() ;
-
-      // Exponential back-off ...  Stay off the bus to reduce coherency traffic.
-      // This is useful on classic SMP systems, but is of less utility on
-      // N1-style CMT platforms.
-      //
-      // Trade-off: lock acquisition latency vs coherency bandwidth.
-      // Lock hold times are typically short.  A histogram
-      // of successful spin attempts shows that we usually acquire
-      // the lock early in the spin.  That suggests we want to
-      // sample _owner frequently in the early phase of the spin,
-      // but then back-off and sample less frequently as the spin
-      // progresses.  The back-off makes a good citizen on SMP big
-      // SMP systems.  Oversampling _owner can consume excessive
-      // coherency bandwidth.  Relatedly, if we _oversample _owner we
-      // can inadvertently interfere with the the ST m->owner=null.
-      // executed by the lock owner.
-      if (ctr & msk) continue ;
-      ++hits ;
-      if ((hits & 0xF) == 0) {
-        // The 0xF, above, corresponds to the exponent.
-        // Consider: (msk+1)|msk
-        msk = ((msk << 2)|3) & BackOffMask ;
-      }
-
-      // Probe _owner with TATAS
-      // If this thread observes the monitor transition or flicker
-      // from locked to unlocked to locked, then the odds that this
-      // thread will acquire the lock in this spin attempt go down
-      // considerably.  The same argument applies if the CAS fails
-      // or if we observe _owner change from one non-null value to
-      // another non-null value.   In such cases we might abort
-      // the spin without prejudice or apply a "penalty" to the
-      // spin count-down variable "ctr", reducing it by 100, say.
-
-      Thread * ox = (Thread *) _owner ;
-      if (ox == NULL) {
-         ox = (Thread *) Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
-         if (ox == NULL) {
-            // The CAS succeeded -- this thread acquired ownership
-            // Take care of some bookkeeping to exit spin state.
-            if (sss && _succ == Self) {
-               _succ = NULL ;
-            }
-            if (MaxSpin > 0) Adjust (&_Spinner, -1) ;
-
-            // Increase _SpinDuration :
-            // The spin was successful (profitable) so we tend toward
-            // longer spin attempts in the future.
-            // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
-            // If we acquired the lock early in the spin cycle it
-            // makes sense to increase _SpinDuration proportionally.
-            // Note that we don't clamp SpinDuration precisely at SpinLimit.
-            int x = _SpinDuration ;
-            if (x < Knob_SpinLimit) {
-                if (x < Knob_Poverty) x = Knob_Poverty ;
-                _SpinDuration = x + Knob_Bonus ;
-            }
-            return 1 ;
-         }
-
-         // The CAS failed ... we can take any of the following actions:
-         // * penalize: ctr -= Knob_CASPenalty
-         // * exit spin with prejudice -- goto Abort;
-         // * exit spin without prejudice.
-         // * Since CAS is high-latency, retry again immediately.
-         prv = ox ;
-         TEVENT (Spin: cas failed) ;
-         if (caspty == -2) break ;
-         if (caspty == -1) goto Abort ;
-         ctr -= caspty ;
-         continue ;
-      }
-
-      // Did lock ownership change hands ?
-      if (ox != prv && prv != NULL ) {
-          TEVENT (spin: Owner changed)
-          if (oxpty == -2) break ;
-          if (oxpty == -1) goto Abort ;
-          ctr -= oxpty ;
-      }
-      prv = ox ;
-
-      // Abort the spin if the owner is not executing.
-      // The owner must be executing in order to drop the lock.
-      // Spinning while the owner is OFFPROC is idiocy.
-      // Consider: ctr -= RunnablePenalty ;
-      if (Knob_OState && NotRunnable (Self, ox)) {
-         TEVENT (Spin abort - notrunnable);
-         goto Abort ;
-      }
-      if (sss && _succ == NULL ) _succ = Self ;
-   }
-
-   // Spin failed with prejudice -- reduce _SpinDuration.
-   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
-   // AIMD is globally stable.
-   TEVENT (Spin failure) ;
-   {
-     int x = _SpinDuration ;
-     if (x > 0) {
-        // Consider an AIMD scheme like: x -= (x >> 3) + 100
-        // This is globally sample and tends to damp the response.
-        x -= Knob_Penalty ;
-        if (x < 0) x = 0 ;
-        _SpinDuration = x ;
-     }
-   }
-
- Abort:
-   if (MaxSpin >= 0) Adjust (&_Spinner, -1) ;
-   if (sss && _succ == Self) {
-      _succ = NULL ;
-      // Invariant: after setting succ=null a contending thread
-      // must recheck-retry _owner before parking.  This usually happens
-      // in the normal usage of TrySpin(), but it's safest
-      // to make TrySpin() as foolproof as possible.
-      OrderAccess::fence() ;
-      if (TryLock(Self) > 0) return 1 ;
-   }
-   return 0 ;
-}
-
-#define TrySpin TrySpin_VaryDuration
-
-static void DeferredInitialize () {
-  if (InitDone > 0) return ;
-  if (Atomic::cmpxchg (-1, &InitDone, 0) != 0) {
-      while (InitDone != 1) ;
-      return ;
-  }
-
-  // One-shot global initialization ...
-  // The initialization is idempotent, so we don't need locks.
-  // In the future consider doing this via os::init_2().
-  // SyncKnobs consist of <Key>=<Value> pairs in the style
-  // of environment variables.  Start by converting ':' to NUL.
-
-  if (SyncKnobs == NULL) SyncKnobs = "" ;
-
-  size_t sz = strlen (SyncKnobs) ;
-  char * knobs = (char *) malloc (sz + 2) ;
-  if (knobs == NULL) {
-     vm_exit_out_of_memory (sz + 2, "Parse SyncKnobs") ;
-     guarantee (0, "invariant") ;
-  }
-  strcpy (knobs, SyncKnobs) ;
-  knobs[sz+1] = 0 ;
-  for (char * p = knobs ; *p ; p++) {
-     if (*p == ':') *p = 0 ;
-  }
-
-  #define SETKNOB(x) { Knob_##x = kvGetInt (knobs, #x, Knob_##x); }
-  SETKNOB(ReportSettings) ;
-  SETKNOB(Verbose) ;
-  SETKNOB(FixedSpin) ;
-  SETKNOB(SpinLimit) ;
-  SETKNOB(SpinBase) ;
-  SETKNOB(SpinBackOff);
-  SETKNOB(CASPenalty) ;
-  SETKNOB(OXPenalty) ;
-  SETKNOB(LogSpins) ;
-  SETKNOB(SpinSetSucc) ;
-  SETKNOB(SuccEnabled) ;
-  SETKNOB(SuccRestrict) ;
-  SETKNOB(Penalty) ;
-  SETKNOB(Bonus) ;
-  SETKNOB(BonusB) ;
-  SETKNOB(Poverty) ;
-  SETKNOB(SpinAfterFutile) ;
-  SETKNOB(UsePause) ;
-  SETKNOB(SpinEarly) ;
-  SETKNOB(OState) ;
-  SETKNOB(MaxSpinners) ;
-  SETKNOB(PreSpin) ;
-  SETKNOB(ExitPolicy) ;
-  SETKNOB(QMode);
-  SETKNOB(ResetEvent) ;
-  SETKNOB(MoveNotifyee) ;
-  SETKNOB(FastHSSEC) ;
-  #undef SETKNOB
-
-  if (os::is_MP()) {
-     BackOffMask = (1 << Knob_SpinBackOff) - 1 ;
-     if (Knob_ReportSettings) ::printf ("BackOffMask=%X\n", BackOffMask) ;
-     // CONSIDER: BackOffMask = ROUNDUP_NEXT_POWER2 (ncpus-1)
-  } else {
-     Knob_SpinLimit = 0 ;
-     Knob_SpinBase  = 0 ;
-     Knob_PreSpin   = 0 ;
-     Knob_FixedSpin = -1 ;
-  }
-
-  if (Knob_LogSpins == 0) {
-     ObjectSynchronizer::_sync_FailedSpins = NULL ;
-  }
-
-  free (knobs) ;
-  OrderAccess::fence() ;
-  InitDone = 1 ;
-}
-
-// Theory of operations -- Monitors lists, thread residency, etc:
-//
-// * A thread acquires ownership of a monitor by successfully
-//   CAS()ing the _owner field from null to non-null.
-//
-// * Invariant: A thread appears on at most one monitor list --
-//   cxq, EntryList or WaitSet -- at any one time.
-//
-// * Contending threads "push" themselves onto the cxq with CAS
-//   and then spin/park.
-//
-// * After a contending thread eventually acquires the lock it must
-//   dequeue itself from either the EntryList or the cxq.
-//
-// * The exiting thread identifies and unparks an "heir presumptive"
-//   tentative successor thread on the EntryList.  Critically, the
-//   exiting thread doesn't unlink the successor thread from the EntryList.
-//   After having been unparked, the wakee will recontend for ownership of
-//   the monitor.   The successor (wakee) will either acquire the lock or
-//   re-park itself.
-//
-//   Succession is provided for by a policy of competitive handoff.
-//   The exiting thread does _not_ grant or pass ownership to the
-//   successor thread.  (This is also referred to as "handoff" succession").
-//   Instead the exiting thread releases ownership and possibly wakes
-//   a successor, so the successor can (re)compete for ownership of the lock.
-//   If the EntryList is empty but the cxq is populated the exiting
-//   thread will drain the cxq into the EntryList.  It does so by
-//   by detaching the cxq (installing null with CAS) and folding
-//   the threads from the cxq into the EntryList.  The EntryList is
-//   doubly linked, while the cxq is singly linked because of the
-//   CAS-based "push" used to enqueue recently arrived threads (RATs).
-//
-// * Concurrency invariants:
-//
-//   -- only the monitor owner may access or mutate the EntryList.
-//      The mutex property of the monitor itself protects the EntryList
-//      from concurrent interference.
-//   -- Only the monitor owner may detach the cxq.
-//
-// * The monitor entry list operations avoid locks, but strictly speaking
-//   they're not lock-free.  Enter is lock-free, exit is not.
-//   See http://j2se.east/~dice/PERSIST/040825-LockFreeQueues.html
-//
-// * The cxq can have multiple concurrent "pushers" but only one concurrent
-//   detaching thread.  This mechanism is immune from the ABA corruption.
-//   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
-//
-// * Taken together, the cxq and the EntryList constitute or form a
-//   single logical queue of threads stalled trying to acquire the lock.
-//   We use two distinct lists to improve the odds of a constant-time
-//   dequeue operation after acquisition (in the ::enter() epilog) and
-//   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
-//   A key desideratum is to minimize queue & monitor metadata manipulation
-//   that occurs while holding the monitor lock -- that is, we want to
-//   minimize monitor lock holds times.  Note that even a small amount of
-//   fixed spinning will greatly reduce the # of enqueue-dequeue operations
-//   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
-//   locks and monitor metadata.
-//
-//   Cxq points to the the set of Recently Arrived Threads attempting entry.
-//   Because we push threads onto _cxq with CAS, the RATs must take the form of
-//   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
-//   the unlocking thread notices that EntryList is null but _cxq is != null.
-//
-//   The EntryList is ordered by the prevailing queue discipline and
-//   can be organized in any convenient fashion, such as a doubly-linked list or
-//   a circular doubly-linked list.  Critically, we want insert and delete operations
-//   to operate in constant-time.  If we need a priority queue then something akin
-//   to Solaris' sleepq would work nicely.  Viz.,
-//   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
-//   Queue discipline is enforced at ::exit() time, when the unlocking thread
-//   drains the cxq into the EntryList, and orders or reorders the threads on the
-//   EntryList accordingly.
-//
-//   Barring "lock barging", this mechanism provides fair cyclic ordering,
-//   somewhat similar to an elevator-scan.
-//
-// * The monitor synchronization subsystem avoids the use of native
-//   synchronization primitives except for the narrow platform-specific
-//   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
-//   the semantics of park-unpark.  Put another way, this monitor implementation
-//   depends only on atomic operations and park-unpark.  The monitor subsystem
-//   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
-//   underlying OS manages the READY<->RUN transitions.
-//
-// * Waiting threads reside on the WaitSet list -- wait() puts
-//   the caller onto the WaitSet.
-//
-// * notify() or notifyAll() simply transfers threads from the WaitSet to
-//   either the EntryList or cxq.  Subsequent exit() operations will
-//   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
-//   it's likely the notifyee would simply impale itself on the lock held
-//   by the notifier.
-//
-// * An interesting alternative is to encode cxq as (List,LockByte) where
-//   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
-//   variable, like _recursions, in the scheme.  The threads or Events that form
-//   the list would have to be aligned in 256-byte addresses.  A thread would
-//   try to acquire the lock or enqueue itself with CAS, but exiting threads
-//   could use a 1-0 protocol and simply STB to set the LockByte to 0.
-//   Note that is is *not* word-tearing, but it does presume that full-word
-//   CAS operations are coherent with intermix with STB operations.  That's true
-//   on most common processors.
-//
-// * See also http://blogs.sun.com/dave
-
-
-void ATTR ObjectMonitor::EnterI (TRAPS) {
-    Thread * Self = THREAD ;
-    assert (Self->is_Java_thread(), "invariant") ;
-    assert (((JavaThread *) Self)->thread_state() == _thread_blocked   , "invariant") ;
-
-    // Try the lock - TATAS
-    if (TryLock (Self) > 0) {
-        assert (_succ != Self              , "invariant") ;
-        assert (_owner == Self             , "invariant") ;
-        assert (_Responsible != Self       , "invariant") ;
-        return ;
-    }
-
-    DeferredInitialize () ;
-
-    // We try one round of spinning *before* enqueueing Self.
-    //
-    // If the _owner is ready but OFFPROC we could use a YieldTo()
-    // operation to donate the remainder of this thread's quantum
-    // to the owner.  This has subtle but beneficial affinity
-    // effects.
-
-    if (TrySpin (Self) > 0) {
-        assert (_owner == Self        , "invariant") ;
-        assert (_succ != Self         , "invariant") ;
-        assert (_Responsible != Self  , "invariant") ;
-        return ;
-    }
-
-    // The Spin failed -- Enqueue and park the thread ...
-    assert (_succ  != Self            , "invariant") ;
-    assert (_owner != Self            , "invariant") ;
-    assert (_Responsible != Self      , "invariant") ;
-
-    // Enqueue "Self" on ObjectMonitor's _cxq.
-    //
-    // Node acts as a proxy for Self.
-    // As an aside, if were to ever rewrite the synchronization code mostly
-    // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
-    // Java objects.  This would avoid awkward lifecycle and liveness issues,
-    // as well as eliminate a subset of ABA issues.
-    // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
-    //
-
-    ObjectWaiter node(Self) ;
-    Self->_ParkEvent->reset() ;
-    node._prev   = (ObjectWaiter *) 0xBAD ;
-    node.TState  = ObjectWaiter::TS_CXQ ;
-
-    // Push "Self" onto the front of the _cxq.
-    // Once on cxq/EntryList, Self stays on-queue until it acquires the lock.
-    // Note that spinning tends to reduce the rate at which threads
-    // enqueue and dequeue on EntryList|cxq.
-    ObjectWaiter * nxt ;
-    for (;;) {
-        node._next = nxt = _cxq ;
-        if (Atomic::cmpxchg_ptr (&node, &_cxq, nxt) == nxt) break ;
-
-        // Interference - the CAS failed because _cxq changed.  Just retry.
-        // As an optional optimization we retry the lock.
-        if (TryLock (Self) > 0) {
-            assert (_succ != Self         , "invariant") ;
-            assert (_owner == Self        , "invariant") ;
-            assert (_Responsible != Self  , "invariant") ;
-            return ;
-        }
-    }
-
-    // Check for cxq|EntryList edge transition to non-null.  This indicates
-    // the onset of contention.  While contention persists exiting threads
-    // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
-    // operations revert to the faster 1-0 mode.  This enter operation may interleave
-    // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
-    // arrange for one of the contending thread to use a timed park() operations
-    // to detect and recover from the race.  (Stranding is form of progress failure
-    // where the monitor is unlocked but all the contending threads remain parked).
-    // That is, at least one of the contended threads will periodically poll _owner.
-    // One of the contending threads will become the designated "Responsible" thread.
-    // The Responsible thread uses a timed park instead of a normal indefinite park
-    // operation -- it periodically wakes and checks for and recovers from potential
-    // strandings admitted by 1-0 exit operations.   We need at most one Responsible
-    // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
-    // be responsible for a monitor.
-    //
-    // Currently, one of the contended threads takes on the added role of "Responsible".
-    // A viable alternative would be to use a dedicated "stranding checker" thread
-    // that periodically iterated over all the threads (or active monitors) and unparked
-    // successors where there was risk of stranding.  This would help eliminate the
-    // timer scalability issues we see on some platforms as we'd only have one thread
-    // -- the checker -- parked on a timer.
-
-    if ((SyncFlags & 16) == 0 && nxt == NULL && _EntryList == NULL) {
-        // Try to assume the role of responsible thread for the monitor.
-        // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=Self }
-        Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
-    }
-
-    // The lock have been released while this thread was occupied queueing
-    // itself onto _cxq.  To close the race and avoid "stranding" and
-    // progress-liveness failure we must resample-retry _owner before parking.
-    // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
-    // In this case the ST-MEMBAR is accomplished with CAS().
-    //
-    // TODO: Defer all thread state transitions until park-time.
-    // Since state transitions are heavy and inefficient we'd like
-    // to defer the state transitions until absolutely necessary,
-    // and in doing so avoid some transitions ...
-
-    TEVENT (Inflated enter - Contention) ;
-    int nWakeups = 0 ;
-    int RecheckInterval = 1 ;
-
-    for (;;) {
-
-        if (TryLock (Self) > 0) break ;
-        assert (_owner != Self, "invariant") ;
-
-        if ((SyncFlags & 2) && _Responsible == NULL) {
-           Atomic::cmpxchg_ptr (Self, &_Responsible, NULL) ;
-        }
-
-        // park self
-        if (_Responsible == Self || (SyncFlags & 1)) {
-            TEVENT (Inflated enter - park TIMED) ;
-            Self->_ParkEvent->park ((jlong) RecheckInterval) ;
-            // Increase the RecheckInterval, but clamp the value.
-            RecheckInterval *= 8 ;
-            if (RecheckInterval > 1000) RecheckInterval = 1000 ;
-        } else {
-            TEVENT (Inflated enter - park UNTIMED) ;
-            Self->_ParkEvent->park() ;
-        }
-
-        if (TryLock(Self) > 0) break ;
-
-        // The lock is still contested.
-        // Keep a tally of the # of futile wakeups.
-        // Note that the counter is not protected by a lock or updated by atomics.
-        // That is by design - we trade "lossy" counters which are exposed to
-        // races during updates for a lower probe effect.
-        TEVENT (Inflated enter - Futile wakeup) ;
-        if (ObjectSynchronizer::_sync_FutileWakeups != NULL) {
-           ObjectSynchronizer::_sync_FutileWakeups->inc() ;
-        }
-        ++ nWakeups ;
-
-        // Assuming this is not a spurious wakeup we'll normally find _succ == Self.
-        // We can defer clearing _succ until after the spin completes
-        // TrySpin() must tolerate being called with _succ == Self.
-        // Try yet another round of adaptive spinning.
-        if ((Knob_SpinAfterFutile & 1) && TrySpin (Self) > 0) break ;
-
-        // We can find that we were unpark()ed and redesignated _succ while
-        // we were spinning.  That's harmless.  If we iterate and call park(),
-        // park() will consume the event and return immediately and we'll
-        // just spin again.  This pattern can repeat, leaving _succ to simply
-        // spin on a CPU.  Enable Knob_ResetEvent to clear pending unparks().
-        // Alternately, we can sample fired() here, and if set, forgo spinning
-        // in the next iteration.
-
-        if ((Knob_ResetEvent & 1) && Self->_ParkEvent->fired()) {
-           Self->_ParkEvent->reset() ;
-           OrderAccess::fence() ;
-        }
-        if (_succ == Self) _succ = NULL ;
-
-        // Invariant: after clearing _succ a thread *must* retry _owner before parking.
-        OrderAccess::fence() ;
-    }
-
-    // Egress :
-    // Self has acquired the lock -- Unlink Self from the cxq or EntryList.
-    // Normally we'll find Self on the EntryList .
-    // From the perspective of the lock owner (this thread), the
-    // EntryList is stable and cxq is prepend-only.
-    // The head of cxq is volatile but the interior is stable.
-    // In addition, Self.TState is stable.
-
-    assert (_owner == Self      , "invariant") ;
-    assert (object() != NULL    , "invariant") ;
-    // I'd like to write:
-    //   guarantee (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
-    // but as we're at a safepoint that's not safe.
-
-    UnlinkAfterAcquire (Self, &node) ;
-    if (_succ == Self) _succ = NULL ;
-
-    assert (_succ != Self, "invariant") ;
-    if (_Responsible == Self) {
-        _Responsible = NULL ;
-        // Dekker pivot-point.
-        // Consider OrderAccess::storeload() here
-
-        // We may leave threads on cxq|EntryList without a designated
-        // "Responsible" thread.  This is benign.  When this thread subsequently
-        // exits the monitor it can "see" such preexisting "old" threads --
-        // threads that arrived on the cxq|EntryList before the fence, above --
-        // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
-        // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
-        // non-null and elect a new "Responsible" timer thread.
-        //
-        // This thread executes:
-        //    ST Responsible=null; MEMBAR    (in enter epilog - here)
-        //    LD cxq|EntryList               (in subsequent exit)
-        //
-        // Entering threads in the slow/contended path execute:
-        //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
-        //    The (ST cxq; MEMBAR) is accomplished with CAS().
-        //
-        // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
-        // exit operation from floating above the ST Responsible=null.
-        //
-        // In *practice* however, EnterI() is always followed by some atomic
-        // operation such as the decrement of _count in ::enter().  Those atomics
-        // obviate the need for the explicit MEMBAR, above.
-    }
-
-    // We've acquired ownership with CAS().
-    // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
-    // But since the CAS() this thread may have also stored into _succ,
-    // EntryList, cxq or Responsible.  These meta-data updates must be
-    // visible __before this thread subsequently drops the lock.
-    // Consider what could occur if we didn't enforce this constraint --
-    // STs to monitor meta-data and user-data could reorder with (become
-    // visible after) the ST in exit that drops ownership of the lock.
-    // Some other thread could then acquire the lock, but observe inconsistent
-    // or old monitor meta-data and heap data.  That violates the JMM.
-    // To that end, the 1-0 exit() operation must have at least STST|LDST
-    // "release" barrier semantics.  Specifically, there must be at least a
-    // STST|LDST barrier in exit() before the ST of null into _owner that drops
-    // the lock.   The barrier ensures that changes to monitor meta-data and data
-    // protected by the lock will be visible before we release the lock, and
-    // therefore before some other thread (CPU) has a chance to acquire the lock.
-    // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
-    //
-    // Critically, any prior STs to _succ or EntryList must be visible before
-    // the ST of null into _owner in the *subsequent* (following) corresponding
-    // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
-    // execute a serializing instruction.
-
-    if (SyncFlags & 8) {
-       OrderAccess::fence() ;
-    }
-    return ;
-}
-
-// ExitSuspendEquivalent:
-// A faster alternate to handle_special_suspend_equivalent_condition()
-//
-// handle_special_suspend_equivalent_condition() unconditionally
-// acquires the SR_lock.  On some platforms uncontended MutexLocker()
-// operations have high latency.  Note that in ::enter() we call HSSEC
-// while holding the monitor, so we effectively lengthen the critical sections.
-//
-// There are a number of possible solutions:
-//
-// A.  To ameliorate the problem we might also defer state transitions
-//     to as late as possible -- just prior to parking.
-//     Given that, we'd call HSSEC after having returned from park(),
-//     but before attempting to acquire the monitor.  This is only a
-//     partial solution.  It avoids calling HSSEC while holding the
-//     monitor (good), but it still increases successor reacquisition latency --
-//     the interval between unparking a successor and the time the successor
-//     resumes and retries the lock.  See ReenterI(), which defers state transitions.
-//     If we use this technique we can also avoid EnterI()-exit() loop
-//     in ::enter() where we iteratively drop the lock and then attempt
-//     to reacquire it after suspending.
-//
-// B.  In the future we might fold all the suspend bits into a
-//     composite per-thread suspend flag and then update it with CAS().
-//     Alternately, a Dekker-like mechanism with multiple variables
-//     would suffice:
-//       ST Self->_suspend_equivalent = false
-//       MEMBAR
-//       LD Self_>_suspend_flags
-//
-
-
-bool ObjectMonitor::ExitSuspendEquivalent (JavaThread * jSelf) {
-   int Mode = Knob_FastHSSEC ;
-   if (Mode && !jSelf->is_external_suspend()) {
-      assert (jSelf->is_suspend_equivalent(), "invariant") ;
-      jSelf->clear_suspend_equivalent() ;
-      if (2 == Mode) OrderAccess::storeload() ;
-      if (!jSelf->is_external_suspend()) return false ;
-      // We raced a suspension -- fall thru into the slow path
-      TEVENT (ExitSuspendEquivalent - raced) ;
-      jSelf->set_suspend_equivalent() ;
-   }
-   return jSelf->handle_special_suspend_equivalent_condition() ;
-}
-
-
-// ReenterI() is a specialized inline form of the latter half of the
-// contended slow-path from EnterI().  We use ReenterI() only for
-// monitor reentry in wait().
-//
-// In the future we should reconcile EnterI() and ReenterI(), adding
-// Knob_Reset and Knob_SpinAfterFutile support and restructuring the
-// loop accordingly.
-
-void ATTR ObjectMonitor::ReenterI (Thread * Self, ObjectWaiter * SelfNode) {
-    assert (Self != NULL                , "invariant") ;
-    assert (SelfNode != NULL            , "invariant") ;
-    assert (SelfNode->_thread == Self   , "invariant") ;
-    assert (_waiters > 0                , "invariant") ;
-    assert (((oop)(object()))->mark() == markOopDesc::encode(this) , "invariant") ;
-    assert (((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;
-    JavaThread * jt = (JavaThread *) Self ;
-
-    int nWakeups = 0 ;
-    for (;;) {
-        ObjectWaiter::TStates v = SelfNode->TState ;
-        guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
-        assert    (_owner != Self, "invariant") ;
-
-        if (TryLock (Self) > 0) break ;
-        if (TrySpin (Self) > 0) break ;
-
-        TEVENT (Wait Reentry - parking) ;
-
-        // State transition wrappers around park() ...
-        // ReenterI() wisely defers state transitions until
-        // it's clear we must park the thread.
-        {
-           OSThreadContendState osts(Self->osthread());
-           ThreadBlockInVM tbivm(jt);
-
-           // cleared by handle_special_suspend_equivalent_condition()
-           // or java_suspend_self()
-           jt->set_suspend_equivalent();
-           if (SyncFlags & 1) {
-              Self->_ParkEvent->park ((jlong)1000) ;
-           } else {
-              Self->_ParkEvent->park () ;
-           }
-
-           // were we externally suspended while we were waiting?
-           for (;;) {
-              if (!ExitSuspendEquivalent (jt)) break ;
-              if (_succ == Self) { _succ = NULL; OrderAccess::fence(); }
-              jt->java_suspend_self();
-              jt->set_suspend_equivalent();
-           }
-        }
-
-        // Try again, but just so we distinguish between futile wakeups and
-        // successful wakeups.  The following test isn't algorithmically
-        // necessary, but it helps us maintain sensible statistics.
-        if (TryLock(Self) > 0) break ;
-
-        // The lock is still contested.
-        // Keep a tally of the # of futile wakeups.
-        // Note that the counter is not protected by a lock or updated by atomics.
-        // That is by design - we trade "lossy" counters which are exposed to
-        // races during updates for a lower probe effect.
-        TEVENT (Wait Reentry - futile wakeup) ;
-        ++ nWakeups ;
-
-        // Assuming this is not a spurious wakeup we'll normally
-        // find that _succ == Self.
-        if (_succ == Self) _succ = NULL ;
-
-        // Invariant: after clearing _succ a contending thread
-        // *must* retry  _owner before parking.
-        OrderAccess::fence() ;
-
-        if (ObjectSynchronizer::_sync_FutileWakeups != NULL) {
-          ObjectSynchronizer::_sync_FutileWakeups->inc() ;
-        }
-    }
-
-    // Self has acquired the lock -- Unlink Self from the cxq or EntryList .
-    // Normally we'll find Self on the EntryList.
-    // Unlinking from the EntryList is constant-time and atomic-free.
-    // From the perspective of the lock owner (this thread), the
-    // EntryList is stable and cxq is prepend-only.
-    // The head of cxq is volatile but the interior is stable.
-    // In addition, Self.TState is stable.
-
-    assert (_owner == Self, "invariant") ;
-    assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
-    UnlinkAfterAcquire (Self, SelfNode) ;
-    if (_succ == Self) _succ = NULL ;
-    assert (_succ != Self, "invariant") ;
-    SelfNode->TState = ObjectWaiter::TS_RUN ;
-    OrderAccess::fence() ;      // see comments at the end of EnterI()
-}
-
-bool ObjectMonitor::try_enter(Thread* THREAD) {
-  if (THREAD != _owner) {
-    if (THREAD->is_lock_owned ((address)_owner)) {
-       assert(_recursions == 0, "internal state error");
-       _owner = THREAD ;
-       _recursions = 1 ;
-       OwnerIsThread = 1 ;
-       return true;
-    }
-    if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
-      return false;
-    }
-    return true;
-  } else {
-    _recursions++;
-    return true;
-  }
-}
-
-void ATTR ObjectMonitor::enter(TRAPS) {
-  // The following code is ordered to check the most common cases first
-  // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
-  Thread * const Self = THREAD ;
-  void * cur ;
-
-  cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
-  if (cur == NULL) {
-     // Either ASSERT _recursions == 0 or explicitly set _recursions = 0.
-     assert (_recursions == 0   , "invariant") ;
-     assert (_owner      == Self, "invariant") ;
-     // CONSIDER: set or assert OwnerIsThread == 1
-     return ;
-  }
-
-  if (cur == Self) {
-     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
-     _recursions ++ ;
-     return ;
-  }
-
-  if (Self->is_lock_owned ((address)cur)) {
-    assert (_recursions == 0, "internal state error");
-    _recursions = 1 ;
-    // Commute owner from a thread-specific on-stack BasicLockObject address to
-    // a full-fledged "Thread *".
-    _owner = Self ;
-    OwnerIsThread = 1 ;
-    return ;
-  }
-
-  // We've encountered genuine contention.
-  assert (Self->_Stalled == 0, "invariant") ;
-  Self->_Stalled = intptr_t(this) ;
-
-  // Try one round of spinning *before* enqueueing Self
-  // and before going through the awkward and expensive state
-  // transitions.  The following spin is strictly optional ...
-  // Note that if we acquire the monitor from an initial spin
-  // we forgo posting JVMTI events and firing DTRACE probes.
-  if (Knob_SpinEarly && TrySpin (Self) > 0) {
-     assert (_owner == Self      , "invariant") ;
-     assert (_recursions == 0    , "invariant") ;
-     assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
-     Self->_Stalled = 0 ;
-     return ;
-  }
-
-  assert (_owner != Self          , "invariant") ;
-  assert (_succ  != Self          , "invariant") ;
-  assert (Self->is_Java_thread()  , "invariant") ;
-  JavaThread * jt = (JavaThread *) Self ;
-  assert (!SafepointSynchronize::is_at_safepoint(), "invariant") ;
-  assert (jt->thread_state() != _thread_blocked   , "invariant") ;
-  assert (this->object() != NULL  , "invariant") ;
-  assert (_count >= 0, "invariant") ;
-
-  // Prevent deflation at STW-time.  See deflate_idle_monitors() and is_busy().
-  // Ensure the object-monitor relationship remains stable while there's contention.
-  Atomic::inc_ptr(&_count);
-
-  { // Change java thread status to indicate blocked on monitor enter.
-    JavaThreadBlockedOnMonitorEnterState jtbmes(jt, this);
-
-    DTRACE_MONITOR_PROBE(contended__enter, this, object(), jt);
-    if (JvmtiExport::should_post_monitor_contended_enter()) {
-      JvmtiExport::post_monitor_contended_enter(jt, this);
-    }
-
-    OSThreadContendState osts(Self->osthread());
-    ThreadBlockInVM tbivm(jt);
-
-    Self->set_current_pending_monitor(this);
-
-    // TODO-FIXME: change the following for(;;) loop to straight-line code.
-    for (;;) {
-      jt->set_suspend_equivalent();
-      // cleared by handle_special_suspend_equivalent_condition()
-      // or java_suspend_self()
-
-      EnterI (THREAD) ;
-
-      if (!ExitSuspendEquivalent(jt)) break ;
-
-      //
-      // We have acquired the contended monitor, but while we were
-      // waiting another thread suspended us. We don't want to enter
-      // the monitor while suspended because that would surprise the
-      // thread that suspended us.
-      //
-          _recursions = 0 ;
-      _succ = NULL ;
-      exit (Self) ;
-
-      jt->java_suspend_self();
-    }
-    Self->set_current_pending_monitor(NULL);
-  }
-
-  Atomic::dec_ptr(&_count);
-  assert (_count >= 0, "invariant") ;
-  Self->_Stalled = 0 ;
-
-  // Must either set _recursions = 0 or ASSERT _recursions == 0.
-  assert (_recursions == 0     , "invariant") ;
-  assert (_owner == Self       , "invariant") ;
-  assert (_succ  != Self       , "invariant") ;
-  assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
-
-  // The thread -- now the owner -- is back in vm mode.
-  // Report the glorious news via TI,DTrace and jvmstat.
-  // The probe effect is non-trivial.  All the reportage occurs
-  // while we hold the monitor, increasing the length of the critical
-  // section.  Amdahl's parallel speedup law comes vividly into play.
-  //
-  // Another option might be to aggregate the events (thread local or
-  // per-monitor aggregation) and defer reporting until a more opportune
-  // time -- such as next time some thread encounters contention but has
-  // yet to acquire the lock.  While spinning that thread could
-  // spinning we could increment JVMStat counters, etc.
-
-  DTRACE_MONITOR_PROBE(contended__entered, this, object(), jt);
-  if (JvmtiExport::should_post_monitor_contended_entered()) {
-    JvmtiExport::post_monitor_contended_entered(jt, this);
-  }
-  if (ObjectSynchronizer::_sync_ContendedLockAttempts != NULL) {
-     ObjectSynchronizer::_sync_ContendedLockAttempts->inc() ;
-  }
-}
-
-void ObjectMonitor::ExitEpilog (Thread * Self, ObjectWaiter * Wakee) {
-   assert (_owner == Self, "invariant") ;
-
-   // Exit protocol:
-   // 1. ST _succ = wakee
-   // 2. membar #loadstore|#storestore;
-   // 2. ST _owner = NULL
-   // 3. unpark(wakee)
-
-   _succ = Knob_SuccEnabled ? Wakee->_thread : NULL ;
-   ParkEvent * Trigger = Wakee->_event ;
+};
 
-   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
-   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
-   // out-of-scope (non-extant).
-   Wakee  = NULL ;
-
-   // Drop the lock
-   OrderAccess::release_store_ptr (&_owner, NULL) ;
-   OrderAccess::fence() ;                               // ST _owner vs LD in unpark()
-
-   // TODO-FIXME:
-   // If there's a safepoint pending the best policy would be to
-   // get _this thread to a safepoint and only wake the successor
-   // after the safepoint completed.  monitorexit uses a "leaf"
-   // state transition, however, so this thread can't become
-   // safe at this point in time.  (Its stack isn't walkable).
-   // The next best thing is to defer waking the successor by
-   // adding to a list of thread to be unparked after at the
-   // end of the forthcoming STW).
-   if (SafepointSynchronize::do_call_back()) {
-      TEVENT (unpark before SAFEPOINT) ;
-   }
-
-   // Possible optimizations ...
-   //
-   // * Consider: set Wakee->UnparkTime = timeNow()
-   //   When the thread wakes up it'll compute (timeNow() - Self->UnparkTime()).
-   //   By measuring recent ONPROC latency we can approximate the
-   //   system load.  In turn, we can feed that information back
-   //   into the spinning & succession policies.
-   //   (ONPROC latency correlates strongly with load).
-   //
-   // * Pull affinity:
-   //   If the wakee is cold then transiently setting it's affinity
-   //   to the current CPU is a good idea.
-   //   See http://j2se.east/~dice/PERSIST/050624-PullAffinity.txt
-   DTRACE_MONITOR_PROBE(contended__exit, this, object(), Self);
-   Trigger->unpark() ;
-
-   // Maintain stats and report events to JVMTI
-   if (ObjectSynchronizer::_sync_Parks != NULL) {
-      ObjectSynchronizer::_sync_Parks->inc() ;
-   }
-}
-
-
-// exit()
-// ~~~~~~
-// Note that the collector can't reclaim the objectMonitor or deflate
-// the object out from underneath the thread calling ::exit() as the
-// thread calling ::exit() never transitions to a stable state.
-// This inhibits GC, which in turn inhibits asynchronous (and
-// inopportune) reclamation of "this".
-//
-// We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
-// There's one exception to the claim above, however.  EnterI() can call
-// exit() to drop a lock if the acquirer has been externally suspended.
-// In that case exit() is called with _thread_state as _thread_blocked,
-// but the monitor's _count field is > 0, which inhibits reclamation.
-//
-// 1-0 exit
-// ~~~~~~~~
-// ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
-// the fast-path operators have been optimized so the common ::exit()
-// operation is 1-0.  See i486.ad fast_unlock(), for instance.
-// The code emitted by fast_unlock() elides the usual MEMBAR.  This
-// greatly improves latency -- MEMBAR and CAS having considerable local
-// latency on modern processors -- but at the cost of "stranding".  Absent the
-// MEMBAR, a thread in fast_unlock() can race a thread in the slow
-// ::enter() path, resulting in the entering thread being stranding
-// and a progress-liveness failure.   Stranding is extremely rare.
-// We use timers (timed park operations) & periodic polling to detect
-// and recover from stranding.  Potentially stranded threads periodically
-// wake up and poll the lock.  See the usage of the _Responsible variable.
-//
-// The CAS() in enter provides for safety and exclusion, while the CAS or
-// MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
-// eliminates the CAS/MEMBAR from the exist path, but it admits stranding.
-// We detect and recover from stranding with timers.
+// Release all inflated monitors owned by THREAD.  Lightweight monitors are
+// ignored.  This is meant to be called during JNI thread detach which assumes
+// all remaining monitors are heavyweight.  All exceptions are swallowed.
+// Scanning the extant monitor list can be time consuming.
+// A simple optimization is to add a per-thread flag that indicates a thread
+// called jni_monitorenter() during its lifetime.
 //
-// If a thread transiently strands it'll park until (a) another
-// thread acquires the lock and then drops the lock, at which time the
-// exiting thread will notice and unpark the stranded thread, or, (b)
-// the timer expires.  If the lock is high traffic then the stranding latency
-// will be low due to (a).  If the lock is low traffic then the odds of
-// stranding are lower, although the worst-case stranding latency
-// is longer.  Critically, we don't want to put excessive load in the
-// platform's timer subsystem.  We want to minimize both the timer injection
-// rate (timers created/sec) as well as the number of timers active at
-// any one time.  (more precisely, we want to minimize timer-seconds, which is
-// the integral of the # of active timers at any instant over time).
-// Both impinge on OS scalability.  Given that, at most one thread parked on
-// a monitor will use a timer.
-
-void ATTR ObjectMonitor::exit(TRAPS) {
-   Thread * Self = THREAD ;
-   if (THREAD != _owner) {
-     if (THREAD->is_lock_owned((address) _owner)) {
-       // Transmute _owner from a BasicLock pointer to a Thread address.
-       // We don't need to hold _mutex for this transition.
-       // Non-null to Non-null is safe as long as all readers can
-       // tolerate either flavor.
-       assert (_recursions == 0, "invariant") ;
-       _owner = THREAD ;
-       _recursions = 0 ;
-       OwnerIsThread = 1 ;
-     } else {
-       // NOTE: we need to handle unbalanced monitor enter/exit
-       // in native code by throwing an exception.
-       // TODO: Throw an IllegalMonitorStateException ?
-       TEVENT (Exit - Throw IMSX) ;
-       assert(false, "Non-balanced monitor enter/exit!");
-       if (false) {
-          THROW(vmSymbols::java_lang_IllegalMonitorStateException());
-       }
-       return;
-     }
-   }
-
-   if (_recursions != 0) {
-     _recursions--;        // this is simple recursive enter
-     TEVENT (Inflated exit - recursive) ;
-     return ;
-   }
-
-   // Invariant: after setting Responsible=null an thread must execute
-   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
-   if ((SyncFlags & 4) == 0) {
-      _Responsible = NULL ;
-   }
-
-   for (;;) {
-      assert (THREAD == _owner, "invariant") ;
-
-      // Fast-path monitor exit:
-      //
-      // Observe the Dekker/Lamport duality:
-      // A thread in ::exit() executes:
-      //   ST Owner=null; MEMBAR; LD EntryList|cxq.
-      // A thread in the contended ::enter() path executes the complementary:
-      //   ST EntryList|cxq = nonnull; MEMBAR; LD Owner.
-      //
-      // Note that there's a benign race in the exit path.  We can drop the
-      // lock, another thread can reacquire the lock immediately, and we can
-      // then wake a thread unnecessarily (yet another flavor of futile wakeup).
-      // This is benign, and we've structured the code so the windows are short
-      // and the frequency of such futile wakeups is low.
-      //
-      // We could eliminate the race by encoding both the "LOCKED" state and
-      // the queue head in a single word.  Exit would then use either CAS to
-      // clear the LOCKED bit/byte.  This precludes the desirable 1-0 optimization,
-      // however.
-      //
-      // Possible fast-path ::exit() optimization:
-      // The current fast-path exit implementation fetches both cxq and EntryList.
-      // See also i486.ad fast_unlock().  Testing has shown that two LDs
-      // isn't measurably slower than a single LD on any platforms.
-      // Still, we could reduce the 2 LDs to one or zero by one of the following:
-      //
-      // - Use _count instead of cxq|EntryList
-      //   We intend to eliminate _count, however, when we switch
-      //   to on-the-fly deflation in ::exit() as is used in
-      //   Metalocks and RelaxedLocks.
-      //
-      // - Establish the invariant that cxq == null implies EntryList == null.
-      //   set cxq == EMPTY (1) to encode the state where cxq is empty
-      //   by EntryList != null.  EMPTY is a distinguished value.
-      //   The fast-path exit() would fetch cxq but not EntryList.
-      //
-      // - Encode succ as follows:
-      //   succ = t :  Thread t is the successor -- t is ready or is spinning.
-      //               Exiting thread does not need to wake a successor.
-      //   succ = 0 :  No successor required -> (EntryList|cxq) == null
-      //               Exiting thread does not need to wake a successor
-      //   succ = 1 :  Successor required    -> (EntryList|cxq) != null and
-      //               logically succ == null.
-      //               Exiting thread must wake a successor.
-      //
-      //   The 1-1 fast-exit path would appear as :
-      //     _owner = null ; membar ;
-      //     if (_succ == 1 && CAS (&_owner, null, Self) == null) goto SlowPath
-      //     goto FastPathDone ;
-      //
-      //   and the 1-0 fast-exit path would appear as:
-      //      if (_succ == 1) goto SlowPath
-      //      Owner = null ;
-      //      goto FastPathDone
-      //
-      // - Encode the LSB of _owner as 1 to indicate that exit()
-      //   must use the slow-path and make a successor ready.
-      //   (_owner & 1) == 0 IFF succ != null || (EntryList|cxq) == null
-      //   (_owner & 1) == 0 IFF succ == null && (EntryList|cxq) != null (obviously)
-      //   The 1-0 fast exit path would read:
-      //      if (_owner != Self) goto SlowPath
-      //      _owner = null
-      //      goto FastPathDone
-
-      if (Knob_ExitPolicy == 0) {
-         // release semantics: prior loads and stores from within the critical section
-         // must not float (reorder) past the following store that drops the lock.
-         // On SPARC that requires MEMBAR #loadstore|#storestore.
-         // But of course in TSO #loadstore|#storestore is not required.
-         // I'd like to write one of the following:
-         // A.  OrderAccess::release() ; _owner = NULL
-         // B.  OrderAccess::loadstore(); OrderAccess::storestore(); _owner = NULL;
-         // Unfortunately OrderAccess::release() and OrderAccess::loadstore() both
-         // store into a _dummy variable.  That store is not needed, but can result
-         // in massive wasteful coherency traffic on classic SMP systems.
-         // Instead, I use release_store(), which is implemented as just a simple
-         // ST on x64, x86 and SPARC.
-         OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
-         OrderAccess::storeload() ;                         // See if we need to wake a successor
-         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
-            TEVENT (Inflated exit - simple egress) ;
-            return ;
-         }
-         TEVENT (Inflated exit - complex egress) ;
-
-         // Normally the exiting thread is responsible for ensuring succession,
-         // but if other successors are ready or other entering threads are spinning
-         // then this thread can simply store NULL into _owner and exit without
-         // waking a successor.  The existence of spinners or ready successors
-         // guarantees proper succession (liveness).  Responsibility passes to the
-         // ready or running successors.  The exiting thread delegates the duty.
-         // More precisely, if a successor already exists this thread is absolved
-         // of the responsibility of waking (unparking) one.
-         //
-         // The _succ variable is critical to reducing futile wakeup frequency.
-         // _succ identifies the "heir presumptive" thread that has been made
-         // ready (unparked) but that has not yet run.  We need only one such
-         // successor thread to guarantee progress.
-         // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
-         // section 3.3 "Futile Wakeup Throttling" for details.
-         //
-         // Note that spinners in Enter() also set _succ non-null.
-         // In the current implementation spinners opportunistically set
-         // _succ so that exiting threads might avoid waking a successor.
-         // Another less appealing alternative would be for the exiting thread
-         // to drop the lock and then spin briefly to see if a spinner managed
-         // to acquire the lock.  If so, the exiting thread could exit
-         // immediately without waking a successor, otherwise the exiting
-         // thread would need to dequeue and wake a successor.
-         // (Note that we'd need to make the post-drop spin short, but no
-         // shorter than the worst-case round-trip cache-line migration time.
-         // The dropped lock needs to become visible to the spinner, and then
-         // the acquisition of the lock by the spinner must become visible to
-         // the exiting thread).
-         //
-
-         // It appears that an heir-presumptive (successor) must be made ready.
-         // Only the current lock owner can manipulate the EntryList or
-         // drain _cxq, so we need to reacquire the lock.  If we fail
-         // to reacquire the lock the responsibility for ensuring succession
-         // falls to the new owner.
-         //
-         if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
-            return ;
-         }
-         TEVENT (Exit - Reacquired) ;
-      } else {
-         if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
-            OrderAccess::release_store_ptr (&_owner, NULL) ;   // drop the lock
-            OrderAccess::storeload() ;
-            // Ratify the previously observed values.
-            if (_cxq == NULL || _succ != NULL) {
-                TEVENT (Inflated exit - simple egress) ;
-                return ;
-            }
-
-            // inopportune interleaving -- the exiting thread (this thread)
-            // in the fast-exit path raced an entering thread in the slow-enter
-            // path.
-            // We have two choices:
-            // A.  Try to reacquire the lock.
-            //     If the CAS() fails return immediately, otherwise
-            //     we either restart/rerun the exit operation, or simply
-            //     fall-through into the code below which wakes a successor.
-            // B.  If the elements forming the EntryList|cxq are TSM
-            //     we could simply unpark() the lead thread and return
-            //     without having set _succ.
-            if (Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) != NULL) {
-               TEVENT (Inflated exit - reacquired succeeded) ;
-               return ;
-            }
-            TEVENT (Inflated exit - reacquired failed) ;
-         } else {
-            TEVENT (Inflated exit - complex egress) ;
-         }
-      }
-
-      guarantee (_owner == THREAD, "invariant") ;
-
-      // Select an appropriate successor ("heir presumptive") from the EntryList
-      // and make it ready.  Generally we just wake the head of EntryList .
-      // There's no algorithmic constraint that we use the head - it's just
-      // a policy decision.   Note that the thread at head of the EntryList
-      // remains at the head until it acquires the lock.  This means we'll
-      // repeatedly wake the same thread until it manages to grab the lock.
-      // This is generally a good policy - if we're seeing lots of futile wakeups
-      // at least we're waking/rewaking a thread that's like to be hot or warm
-      // (have residual D$ and TLB affinity).
-      //
-      // "Wakeup locality" optimization:
-      // http://j2se.east/~dice/PERSIST/040825-WakeLocality.txt
-      // In the future we'll try to bias the selection mechanism
-      // to preferentially pick a thread that recently ran on
-      // a processor element that shares cache with the CPU on which
-      // the exiting thread is running.   We need access to Solaris'
-      // schedctl.sc_cpu to make that work.
-      //
-      ObjectWaiter * w = NULL ;
-      int QMode = Knob_QMode ;
-
-      if (QMode == 2 && _cxq != NULL) {
-          // QMode == 2 : cxq has precedence over EntryList.
-          // Try to directly wake a successor from the cxq.
-          // If successful, the successor will need to unlink itself from cxq.
-          w = _cxq ;
-          assert (w != NULL, "invariant") ;
-          assert (w->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
-          ExitEpilog (Self, w) ;
-          return ;
-      }
-
-      if (QMode == 3 && _cxq != NULL) {
-          // Aggressively drain cxq into EntryList at the first opportunity.
-          // This policy ensure that recently-run threads live at the head of EntryList.
-          // Drain _cxq into EntryList - bulk transfer.
-          // First, detach _cxq.
-          // The following loop is tantamount to: w = swap (&cxq, NULL)
-          w = _cxq ;
-          for (;;) {
-             assert (w != NULL, "Invariant") ;
-             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
-             if (u == w) break ;
-             w = u ;
-          }
-          assert (w != NULL              , "invariant") ;
-
-          ObjectWaiter * q = NULL ;
-          ObjectWaiter * p ;
-          for (p = w ; p != NULL ; p = p->_next) {
-              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
-              p->TState = ObjectWaiter::TS_ENTER ;
-              p->_prev = q ;
-              q = p ;
-          }
-
-          // Append the RATs to the EntryList
-          // TODO: organize EntryList as a CDLL so we can locate the tail in constant-time.
-          ObjectWaiter * Tail ;
-          for (Tail = _EntryList ; Tail != NULL && Tail->_next != NULL ; Tail = Tail->_next) ;
-          if (Tail == NULL) {
-              _EntryList = w ;
-          } else {
-              Tail->_next = w ;
-              w->_prev = Tail ;
-          }
-
-          // Fall thru into code that tries to wake a successor from EntryList
-      }
-
-      if (QMode == 4 && _cxq != NULL) {
-          // Aggressively drain cxq into EntryList at the first opportunity.
-          // This policy ensure that recently-run threads live at the head of EntryList.
-
-          // Drain _cxq into EntryList - bulk transfer.
-          // First, detach _cxq.
-          // The following loop is tantamount to: w = swap (&cxq, NULL)
-          w = _cxq ;
-          for (;;) {
-             assert (w != NULL, "Invariant") ;
-             ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
-             if (u == w) break ;
-             w = u ;
-          }
-          assert (w != NULL              , "invariant") ;
-
-          ObjectWaiter * q = NULL ;
-          ObjectWaiter * p ;
-          for (p = w ; p != NULL ; p = p->_next) {
-              guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
-              p->TState = ObjectWaiter::TS_ENTER ;
-              p->_prev = q ;
-              q = p ;
-          }
-
-          // Prepend the RATs to the EntryList
-          if (_EntryList != NULL) {
-              q->_next = _EntryList ;
-              _EntryList->_prev = q ;
-          }
-          _EntryList = w ;
-
-          // Fall thru into code that tries to wake a successor from EntryList
-      }
-
-      w = _EntryList  ;
-      if (w != NULL) {
-          // I'd like to write: guarantee (w->_thread != Self).
-          // But in practice an exiting thread may find itself on the EntryList.
-          // Lets say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
-          // then calls exit().  Exit release the lock by setting O._owner to NULL.
-          // Lets say T1 then stalls.  T2 acquires O and calls O.notify().  The
-          // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
-          // release the lock "O".  T2 resumes immediately after the ST of null into
-          // _owner, above.  T2 notices that the EntryList is populated, so it
-          // reacquires the lock and then finds itself on the EntryList.
-          // Given all that, we have to tolerate the circumstance where "w" is
-          // associated with Self.
-          assert (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
-          ExitEpilog (Self, w) ;
-          return ;
-      }
-
-      // If we find that both _cxq and EntryList are null then just
-      // re-run the exit protocol from the top.
-      w = _cxq ;
-      if (w == NULL) continue ;
-
-      // Drain _cxq into EntryList - bulk transfer.
-      // First, detach _cxq.
-      // The following loop is tantamount to: w = swap (&cxq, NULL)
-      for (;;) {
-          assert (w != NULL, "Invariant") ;
-          ObjectWaiter * u = (ObjectWaiter *) Atomic::cmpxchg_ptr (NULL, &_cxq, w) ;
-          if (u == w) break ;
-          w = u ;
-      }
-      TEVENT (Inflated exit - drain cxq into EntryList) ;
-
-      assert (w != NULL              , "invariant") ;
-      assert (_EntryList  == NULL    , "invariant") ;
-
-      // Convert the LIFO SLL anchored by _cxq into a DLL.
-      // The list reorganization step operates in O(LENGTH(w)) time.
-      // It's critical that this step operate quickly as
-      // "Self" still holds the outer-lock, restricting parallelism
-      // and effectively lengthening the critical section.
-      // Invariant: s chases t chases u.
-      // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
-      // we have faster access to the tail.
-
-      if (QMode == 1) {
-         // QMode == 1 : drain cxq to EntryList, reversing order
-         // We also reverse the order of the list.
-         ObjectWaiter * s = NULL ;
-         ObjectWaiter * t = w ;
-         ObjectWaiter * u = NULL ;
-         while (t != NULL) {
-             guarantee (t->TState == ObjectWaiter::TS_CXQ, "invariant") ;
-             t->TState = ObjectWaiter::TS_ENTER ;
-             u = t->_next ;
-             t->_prev = u ;
-             t->_next = s ;
-             s = t;
-             t = u ;
-         }
-         _EntryList  = s ;
-         assert (s != NULL, "invariant") ;
-      } else {
-         // QMode == 0 or QMode == 2
-         _EntryList = w ;
-         ObjectWaiter * q = NULL ;
-         ObjectWaiter * p ;
-         for (p = w ; p != NULL ; p = p->_next) {
-             guarantee (p->TState == ObjectWaiter::TS_CXQ, "Invariant") ;
-             p->TState = ObjectWaiter::TS_ENTER ;
-             p->_prev = q ;
-             q = p ;
-         }
-      }
-
-      // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
-      // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
-
-      // See if we can abdicate to a spinner instead of waking a thread.
-      // A primary goal of the implementation is to reduce the
-      // context-switch rate.
-      if (_succ != NULL) continue;
-
-      w = _EntryList  ;
-      if (w != NULL) {
-          guarantee (w->TState == ObjectWaiter::TS_ENTER, "invariant") ;
-          ExitEpilog (Self, w) ;
-          return ;
-      }
-   }
-}
-// complete_exit exits a lock returning recursion count
-// complete_exit/reenter operate as a wait without waiting
-// complete_exit requires an inflated monitor
-// The _owner field is not always the Thread addr even with an
-// inflated monitor, e.g. the monitor can be inflated by a non-owning
-// thread due to contention.
-intptr_t ObjectMonitor::complete_exit(TRAPS) {
-   Thread * const Self = THREAD;
-   assert(Self->is_Java_thread(), "Must be Java thread!");
-   JavaThread *jt = (JavaThread *)THREAD;
-
-   DeferredInitialize();
-
-   if (THREAD != _owner) {
-    if (THREAD->is_lock_owned ((address)_owner)) {
-       assert(_recursions == 0, "internal state error");
-       _owner = THREAD ;   /* Convert from basiclock addr to Thread addr */
-       _recursions = 0 ;
-       OwnerIsThread = 1 ;
-    }
-   }
-
-   guarantee(Self == _owner, "complete_exit not owner");
-   intptr_t save = _recursions; // record the old recursion count
-   _recursions = 0;        // set the recursion level to be 0
-   exit (Self) ;           // exit the monitor
-   guarantee (_owner != Self, "invariant");
-   return save;
-}
-
-// reenter() enters a lock and sets recursion count
-// complete_exit/reenter operate as a wait without waiting
-void ObjectMonitor::reenter(intptr_t recursions, TRAPS) {
-   Thread * const Self = THREAD;
-   assert(Self->is_Java_thread(), "Must be Java thread!");
-   JavaThread *jt = (JavaThread *)THREAD;
-
-   guarantee(_owner != Self, "reenter already owner");
-   enter (THREAD);       // enter the monitor
-   guarantee (_recursions == 0, "reenter recursion");
-   _recursions = recursions;
-   return;
-}
-
-// Note: a subset of changes to ObjectMonitor::wait()
-// will need to be replicated in complete_exit above
-void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
-   Thread * const Self = THREAD ;
-   assert(Self->is_Java_thread(), "Must be Java thread!");
-   JavaThread *jt = (JavaThread *)THREAD;
-
-   DeferredInitialize () ;
-
-   // Throw IMSX or IEX.
-   CHECK_OWNER();
-
-   // check for a pending interrupt
-   if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
-     // post monitor waited event.  Note that this is past-tense, we are done waiting.
-     if (JvmtiExport::should_post_monitor_waited()) {
-        // Note: 'false' parameter is passed here because the
-        // wait was not timed out due to thread interrupt.
-        JvmtiExport::post_monitor_waited(jt, this, false);
-     }
-     TEVENT (Wait - Throw IEX) ;
-     THROW(vmSymbols::java_lang_InterruptedException());
-     return ;
-   }
-   TEVENT (Wait) ;
-
-   assert (Self->_Stalled == 0, "invariant") ;
-   Self->_Stalled = intptr_t(this) ;
-   jt->set_current_waiting_monitor(this);
-
-   // create a node to be put into the queue
-   // Critically, after we reset() the event but prior to park(), we must check
-   // for a pending interrupt.
-   ObjectWaiter node(Self);
-   node.TState = ObjectWaiter::TS_WAIT ;
-   Self->_ParkEvent->reset() ;
-   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
-
-   // Enter the waiting queue, which is a circular doubly linked list in this case
-   // but it could be a priority queue or any data structure.
-   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
-   // by the the owner of the monitor *except* in the case where park()
-   // returns because of a timeout of interrupt.  Contention is exceptionally rare
-   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
-
-   Thread::SpinAcquire (&_WaitSetLock, "WaitSet - add") ;
-   AddWaiter (&node) ;
-   Thread::SpinRelease (&_WaitSetLock) ;
-
-   if ((SyncFlags & 4) == 0) {
-      _Responsible = NULL ;
-   }
-   intptr_t save = _recursions; // record the old recursion count
-   _waiters++;                  // increment the number of waiters
-   _recursions = 0;             // set the recursion level to be 1
-   exit (Self) ;                    // exit the monitor
-   guarantee (_owner != Self, "invariant") ;
-
-   // As soon as the ObjectMonitor's ownership is dropped in the exit()
-   // call above, another thread can enter() the ObjectMonitor, do the
-   // notify(), and exit() the ObjectMonitor. If the other thread's
-   // exit() call chooses this thread as the successor and the unpark()
-   // call happens to occur while this thread is posting a
-   // MONITOR_CONTENDED_EXIT event, then we run the risk of the event
-   // handler using RawMonitors and consuming the unpark().
-   //
-   // To avoid the problem, we re-post the event. This does no harm
-   // even if the original unpark() was not consumed because we are the
-   // chosen successor for this monitor.
-   if (node._notified != 0 && _succ == Self) {
-      node._event->unpark();
-   }
-
-   // The thread is on the WaitSet list - now park() it.
-   // On MP systems it's conceivable that a brief spin before we park
-   // could be profitable.
-   //
-   // TODO-FIXME: change the following logic to a loop of the form
-   //   while (!timeout && !interrupted && _notified == 0) park()
-
-   int ret = OS_OK ;
-   int WasNotified = 0 ;
-   { // State transition wrappers
-     OSThread* osthread = Self->osthread();
-     OSThreadWaitState osts(osthread, true);
-     {
-       ThreadBlockInVM tbivm(jt);
-       // Thread is in thread_blocked state and oop access is unsafe.
-       jt->set_suspend_equivalent();
-
-       if (interruptible && (Thread::is_interrupted(THREAD, false) || HAS_PENDING_EXCEPTION)) {
-           // Intentionally empty
-       } else
-       if (node._notified == 0) {
-         if (millis <= 0) {
-            Self->_ParkEvent->park () ;
-         } else {
-            ret = Self->_ParkEvent->park (millis) ;
-         }
-       }
-
-       // were we externally suspended while we were waiting?
-       if (ExitSuspendEquivalent (jt)) {
-          // TODO-FIXME: add -- if succ == Self then succ = null.
-          jt->java_suspend_self();
-       }
-
-     } // Exit thread safepoint: transition _thread_blocked -> _thread_in_vm
-
-
-     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
-     // from the WaitSet to the EntryList.
-     // See if we need to remove Node from the WaitSet.
-     // We use double-checked locking to avoid grabbing _WaitSetLock
-     // if the thread is not on the wait queue.
-     //
-     // Note that we don't need a fence before the fetch of TState.
-     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
-     // written by the is thread. (perhaps the fetch might even be satisfied
-     // by a look-aside into the processor's own store buffer, although given
-     // the length of the code path between the prior ST and this load that's
-     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
-     // then we'll acquire the lock and then re-fetch a fresh TState value.
-     // That is, we fail toward safety.
-
-     if (node.TState == ObjectWaiter::TS_WAIT) {
-         Thread::SpinAcquire (&_WaitSetLock, "WaitSet - unlink") ;
-         if (node.TState == ObjectWaiter::TS_WAIT) {
-            DequeueSpecificWaiter (&node) ;       // unlink from WaitSet
-            assert(node._notified == 0, "invariant");
-            node.TState = ObjectWaiter::TS_RUN ;
-         }
-         Thread::SpinRelease (&_WaitSetLock) ;
-     }
+// Instead of No_Savepoint_Verifier it might be cheaper to
+// use an idiom of the form:
+//   auto int tmp = SafepointSynchronize::_safepoint_counter ;
+//   <code that must not run at safepoint>
+//   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
+// Since the tests are extremely cheap we could leave them enabled
+// for normal product builds.
 
-     // The thread is now either on off-list (TS_RUN),
-     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
-     // The Node's TState variable is stable from the perspective of this thread.
-     // No other threads will asynchronously modify TState.
-     guarantee (node.TState != ObjectWaiter::TS_WAIT, "invariant") ;
-     OrderAccess::loadload() ;
-     if (_succ == Self) _succ = NULL ;
-     WasNotified = node._notified ;
-
-     // Reentry phase -- reacquire the monitor.
-     // re-enter contended monitor after object.wait().
-     // retain OBJECT_WAIT state until re-enter successfully completes
-     // Thread state is thread_in_vm and oop access is again safe,
-     // although the raw address of the object may have changed.
-     // (Don't cache naked oops over safepoints, of course).
-
-     // post monitor waited event. Note that this is past-tense, we are done waiting.
-     if (JvmtiExport::should_post_monitor_waited()) {
-       JvmtiExport::post_monitor_waited(jt, this, ret == OS_TIMEOUT);
-     }
-     OrderAccess::fence() ;
-
-     assert (Self->_Stalled != 0, "invariant") ;
-     Self->_Stalled = 0 ;
-
-     assert (_owner != Self, "invariant") ;
-     ObjectWaiter::TStates v = node.TState ;
-     if (v == ObjectWaiter::TS_RUN) {
-         enter (Self) ;
-     } else {
-         guarantee (v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant") ;
-         ReenterI (Self, &node) ;
-         node.wait_reenter_end(this);
-     }
-
-     // Self has reacquired the lock.
-     // Lifecycle - the node representing Self must not appear on any queues.
-     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
-     // want residual elements associated with this thread left on any lists.
-     guarantee (node.TState == ObjectWaiter::TS_RUN, "invariant") ;
-     assert    (_owner == Self, "invariant") ;
-     assert    (_succ != Self , "invariant") ;
-   } // OSThreadWaitState()
-
-   jt->set_current_waiting_monitor(NULL);
-
-   guarantee (_recursions == 0, "invariant") ;
-   _recursions = save;     // restore the old recursion count
-   _waiters--;             // decrement the number of waiters
-
-   // Verify a few postconditions
-   assert (_owner == Self       , "invariant") ;
-   assert (_succ  != Self       , "invariant") ;
-   assert (((oop)(object()))->mark() == markOopDesc::encode(this), "invariant") ;
-
-   if (SyncFlags & 32) {
-      OrderAccess::fence() ;
-   }
-
-   // check if the notification happened
-   if (!WasNotified) {
-     // no, it could be timeout or Thread.interrupt() or both
-     // check for interrupt event, otherwise it is timeout
-     if (interruptible && Thread::is_interrupted(Self, true) && !HAS_PENDING_EXCEPTION) {
-       TEVENT (Wait - throw IEX from epilog) ;
-       THROW(vmSymbols::java_lang_InterruptedException());
-     }
-   }
-
-   // NOTE: Spurious wake up will be consider as timeout.
-   // Monitor notify has precedence over thread interrupt.
-}
-
-
-// Consider:
-// If the lock is cool (cxq == null && succ == null) and we're on an MP system
-// then instead of transferring a thread from the WaitSet to the EntryList
-// we might just dequeue a thread from the WaitSet and directly unpark() it.
-
-void ObjectMonitor::notify(TRAPS) {
-  CHECK_OWNER();
-  if (_WaitSet == NULL) {
-     TEVENT (Empty-Notify) ;
-     return ;
-  }
-  DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
-
-  int Policy = Knob_MoveNotifyee ;
-
-  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
-  ObjectWaiter * iterator = DequeueWaiter() ;
-  if (iterator != NULL) {
-     TEVENT (Notify1 - Transfer) ;
-     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
-     guarantee (iterator->_notified == 0, "invariant") ;
-     // Disposition - what might we do with iterator ?
-     // a.  add it directly to the EntryList - either tail or head.
-     // b.  push it onto the front of the _cxq.
-     // For now we use (a).
-     if (Policy != 4) {
-        iterator->TState = ObjectWaiter::TS_ENTER ;
-     }
-     iterator->_notified = 1 ;
-
-     ObjectWaiter * List = _EntryList ;
-     if (List != NULL) {
-        assert (List->_prev == NULL, "invariant") ;
-        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
-        assert (List != iterator, "invariant") ;
-     }
-
-     if (Policy == 0) {       // prepend to EntryList
-         if (List == NULL) {
-             iterator->_next = iterator->_prev = NULL ;
-             _EntryList = iterator ;
-         } else {
-             List->_prev = iterator ;
-             iterator->_next = List ;
-             iterator->_prev = NULL ;
-             _EntryList = iterator ;
-        }
-     } else
-     if (Policy == 1) {      // append to EntryList
-         if (List == NULL) {
-             iterator->_next = iterator->_prev = NULL ;
-             _EntryList = iterator ;
-         } else {
-            // CONSIDER:  finding the tail currently requires a linear-time walk of
-            // the EntryList.  We can make tail access constant-time by converting to
-            // a CDLL instead of using our current DLL.
-            ObjectWaiter * Tail ;
-            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
-            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
-            Tail->_next = iterator ;
-            iterator->_prev = Tail ;
-            iterator->_next = NULL ;
-        }
-     } else
-     if (Policy == 2) {      // prepend to cxq
-         // prepend to cxq
-         if (List == NULL) {
-             iterator->_next = iterator->_prev = NULL ;
-             _EntryList = iterator ;
-         } else {
-            iterator->TState = ObjectWaiter::TS_CXQ ;
-            for (;;) {
-                ObjectWaiter * Front = _cxq ;
-                iterator->_next = Front ;
-                if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
-                    break ;
-                }
-            }
-         }
-     } else
-     if (Policy == 3) {      // append to cxq
-        iterator->TState = ObjectWaiter::TS_CXQ ;
-        for (;;) {
-            ObjectWaiter * Tail ;
-            Tail = _cxq ;
-            if (Tail == NULL) {
-                iterator->_next = NULL ;
-                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
-                   break ;
-                }
-            } else {
-                while (Tail->_next != NULL) Tail = Tail->_next ;
-                Tail->_next = iterator ;
-                iterator->_prev = Tail ;
-                iterator->_next = NULL ;
-                break ;
-            }
-        }
-     } else {
-        ParkEvent * ev = iterator->_event ;
-        iterator->TState = ObjectWaiter::TS_RUN ;
-        OrderAccess::fence() ;
-        ev->unpark() ;
-     }
-
-     if (Policy < 4) {
-       iterator->wait_reenter_begin(this);
-     }
-
-     // _WaitSetLock protects the wait queue, not the EntryList.  We could
-     // move the add-to-EntryList operation, above, outside the critical section
-     // protected by _WaitSetLock.  In practice that's not useful.  With the
-     // exception of  wait() timeouts and interrupts the monitor owner
-     // is the only thread that grabs _WaitSetLock.  There's almost no contention
-     // on _WaitSetLock so it's not profitable to reduce the length of the
-     // critical section.
-  }
-
-  Thread::SpinRelease (&_WaitSetLock) ;
-
-  if (iterator != NULL && ObjectSynchronizer::_sync_Notifications != NULL) {
-     ObjectSynchronizer::_sync_Notifications->inc() ;
-  }
-}
-
-
-void ObjectMonitor::notifyAll(TRAPS) {
-  CHECK_OWNER();
-  ObjectWaiter* iterator;
-  if (_WaitSet == NULL) {
-      TEVENT (Empty-NotifyAll) ;
-      return ;
-  }
-  DTRACE_MONITOR_PROBE(notifyAll, this, object(), THREAD);
-
-  int Policy = Knob_MoveNotifyee ;
-  int Tally = 0 ;
-  Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notifyall") ;
-
-  for (;;) {
-     iterator = DequeueWaiter () ;
-     if (iterator == NULL) break ;
-     TEVENT (NotifyAll - Transfer1) ;
-     ++Tally ;
-
-     // Disposition - what might we do with iterator ?
-     // a.  add it directly to the EntryList - either tail or head.
-     // b.  push it onto the front of the _cxq.
-     // For now we use (a).
-     //
-     // TODO-FIXME: currently notifyAll() transfers the waiters one-at-a-time from the waitset
-     // to the EntryList.  This could be done more efficiently with a single bulk transfer,
-     // but in practice it's not time-critical.  Beware too, that in prepend-mode we invert the
-     // order of the waiters.  Lets say that the waitset is "ABCD" and the EntryList is "XYZ".
-     // After a notifyAll() in prepend mode the waitset will be empty and the EntryList will
-     // be "DCBAXYZ".
-
-     guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
-     guarantee (iterator->_notified == 0, "invariant") ;
-     iterator->_notified = 1 ;
-     if (Policy != 4) {
-        iterator->TState = ObjectWaiter::TS_ENTER ;
-     }
-
-     ObjectWaiter * List = _EntryList ;
-     if (List != NULL) {
-        assert (List->_prev == NULL, "invariant") ;
-        assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
-        assert (List != iterator, "invariant") ;
-     }
-
-     if (Policy == 0) {       // prepend to EntryList
-         if (List == NULL) {
-             iterator->_next = iterator->_prev = NULL ;
-             _EntryList = iterator ;
-         } else {
-             List->_prev = iterator ;
-             iterator->_next = List ;
-             iterator->_prev = NULL ;
-             _EntryList = iterator ;
-        }
-     } else
-     if (Policy == 1) {      // append to EntryList
-         if (List == NULL) {
-             iterator->_next = iterator->_prev = NULL ;
-             _EntryList = iterator ;
-         } else {
-            // CONSIDER:  finding the tail currently requires a linear-time walk of
-            // the EntryList.  We can make tail access constant-time by converting to
-            // a CDLL instead of using our current DLL.
-            ObjectWaiter * Tail ;
-            for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
-            assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
-            Tail->_next = iterator ;
-            iterator->_prev = Tail ;
-            iterator->_next = NULL ;
-        }
-     } else
-     if (Policy == 2) {      // prepend to cxq
-         // prepend to cxq
-         iterator->TState = ObjectWaiter::TS_CXQ ;
-         for (;;) {
-             ObjectWaiter * Front = _cxq ;
-             iterator->_next = Front ;
-             if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
-                 break ;
-             }
-         }
-     } else
-     if (Policy == 3) {      // append to cxq
-        iterator->TState = ObjectWaiter::TS_CXQ ;
-        for (;;) {
-            ObjectWaiter * Tail ;
-            Tail = _cxq ;
-            if (Tail == NULL) {
-                iterator->_next = NULL ;
-                if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
-                   break ;
-                }
-            } else {
-                while (Tail->_next != NULL) Tail = Tail->_next ;
-                Tail->_next = iterator ;
-                iterator->_prev = Tail ;
-                iterator->_next = NULL ;
-                break ;
-            }
-        }
-     } else {
-        ParkEvent * ev = iterator->_event ;
-        iterator->TState = ObjectWaiter::TS_RUN ;
-        OrderAccess::fence() ;
-        ev->unpark() ;
-     }
-
-     if (Policy < 4) {
-       iterator->wait_reenter_begin(this);
-     }
-
-     // _WaitSetLock protects the wait queue, not the EntryList.  We could
-     // move the add-to-EntryList operation, above, outside the critical section
-     // protected by _WaitSetLock.  In practice that's not useful.  With the
-     // exception of  wait() timeouts and interrupts the monitor owner
-     // is the only thread that grabs _WaitSetLock.  There's almost no contention
-     // on _WaitSetLock so it's not profitable to reduce the length of the
-     // critical section.
-  }
-
-  Thread::SpinRelease (&_WaitSetLock) ;
-
-  if (Tally != 0 && ObjectSynchronizer::_sync_Notifications != NULL) {
-     ObjectSynchronizer::_sync_Notifications->inc(Tally) ;
-  }
+void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
+  assert(THREAD == JavaThread::current(), "must be current Java thread");
+  No_Safepoint_Verifier nsv ;
+  ReleaseJavaMonitorsClosure rjmc(THREAD);
+  Thread::muxAcquire(&ListLock, "release_monitors_owned_by_thread");
+  ObjectSynchronizer::monitors_iterate(&rjmc);
+  Thread::muxRelease(&ListLock);
+  THREAD->clear_pending_exception();
 }
 
-// check_slow() is a misnomer.  It's called to simply to throw an IMSX exception.
-// TODO-FIXME: remove check_slow() -- it's likely dead.
-
-void ObjectMonitor::check_slow(TRAPS) {
-  TEVENT (check_slow - throw IMSX) ;
-  assert(THREAD != _owner && !THREAD->is_lock_owned((address) _owner), "must not be owner");
-  THROW_MSG(vmSymbols::java_lang_IllegalMonitorStateException(), "current thread not owner");
-}
-
-
-// -------------------------------------------------------------------------
-// The raw monitor subsystem is entirely distinct from normal
-// java-synchronization or jni-synchronization.  raw monitors are not
-// associated with objects.  They can be implemented in any manner
-// that makes sense.  The original implementors decided to piggy-back
-// the raw-monitor implementation on the existing Java objectMonitor mechanism.
-// This flaw needs to fixed.  We should reimplement raw monitors as sui-generis.
-// Specifically, we should not implement raw monitors via java monitors.
-// Time permitting, we should disentangle and deconvolve the two implementations
-// and move the resulting raw monitor implementation over to the JVMTI directories.
-// Ideally, the raw monitor implementation would be built on top of
-// park-unpark and nothing else.
-//
-// raw monitors are used mainly by JVMTI
-// The raw monitor implementation borrows the ObjectMonitor structure,
-// but the operators are degenerate and extremely simple.
-//
-// Mixed use of a single objectMonitor instance -- as both a raw monitor
-// and a normal java monitor -- is not permissible.
-//
-// Note that we use the single RawMonitor_lock to protect queue operations for
-// _all_ raw monitors.  This is a scalability impediment, but since raw monitor usage
-// is deprecated and rare, this is not of concern.  The RawMonitor_lock can not
-// be held indefinitely.  The critical sections must be short and bounded.
-//
-// -------------------------------------------------------------------------
-
-int ObjectMonitor::SimpleEnter (Thread * Self) {
-  for (;;) {
-    if (Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
-       return OS_OK ;
-    }
-
-    ObjectWaiter Node (Self) ;
-    Self->_ParkEvent->reset() ;     // strictly optional
-    Node.TState = ObjectWaiter::TS_ENTER ;
-
-    RawMonitor_lock->lock_without_safepoint_check() ;
-    Node._next  = _EntryList ;
-    _EntryList  = &Node ;
-    OrderAccess::fence() ;
-    if (_owner == NULL && Atomic::cmpxchg_ptr (Self, &_owner, NULL) == NULL) {
-        _EntryList = Node._next ;
-        RawMonitor_lock->unlock() ;
-        return OS_OK ;
-    }
-    RawMonitor_lock->unlock() ;
-    while (Node.TState == ObjectWaiter::TS_ENTER) {
-       Self->_ParkEvent->park() ;
-    }
-  }
-}
-
-int ObjectMonitor::SimpleExit (Thread * Self) {
-  guarantee (_owner == Self, "invariant") ;
-  OrderAccess::release_store_ptr (&_owner, NULL) ;
-  OrderAccess::fence() ;
-  if (_EntryList == NULL) return OS_OK ;
-  ObjectWaiter * w ;
-
-  RawMonitor_lock->lock_without_safepoint_check() ;
-  w = _EntryList ;
-  if (w != NULL) {
-      _EntryList = w->_next ;
-  }
-  RawMonitor_lock->unlock() ;
-  if (w != NULL) {
-      guarantee (w ->TState == ObjectWaiter::TS_ENTER, "invariant") ;
-      ParkEvent * ev = w->_event ;
-      w->TState = ObjectWaiter::TS_RUN ;
-      OrderAccess::fence() ;
-      ev->unpark() ;
-  }
-  return OS_OK ;
-}
-
-int ObjectMonitor::SimpleWait (Thread * Self, jlong millis) {
-  guarantee (_owner == Self  , "invariant") ;
-  guarantee (_recursions == 0, "invariant") ;
-
-  ObjectWaiter Node (Self) ;
-  Node._notified = 0 ;
-  Node.TState    = ObjectWaiter::TS_WAIT ;
-
-  RawMonitor_lock->lock_without_safepoint_check() ;
-  Node._next     = _WaitSet ;
-  _WaitSet       = &Node ;
-  RawMonitor_lock->unlock() ;
-
-  SimpleExit (Self) ;
-  guarantee (_owner != Self, "invariant") ;
-
-  int ret = OS_OK ;
-  if (millis <= 0) {
-    Self->_ParkEvent->park();
-  } else {
-    ret = Self->_ParkEvent->park(millis);
-  }
-
-  // If thread still resides on the waitset then unlink it.
-  // Double-checked locking -- the usage is safe in this context
-  // as we TState is volatile and the lock-unlock operators are
-  // serializing (barrier-equivalent).
-
-  if (Node.TState == ObjectWaiter::TS_WAIT) {
-    RawMonitor_lock->lock_without_safepoint_check() ;
-    if (Node.TState == ObjectWaiter::TS_WAIT) {
-      // Simple O(n) unlink, but performance isn't critical here.
-      ObjectWaiter * p ;
-      ObjectWaiter * q = NULL ;
-      for (p = _WaitSet ; p != &Node; p = p->_next) {
-         q = p ;
-      }
-      guarantee (p == &Node, "invariant") ;
-      if (q == NULL) {
-        guarantee (p == _WaitSet, "invariant") ;
-        _WaitSet = p->_next ;
-      } else {
-        guarantee (p == q->_next, "invariant") ;
-        q->_next = p->_next ;
-      }
-      Node.TState = ObjectWaiter::TS_RUN ;
-    }
-    RawMonitor_lock->unlock() ;
-  }
-
-  guarantee (Node.TState == ObjectWaiter::TS_RUN, "invariant") ;
-  SimpleEnter (Self) ;
-
-  guarantee (_owner == Self, "invariant") ;
-  guarantee (_recursions == 0, "invariant") ;
-  return ret ;
-}
-
-int ObjectMonitor::SimpleNotify (Thread * Self, bool All) {
-  guarantee (_owner == Self, "invariant") ;
-  if (_WaitSet == NULL) return OS_OK ;
-
-  // We have two options:
-  // A. Transfer the threads from the WaitSet to the EntryList
-  // B. Remove the thread from the WaitSet and unpark() it.
-  //
-  // We use (B), which is crude and results in lots of futile
-  // context switching.  In particular (B) induces lots of contention.
-
-  ParkEvent * ev = NULL ;       // consider using a small auto array ...
-  RawMonitor_lock->lock_without_safepoint_check() ;
-  for (;;) {
-      ObjectWaiter * w = _WaitSet ;
-      if (w == NULL) break ;
-      _WaitSet = w->_next ;
-      if (ev != NULL) { ev->unpark(); ev = NULL; }
-      ev = w->_event ;
-      OrderAccess::loadstore() ;
-      w->TState = ObjectWaiter::TS_RUN ;
-      OrderAccess::storeload();
-      if (!All) break ;
-  }
-  RawMonitor_lock->unlock() ;
-  if (ev != NULL) ev->unpark();
-  return OS_OK ;
-}
-
-// Any JavaThread will enter here with state _thread_blocked
-int ObjectMonitor::raw_enter(TRAPS) {
-  TEVENT (raw_enter) ;
-  void * Contended ;
-
-  // don't enter raw monitor if thread is being externally suspended, it will
-  // surprise the suspender if a "suspended" thread can still enter monitor
-  JavaThread * jt = (JavaThread *)THREAD;
-  if (THREAD->is_Java_thread()) {
-    jt->SR_lock()->lock_without_safepoint_check();
-    while (jt->is_external_suspend()) {
-      jt->SR_lock()->unlock();
-      jt->java_suspend_self();
-      jt->SR_lock()->lock_without_safepoint_check();
-    }
-    // guarded by SR_lock to avoid racing with new external suspend requests.
-    Contended = Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) ;
-    jt->SR_lock()->unlock();
-  } else {
-    Contended = Atomic::cmpxchg_ptr (THREAD, &_owner, NULL) ;
-  }
-
-  if (Contended == THREAD) {
-     _recursions ++ ;
-     return OM_OK ;
-  }
-
-  if (Contended == NULL) {
-     guarantee (_owner == THREAD, "invariant") ;
-     guarantee (_recursions == 0, "invariant") ;
-     return OM_OK ;
-  }
-
-  THREAD->set_current_pending_monitor(this);
-
-  if (!THREAD->is_Java_thread()) {
-     // No other non-Java threads besides VM thread would acquire
-     // a raw monitor.
-     assert(THREAD->is_VM_thread(), "must be VM thread");
-     SimpleEnter (THREAD) ;
-   } else {
-     guarantee (jt->thread_state() == _thread_blocked, "invariant") ;
-     for (;;) {
-       jt->set_suspend_equivalent();
-       // cleared by handle_special_suspend_equivalent_condition() or
-       // java_suspend_self()
-       SimpleEnter (THREAD) ;
-
-       // were we externally suspended while we were waiting?
-       if (!jt->handle_special_suspend_equivalent_condition()) break ;
-
-       // This thread was externally suspended
-       //
-       // This logic isn't needed for JVMTI raw monitors,
-       // but doesn't hurt just in case the suspend rules change. This
-           // logic is needed for the ObjectMonitor.wait() reentry phase.
-           // We have reentered the contended monitor, but while we were
-           // waiting another thread suspended us. We don't want to reenter
-           // the monitor while suspended because that would surprise the
-           // thread that suspended us.
-           //
-           // Drop the lock -
-       SimpleExit (THREAD) ;
-
-           jt->java_suspend_self();
-         }
-
-     assert(_owner == THREAD, "Fatal error with monitor owner!");
-     assert(_recursions == 0, "Fatal error with monitor recursions!");
-  }
-
-  THREAD->set_current_pending_monitor(NULL);
-  guarantee (_recursions == 0, "invariant") ;
-  return OM_OK;
-}
-
-// Used mainly for JVMTI raw monitor implementation
-// Also used for ObjectMonitor::wait().
-int ObjectMonitor::raw_exit(TRAPS) {
-  TEVENT (raw_exit) ;
-  if (THREAD != _owner) {
-    return OM_ILLEGAL_MONITOR_STATE;
-  }
-  if (_recursions > 0) {
-    --_recursions ;
-    return OM_OK ;
-  }
-
-  void * List = _EntryList ;
-  SimpleExit (THREAD) ;
-
-  return OM_OK;
-}
-
-// Used for JVMTI raw monitor implementation.
-// All JavaThreads will enter here with state _thread_blocked
-
-int ObjectMonitor::raw_wait(jlong millis, bool interruptible, TRAPS) {
-  TEVENT (raw_wait) ;
-  if (THREAD != _owner) {
-    return OM_ILLEGAL_MONITOR_STATE;
-  }
-
-  // To avoid spurious wakeups we reset the parkevent -- This is strictly optional.
-  // The caller must be able to tolerate spurious returns from raw_wait().
-  THREAD->_ParkEvent->reset() ;
-  OrderAccess::fence() ;
-
-  // check interrupt event
-  if (interruptible && Thread::is_interrupted(THREAD, true)) {
-    return OM_INTERRUPTED;
-  }
-
-  intptr_t save = _recursions ;
-  _recursions = 0 ;
-  _waiters ++ ;
-  if (THREAD->is_Java_thread()) {
-    guarantee (((JavaThread *) THREAD)->thread_state() == _thread_blocked, "invariant") ;
-    ((JavaThread *)THREAD)->set_suspend_equivalent();
-  }
-  int rv = SimpleWait (THREAD, millis) ;
-  _recursions = save ;
-  _waiters -- ;
-
-  guarantee (THREAD == _owner, "invariant") ;
-  if (THREAD->is_Java_thread()) {
-     JavaThread * jSelf = (JavaThread *) THREAD ;
-     for (;;) {
-        if (!jSelf->handle_special_suspend_equivalent_condition()) break ;
-        SimpleExit (THREAD) ;
-        jSelf->java_suspend_self();
-        SimpleEnter (THREAD) ;
-        jSelf->set_suspend_equivalent() ;
-     }
-  }
-  guarantee (THREAD == _owner, "invariant") ;
-
-  if (interruptible && Thread::is_interrupted(THREAD, true)) {
-    return OM_INTERRUPTED;
-  }
-  return OM_OK ;
-}
-
-int ObjectMonitor::raw_notify(TRAPS) {
-  TEVENT (raw_notify) ;
-  if (THREAD != _owner) {
-    return OM_ILLEGAL_MONITOR_STATE;
-  }
-  SimpleNotify (THREAD, false) ;
-  return OM_OK;
-}
-
-int ObjectMonitor::raw_notifyAll(TRAPS) {
-  TEVENT (raw_notifyAll) ;
-  if (THREAD != _owner) {
-    return OM_ILLEGAL_MONITOR_STATE;
-  }
-  SimpleNotify (THREAD, true) ;
-  return OM_OK;
-}
-
-#ifndef PRODUCT
-void ObjectMonitor::verify() {
-}
-
-void ObjectMonitor::print() {
-}
-#endif
-
 //------------------------------------------------------------------------------
 // Non-product code