src/hotspot/share/runtime/advancedThresholdPolicy.cpp
changeset 50149 d93ae85b18c1
parent 50148 9822dd521c15
parent 50111 1dc98fa30b14
child 50150 1ff7fb9125f8
--- a/src/hotspot/share/runtime/advancedThresholdPolicy.cpp	Tue May 15 18:03:31 2018 +0530
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,667 +0,0 @@
-/*
- * Copyright (c) 2010, 2018, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- *
- */
-
-#include "precompiled.hpp"
-#include "code/codeCache.hpp"
-#include "runtime/advancedThresholdPolicy.hpp"
-#include "runtime/handles.inline.hpp"
-#include "runtime/simpleThresholdPolicy.inline.hpp"
-#if INCLUDE_JVMCI
-#include "jvmci/jvmciRuntime.hpp"
-#endif
-
-#ifdef TIERED
-// Print an event.
-void AdvancedThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh,
-                                             int bci, CompLevel level) {
-  tty->print(" rate=");
-  if (mh->prev_time() == 0) tty->print("n/a");
-  else tty->print("%f", mh->rate());
-
-  tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
-                               threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
-
-}
-
-void AdvancedThresholdPolicy::initialize() {
-  int count = CICompilerCount;
-#ifdef _LP64
-  // Turn on ergonomic compiler count selection
-  if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
-    FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
-  }
-  if (CICompilerCountPerCPU) {
-    // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
-    int log_cpu = log2_intptr(os::active_processor_count());
-    int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
-    count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
-    FLAG_SET_ERGO(intx, CICompilerCount, count);
-  }
-#else
-  // On 32-bit systems, the number of compiler threads is limited to 3.
-  // On these systems, the virtual address space available to the JVM
-  // is usually limited to 2-4 GB (the exact value depends on the platform).
-  // As the compilers (especially C2) can consume a large amount of
-  // memory, scaling the number of compiler threads with the number of
-  // available cores can result in the exhaustion of the address space
-  /// available to the VM and thus cause the VM to crash.
-  if (FLAG_IS_DEFAULT(CICompilerCount)) {
-    count = 3;
-    FLAG_SET_ERGO(intx, CICompilerCount, count);
-  }
-#endif
-
-  if (TieredStopAtLevel < CompLevel_full_optimization) {
-    // No C2 compiler thread required
-    set_c1_count(count);
-  } else {
-    set_c1_count(MAX2(count / 3, 1));
-    set_c2_count(MAX2(count - c1_count(), 1));
-  }
-  assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
-
-  // Some inlining tuning
-#ifdef X86
-  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
-    FLAG_SET_DEFAULT(InlineSmallCode, 2000);
-  }
-#endif
-
-#if defined SPARC || defined AARCH64
-  if (FLAG_IS_DEFAULT(InlineSmallCode)) {
-    FLAG_SET_DEFAULT(InlineSmallCode, 2500);
-  }
-#endif
-
-  set_increase_threshold_at_ratio();
-  set_start_time(os::javaTimeMillis());
-}
-
-// update_rate() is called from select_task() while holding a compile queue lock.
-void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
-  // Skip update if counters are absent.
-  // Can't allocate them since we are holding compile queue lock.
-  if (m->method_counters() == NULL)  return;
-
-  if (is_old(m)) {
-    // We don't remove old methods from the queue,
-    // so we can just zero the rate.
-    m->set_rate(0);
-    return;
-  }
-
-  // We don't update the rate if we've just came out of a safepoint.
-  // delta_s is the time since last safepoint in milliseconds.
-  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
-  jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
-  // How many events were there since the last time?
-  int event_count = m->invocation_count() + m->backedge_count();
-  int delta_e = event_count - m->prev_event_count();
-
-  // We should be running for at least 1ms.
-  if (delta_s >= TieredRateUpdateMinTime) {
-    // And we must've taken the previous point at least 1ms before.
-    if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
-      m->set_prev_time(t);
-      m->set_prev_event_count(event_count);
-      m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
-    } else {
-      if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
-        // If nothing happened for 25ms, zero the rate. Don't modify prev values.
-        m->set_rate(0);
-      }
-    }
-  }
-}
-
-// Check if this method has been stale from a given number of milliseconds.
-// See select_task().
-bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
-  jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
-  jlong delta_t = t - m->prev_time();
-  if (delta_t > timeout && delta_s > timeout) {
-    int event_count = m->invocation_count() + m->backedge_count();
-    int delta_e = event_count - m->prev_event_count();
-    // Return true if there were no events.
-    return delta_e == 0;
-  }
-  return false;
-}
-
-// We don't remove old methods from the compile queue even if they have
-// very low activity. See select_task().
-bool AdvancedThresholdPolicy::is_old(Method* method) {
-  return method->invocation_count() > 50000 || method->backedge_count() > 500000;
-}
-
-double AdvancedThresholdPolicy::weight(Method* method) {
-  return (double)(method->rate() + 1) *
-    (method->invocation_count() + 1) * (method->backedge_count() + 1);
-}
-
-// Apply heuristics and return true if x should be compiled before y
-bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
-  if (x->highest_comp_level() > y->highest_comp_level()) {
-    // recompilation after deopt
-    return true;
-  } else
-    if (x->highest_comp_level() == y->highest_comp_level()) {
-      if (weight(x) > weight(y)) {
-        return true;
-      }
-    }
-  return false;
-}
-
-// Is method profiled enough?
-bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
-  MethodData* mdo = method->method_data();
-  if (mdo != NULL) {
-    int i = mdo->invocation_count_delta();
-    int b = mdo->backedge_count_delta();
-    return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
-  }
-  return false;
-}
-
-// Called with the queue locked and with at least one element
-CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
-  CompileTask *max_blocking_task = NULL;
-  CompileTask *max_task = NULL;
-  Method* max_method = NULL;
-  jlong t = os::javaTimeMillis();
-  // Iterate through the queue and find a method with a maximum rate.
-  for (CompileTask* task = compile_queue->first(); task != NULL;) {
-    CompileTask* next_task = task->next();
-    Method* method = task->method();
-    update_rate(t, method);
-    if (max_task == NULL) {
-      max_task = task;
-      max_method = method;
-    } else {
-      // If a method has been stale for some time, remove it from the queue.
-      // Blocking tasks and tasks submitted from whitebox API don't become stale
-      if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
-        if (PrintTieredEvents) {
-          print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
-        }
-        compile_queue->remove_and_mark_stale(task);
-        method->clear_queued_for_compilation();
-        task = next_task;
-        continue;
-      }
-
-      // Select a method with a higher rate
-      if (compare_methods(method, max_method)) {
-        max_task = task;
-        max_method = method;
-      }
-    }
-
-    if (task->is_blocking()) {
-      if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
-        max_blocking_task = task;
-      }
-    }
-
-    task = next_task;
-  }
-
-  if (max_blocking_task != NULL) {
-    // In blocking compilation mode, the CompileBroker will make
-    // compilations submitted by a JVMCI compiler thread non-blocking. These
-    // compilations should be scheduled after all blocking compilations
-    // to service non-compiler related compilations sooner and reduce the
-    // chance of such compilations timing out.
-    max_task = max_blocking_task;
-    max_method = max_task->method();
-  }
-
-  if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
-      && is_method_profiled(max_method)) {
-    max_task->set_comp_level(CompLevel_limited_profile);
-    if (PrintTieredEvents) {
-      print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
-    }
-  }
-
-  return max_task;
-}
-
-double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
-  double queue_size = CompileBroker::queue_size(level);
-  int comp_count = compiler_count(level);
-  double k = queue_size / (feedback_k * comp_count) + 1;
-
-  // Increase C1 compile threshold when the code cache is filled more
-  // than specified by IncreaseFirstTierCompileThresholdAt percentage.
-  // The main intention is to keep enough free space for C2 compiled code
-  // to achieve peak performance if the code cache is under stress.
-  if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
-    double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
-    if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
-      k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
-    }
-  }
-  return k;
-}
-
-// Call and loop predicates determine whether a transition to a higher
-// compilation level should be performed (pointers to predicate functions
-// are passed to common()).
-// Tier?LoadFeedback is basically a coefficient that determines of
-// how many methods per compiler thread can be in the queue before
-// the threshold values double.
-bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
-  switch(cur_level) {
-  case CompLevel_aot: {
-    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
-    return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
-  }
-  case CompLevel_none:
-  case CompLevel_limited_profile: {
-    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
-    return loop_predicate_helper<CompLevel_none>(i, b, k, method);
-  }
-  case CompLevel_full_profile: {
-    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
-    return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
-  }
-  default:
-    return true;
-  }
-}
-
-bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
-  switch(cur_level) {
-  case CompLevel_aot: {
-    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
-    return call_predicate_helper<CompLevel_aot>(i, b, k, method);
-  }
-  case CompLevel_none:
-  case CompLevel_limited_profile: {
-    double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
-    return call_predicate_helper<CompLevel_none>(i, b, k, method);
-  }
-  case CompLevel_full_profile: {
-    double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
-    return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
-  }
-  default:
-    return true;
-  }
-}
-
-// If a method is old enough and is still in the interpreter we would want to
-// start profiling without waiting for the compiled method to arrive.
-// We also take the load on compilers into the account.
-bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
-  if (cur_level == CompLevel_none &&
-      CompileBroker::queue_size(CompLevel_full_optimization) <=
-      Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
-    int i = method->invocation_count();
-    int b = method->backedge_count();
-    double k = Tier0ProfilingStartPercentage / 100.0;
-    return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
-  }
-  return false;
-}
-
-// Inlining control: if we're compiling a profiled method with C1 and the callee
-// is known to have OSRed in a C2 version, don't inline it.
-bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
-  CompLevel comp_level = (CompLevel)env->comp_level();
-  if (comp_level == CompLevel_full_profile ||
-      comp_level == CompLevel_limited_profile) {
-    return callee->highest_osr_comp_level() == CompLevel_full_optimization;
-  }
-  return false;
-}
-
-// Create MDO if necessary.
-void AdvancedThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
-  if (mh->is_native() ||
-      mh->is_abstract() ||
-      mh->is_accessor() ||
-      mh->is_constant_getter()) {
-    return;
-  }
-  if (mh->method_data() == NULL) {
-    Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
-  }
-}
-
-
-/*
- * Method states:
- *   0 - interpreter (CompLevel_none)
- *   1 - pure C1 (CompLevel_simple)
- *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
- *   3 - C1 with full profiling (CompLevel_full_profile)
- *   4 - C2 (CompLevel_full_optimization)
- *
- * Common state transition patterns:
- * a. 0 -> 3 -> 4.
- *    The most common path. But note that even in this straightforward case
- *    profiling can start at level 0 and finish at level 3.
- *
- * b. 0 -> 2 -> 3 -> 4.
- *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
- *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
- *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
- *
- * c. 0 -> (3->2) -> 4.
- *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
- *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
- *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
- *    without full profiling while c2 is compiling.
- *
- * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
- *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
- *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
- *
- * e. 0 -> 4.
- *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
- *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
- *    the compiled version already exists).
- *
- * Note that since state 0 can be reached from any other state via deoptimization different loops
- * are possible.
- *
- */
-
-// Common transition function. Given a predicate determines if a method should transition to another level.
-CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
-  CompLevel next_level = cur_level;
-  int i = method->invocation_count();
-  int b = method->backedge_count();
-
-  if (is_trivial(method)) {
-    next_level = CompLevel_simple;
-  } else {
-    switch(cur_level) {
-      default: break;
-      case CompLevel_aot: {
-      // If we were at full profile level, would we switch to full opt?
-      if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
-        next_level = CompLevel_full_optimization;
-      } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
-                               Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
-                               (this->*p)(i, b, cur_level, method))) {
-        next_level = CompLevel_full_profile;
-      }
-    }
-    break;
-    case CompLevel_none:
-      // If we were at full profile level, would we switch to full opt?
-      if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
-        next_level = CompLevel_full_optimization;
-      } else if ((this->*p)(i, b, cur_level, method)) {
-#if INCLUDE_JVMCI
-        if (EnableJVMCI && UseJVMCICompiler) {
-          // Since JVMCI takes a while to warm up, its queue inevitably backs up during
-          // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
-          // compilation method and all potential inlinees have mature profiles (which
-          // includes type profiling). If it sees immature profiles, JVMCI's inliner
-          // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
-          // exploring/inlining too many graphs). Since a rewrite of the inliner is
-          // in progress, we simply disable the dialing back heuristic for now and will
-          // revisit this decision once the new inliner is completed.
-          next_level = CompLevel_full_profile;
-        } else
-#endif
-        {
-          // C1-generated fully profiled code is about 30% slower than the limited profile
-          // code that has only invocation and backedge counters. The observation is that
-          // if C2 queue is large enough we can spend too much time in the fully profiled code
-          // while waiting for C2 to pick the method from the queue. To alleviate this problem
-          // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
-          // we choose to compile a limited profiled version and then recompile with full profiling
-          // when the load on C2 goes down.
-          if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
-              Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
-            next_level = CompLevel_limited_profile;
-          } else {
-            next_level = CompLevel_full_profile;
-          }
-        }
-      }
-      break;
-    case CompLevel_limited_profile:
-      if (is_method_profiled(method)) {
-        // Special case: we got here because this method was fully profiled in the interpreter.
-        next_level = CompLevel_full_optimization;
-      } else {
-        MethodData* mdo = method->method_data();
-        if (mdo != NULL) {
-          if (mdo->would_profile()) {
-            if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
-                                     Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
-                                     (this->*p)(i, b, cur_level, method))) {
-              next_level = CompLevel_full_profile;
-            }
-          } else {
-            next_level = CompLevel_full_optimization;
-          }
-        } else {
-          // If there is no MDO we need to profile
-          if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
-                                   Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
-                                   (this->*p)(i, b, cur_level, method))) {
-            next_level = CompLevel_full_profile;
-          }
-        }
-      }
-      break;
-    case CompLevel_full_profile:
-      {
-        MethodData* mdo = method->method_data();
-        if (mdo != NULL) {
-          if (mdo->would_profile()) {
-            int mdo_i = mdo->invocation_count_delta();
-            int mdo_b = mdo->backedge_count_delta();
-            if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
-              next_level = CompLevel_full_optimization;
-            }
-          } else {
-            next_level = CompLevel_full_optimization;
-          }
-        }
-      }
-      break;
-    }
-  }
-  return MIN2(next_level, (CompLevel)TieredStopAtLevel);
-}
-
-// Determine if a method should be compiled with a normal entry point at a different level.
-CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
-  CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
-                             common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
-  CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
-
-  // If OSR method level is greater than the regular method level, the levels should be
-  // equalized by raising the regular method level in order to avoid OSRs during each
-  // invocation of the method.
-  if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
-    MethodData* mdo = method->method_data();
-    guarantee(mdo != NULL, "MDO should not be NULL");
-    if (mdo->invocation_count() >= 1) {
-      next_level = CompLevel_full_optimization;
-    }
-  } else {
-    next_level = MAX2(osr_level, next_level);
-  }
-#if INCLUDE_JVMCI
-  if (UseJVMCICompiler) {
-    next_level = JVMCIRuntime::adjust_comp_level(method, false, next_level, thread);
-  }
-#endif
-  return next_level;
-}
-
-// Determine if we should do an OSR compilation of a given method.
-CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread * thread) {
-  CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
-  if (cur_level == CompLevel_none) {
-    // If there is a live OSR method that means that we deopted to the interpreter
-    // for the transition.
-    CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
-    if (osr_level > CompLevel_none) {
-      return osr_level;
-    }
-  }
-#if INCLUDE_JVMCI
-  if (UseJVMCICompiler) {
-    next_level = JVMCIRuntime::adjust_comp_level(method, true, next_level, thread);
-  }
-#endif
-  return next_level;
-}
-
-// Update the rate and submit compile
-void AdvancedThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
-  int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
-  update_rate(os::javaTimeMillis(), mh());
-  CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
-}
-
-bool AdvancedThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
-  if (UseAOT && !delay_compilation_during_startup()) {
-    if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
-      // If the current level is full profile or interpreter and we're switching to any other level,
-      // activate the AOT code back first so that we won't waste time overprofiling.
-      compile(mh, InvocationEntryBci, CompLevel_aot, thread);
-      // Fall through for JIT compilation.
-    }
-    if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
-      // If the next level is limited profile, use the aot code (if there is any),
-      // since it's essentially the same thing.
-      compile(mh, InvocationEntryBci, CompLevel_aot, thread);
-      // Not need to JIT, we're done.
-      return true;
-    }
-  }
-  return false;
-}
-
-
-// Handle the invocation event.
-void AdvancedThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
-                                                      CompLevel level, CompiledMethod* nm, JavaThread* thread) {
-  if (should_create_mdo(mh(), level)) {
-    create_mdo(mh, thread);
-  }
-  CompLevel next_level = call_event(mh(), level, thread);
-  if (next_level != level) {
-    if (maybe_switch_to_aot(mh, level, next_level, thread)) {
-      // No JITting necessary
-      return;
-    }
-    if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
-      compile(mh, InvocationEntryBci, next_level, thread);
-    }
-  }
-}
-
-// Handle the back branch event. Notice that we can compile the method
-// with a regular entry from here.
-void AdvancedThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
-                                                       int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
-  if (should_create_mdo(mh(), level)) {
-    create_mdo(mh, thread);
-  }
-  // Check if MDO should be created for the inlined method
-  if (should_create_mdo(imh(), level)) {
-    create_mdo(imh, thread);
-  }
-
-  if (is_compilation_enabled()) {
-    CompLevel next_osr_level = loop_event(imh(), level, thread);
-    CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
-    // At the very least compile the OSR version
-    if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
-      compile(imh, bci, next_osr_level, thread);
-    }
-
-    // Use loop event as an opportunity to also check if there's been
-    // enough calls.
-    CompLevel cur_level, next_level;
-    if (mh() != imh()) { // If there is an enclosing method
-      if (level == CompLevel_aot) {
-        // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
-        if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
-          compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
-        }
-      } else {
-        // Current loop event level is not AOT
-        guarantee(nm != NULL, "Should have nmethod here");
-        cur_level = comp_level(mh());
-        next_level = call_event(mh(), cur_level, thread);
-
-        if (max_osr_level == CompLevel_full_optimization) {
-          // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
-          bool make_not_entrant = false;
-          if (nm->is_osr_method()) {
-            // This is an osr method, just make it not entrant and recompile later if needed
-            make_not_entrant = true;
-          } else {
-            if (next_level != CompLevel_full_optimization) {
-              // next_level is not full opt, so we need to recompile the
-              // enclosing method without the inlinee
-              cur_level = CompLevel_none;
-              make_not_entrant = true;
-            }
-          }
-          if (make_not_entrant) {
-            if (PrintTieredEvents) {
-              int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
-              print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
-            }
-            nm->make_not_entrant();
-          }
-        }
-        // Fix up next_level if necessary to avoid deopts
-        if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
-          next_level = CompLevel_full_profile;
-        }
-        if (cur_level != next_level) {
-          if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
-            compile(mh, InvocationEntryBci, next_level, thread);
-          }
-        }
-      }
-    } else {
-      cur_level = comp_level(mh());
-      next_level = call_event(mh(), cur_level, thread);
-      if (next_level != cur_level) {
-        if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
-          compile(mh, InvocationEntryBci, next_level, thread);
-        }
-      }
-    }
-  }
-}
-
-#endif // TIERED