src/hotspot/share/runtime/advancedThresholdPolicy.cpp
changeset 50149 d93ae85b18c1
parent 50148 9822dd521c15
parent 50111 1dc98fa30b14
child 50150 1ff7fb9125f8
equal deleted inserted replaced
50148:9822dd521c15 50149:d93ae85b18c1
     1 /*
       
     2  * Copyright (c) 2010, 2018, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "code/codeCache.hpp"
       
    27 #include "runtime/advancedThresholdPolicy.hpp"
       
    28 #include "runtime/handles.inline.hpp"
       
    29 #include "runtime/simpleThresholdPolicy.inline.hpp"
       
    30 #if INCLUDE_JVMCI
       
    31 #include "jvmci/jvmciRuntime.hpp"
       
    32 #endif
       
    33 
       
    34 #ifdef TIERED
       
    35 // Print an event.
       
    36 void AdvancedThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh,
       
    37                                              int bci, CompLevel level) {
       
    38   tty->print(" rate=");
       
    39   if (mh->prev_time() == 0) tty->print("n/a");
       
    40   else tty->print("%f", mh->rate());
       
    41 
       
    42   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
       
    43                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
       
    44 
       
    45 }
       
    46 
       
    47 void AdvancedThresholdPolicy::initialize() {
       
    48   int count = CICompilerCount;
       
    49 #ifdef _LP64
       
    50   // Turn on ergonomic compiler count selection
       
    51   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
       
    52     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
       
    53   }
       
    54   if (CICompilerCountPerCPU) {
       
    55     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
       
    56     int log_cpu = log2_intptr(os::active_processor_count());
       
    57     int loglog_cpu = log2_intptr(MAX2(log_cpu, 1));
       
    58     count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
       
    59     FLAG_SET_ERGO(intx, CICompilerCount, count);
       
    60   }
       
    61 #else
       
    62   // On 32-bit systems, the number of compiler threads is limited to 3.
       
    63   // On these systems, the virtual address space available to the JVM
       
    64   // is usually limited to 2-4 GB (the exact value depends on the platform).
       
    65   // As the compilers (especially C2) can consume a large amount of
       
    66   // memory, scaling the number of compiler threads with the number of
       
    67   // available cores can result in the exhaustion of the address space
       
    68   /// available to the VM and thus cause the VM to crash.
       
    69   if (FLAG_IS_DEFAULT(CICompilerCount)) {
       
    70     count = 3;
       
    71     FLAG_SET_ERGO(intx, CICompilerCount, count);
       
    72   }
       
    73 #endif
       
    74 
       
    75   if (TieredStopAtLevel < CompLevel_full_optimization) {
       
    76     // No C2 compiler thread required
       
    77     set_c1_count(count);
       
    78   } else {
       
    79     set_c1_count(MAX2(count / 3, 1));
       
    80     set_c2_count(MAX2(count - c1_count(), 1));
       
    81   }
       
    82   assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
       
    83 
       
    84   // Some inlining tuning
       
    85 #ifdef X86
       
    86   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
       
    87     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
       
    88   }
       
    89 #endif
       
    90 
       
    91 #if defined SPARC || defined AARCH64
       
    92   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
       
    93     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
       
    94   }
       
    95 #endif
       
    96 
       
    97   set_increase_threshold_at_ratio();
       
    98   set_start_time(os::javaTimeMillis());
       
    99 }
       
   100 
       
   101 // update_rate() is called from select_task() while holding a compile queue lock.
       
   102 void AdvancedThresholdPolicy::update_rate(jlong t, Method* m) {
       
   103   // Skip update if counters are absent.
       
   104   // Can't allocate them since we are holding compile queue lock.
       
   105   if (m->method_counters() == NULL)  return;
       
   106 
       
   107   if (is_old(m)) {
       
   108     // We don't remove old methods from the queue,
       
   109     // so we can just zero the rate.
       
   110     m->set_rate(0);
       
   111     return;
       
   112   }
       
   113 
       
   114   // We don't update the rate if we've just came out of a safepoint.
       
   115   // delta_s is the time since last safepoint in milliseconds.
       
   116   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
       
   117   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
       
   118   // How many events were there since the last time?
       
   119   int event_count = m->invocation_count() + m->backedge_count();
       
   120   int delta_e = event_count - m->prev_event_count();
       
   121 
       
   122   // We should be running for at least 1ms.
       
   123   if (delta_s >= TieredRateUpdateMinTime) {
       
   124     // And we must've taken the previous point at least 1ms before.
       
   125     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
       
   126       m->set_prev_time(t);
       
   127       m->set_prev_event_count(event_count);
       
   128       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
       
   129     } else {
       
   130       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
       
   131         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
       
   132         m->set_rate(0);
       
   133       }
       
   134     }
       
   135   }
       
   136 }
       
   137 
       
   138 // Check if this method has been stale from a given number of milliseconds.
       
   139 // See select_task().
       
   140 bool AdvancedThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
       
   141   jlong delta_s = t - SafepointSynchronize::end_of_last_safepoint();
       
   142   jlong delta_t = t - m->prev_time();
       
   143   if (delta_t > timeout && delta_s > timeout) {
       
   144     int event_count = m->invocation_count() + m->backedge_count();
       
   145     int delta_e = event_count - m->prev_event_count();
       
   146     // Return true if there were no events.
       
   147     return delta_e == 0;
       
   148   }
       
   149   return false;
       
   150 }
       
   151 
       
   152 // We don't remove old methods from the compile queue even if they have
       
   153 // very low activity. See select_task().
       
   154 bool AdvancedThresholdPolicy::is_old(Method* method) {
       
   155   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
       
   156 }
       
   157 
       
   158 double AdvancedThresholdPolicy::weight(Method* method) {
       
   159   return (double)(method->rate() + 1) *
       
   160     (method->invocation_count() + 1) * (method->backedge_count() + 1);
       
   161 }
       
   162 
       
   163 // Apply heuristics and return true if x should be compiled before y
       
   164 bool AdvancedThresholdPolicy::compare_methods(Method* x, Method* y) {
       
   165   if (x->highest_comp_level() > y->highest_comp_level()) {
       
   166     // recompilation after deopt
       
   167     return true;
       
   168   } else
       
   169     if (x->highest_comp_level() == y->highest_comp_level()) {
       
   170       if (weight(x) > weight(y)) {
       
   171         return true;
       
   172       }
       
   173     }
       
   174   return false;
       
   175 }
       
   176 
       
   177 // Is method profiled enough?
       
   178 bool AdvancedThresholdPolicy::is_method_profiled(Method* method) {
       
   179   MethodData* mdo = method->method_data();
       
   180   if (mdo != NULL) {
       
   181     int i = mdo->invocation_count_delta();
       
   182     int b = mdo->backedge_count_delta();
       
   183     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
       
   184   }
       
   185   return false;
       
   186 }
       
   187 
       
   188 // Called with the queue locked and with at least one element
       
   189 CompileTask* AdvancedThresholdPolicy::select_task(CompileQueue* compile_queue) {
       
   190   CompileTask *max_blocking_task = NULL;
       
   191   CompileTask *max_task = NULL;
       
   192   Method* max_method = NULL;
       
   193   jlong t = os::javaTimeMillis();
       
   194   // Iterate through the queue and find a method with a maximum rate.
       
   195   for (CompileTask* task = compile_queue->first(); task != NULL;) {
       
   196     CompileTask* next_task = task->next();
       
   197     Method* method = task->method();
       
   198     update_rate(t, method);
       
   199     if (max_task == NULL) {
       
   200       max_task = task;
       
   201       max_method = method;
       
   202     } else {
       
   203       // If a method has been stale for some time, remove it from the queue.
       
   204       // Blocking tasks and tasks submitted from whitebox API don't become stale
       
   205       if (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method)) {
       
   206         if (PrintTieredEvents) {
       
   207           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel)task->comp_level());
       
   208         }
       
   209         compile_queue->remove_and_mark_stale(task);
       
   210         method->clear_queued_for_compilation();
       
   211         task = next_task;
       
   212         continue;
       
   213       }
       
   214 
       
   215       // Select a method with a higher rate
       
   216       if (compare_methods(method, max_method)) {
       
   217         max_task = task;
       
   218         max_method = method;
       
   219       }
       
   220     }
       
   221 
       
   222     if (task->is_blocking()) {
       
   223       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
       
   224         max_blocking_task = task;
       
   225       }
       
   226     }
       
   227 
       
   228     task = next_task;
       
   229   }
       
   230 
       
   231   if (max_blocking_task != NULL) {
       
   232     // In blocking compilation mode, the CompileBroker will make
       
   233     // compilations submitted by a JVMCI compiler thread non-blocking. These
       
   234     // compilations should be scheduled after all blocking compilations
       
   235     // to service non-compiler related compilations sooner and reduce the
       
   236     // chance of such compilations timing out.
       
   237     max_task = max_blocking_task;
       
   238     max_method = max_task->method();
       
   239   }
       
   240 
       
   241   if (max_task->comp_level() == CompLevel_full_profile && TieredStopAtLevel > CompLevel_full_profile
       
   242       && is_method_profiled(max_method)) {
       
   243     max_task->set_comp_level(CompLevel_limited_profile);
       
   244     if (PrintTieredEvents) {
       
   245       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
       
   246     }
       
   247   }
       
   248 
       
   249   return max_task;
       
   250 }
       
   251 
       
   252 double AdvancedThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
       
   253   double queue_size = CompileBroker::queue_size(level);
       
   254   int comp_count = compiler_count(level);
       
   255   double k = queue_size / (feedback_k * comp_count) + 1;
       
   256 
       
   257   // Increase C1 compile threshold when the code cache is filled more
       
   258   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
       
   259   // The main intention is to keep enough free space for C2 compiled code
       
   260   // to achieve peak performance if the code cache is under stress.
       
   261   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
       
   262     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
       
   263     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
       
   264       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
       
   265     }
       
   266   }
       
   267   return k;
       
   268 }
       
   269 
       
   270 // Call and loop predicates determine whether a transition to a higher
       
   271 // compilation level should be performed (pointers to predicate functions
       
   272 // are passed to common()).
       
   273 // Tier?LoadFeedback is basically a coefficient that determines of
       
   274 // how many methods per compiler thread can be in the queue before
       
   275 // the threshold values double.
       
   276 bool AdvancedThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
       
   277   switch(cur_level) {
       
   278   case CompLevel_aot: {
       
   279     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   280     return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
       
   281   }
       
   282   case CompLevel_none:
       
   283   case CompLevel_limited_profile: {
       
   284     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   285     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
       
   286   }
       
   287   case CompLevel_full_profile: {
       
   288     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
       
   289     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
       
   290   }
       
   291   default:
       
   292     return true;
       
   293   }
       
   294 }
       
   295 
       
   296 bool AdvancedThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
       
   297   switch(cur_level) {
       
   298   case CompLevel_aot: {
       
   299     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   300     return call_predicate_helper<CompLevel_aot>(i, b, k, method);
       
   301   }
       
   302   case CompLevel_none:
       
   303   case CompLevel_limited_profile: {
       
   304     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   305     return call_predicate_helper<CompLevel_none>(i, b, k, method);
       
   306   }
       
   307   case CompLevel_full_profile: {
       
   308     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
       
   309     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
       
   310   }
       
   311   default:
       
   312     return true;
       
   313   }
       
   314 }
       
   315 
       
   316 // If a method is old enough and is still in the interpreter we would want to
       
   317 // start profiling without waiting for the compiled method to arrive.
       
   318 // We also take the load on compilers into the account.
       
   319 bool AdvancedThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
       
   320   if (cur_level == CompLevel_none &&
       
   321       CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   322       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
       
   323     int i = method->invocation_count();
       
   324     int b = method->backedge_count();
       
   325     double k = Tier0ProfilingStartPercentage / 100.0;
       
   326     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
       
   327   }
       
   328   return false;
       
   329 }
       
   330 
       
   331 // Inlining control: if we're compiling a profiled method with C1 and the callee
       
   332 // is known to have OSRed in a C2 version, don't inline it.
       
   333 bool AdvancedThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
       
   334   CompLevel comp_level = (CompLevel)env->comp_level();
       
   335   if (comp_level == CompLevel_full_profile ||
       
   336       comp_level == CompLevel_limited_profile) {
       
   337     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
       
   338   }
       
   339   return false;
       
   340 }
       
   341 
       
   342 // Create MDO if necessary.
       
   343 void AdvancedThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
       
   344   if (mh->is_native() ||
       
   345       mh->is_abstract() ||
       
   346       mh->is_accessor() ||
       
   347       mh->is_constant_getter()) {
       
   348     return;
       
   349   }
       
   350   if (mh->method_data() == NULL) {
       
   351     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
       
   352   }
       
   353 }
       
   354 
       
   355 
       
   356 /*
       
   357  * Method states:
       
   358  *   0 - interpreter (CompLevel_none)
       
   359  *   1 - pure C1 (CompLevel_simple)
       
   360  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
       
   361  *   3 - C1 with full profiling (CompLevel_full_profile)
       
   362  *   4 - C2 (CompLevel_full_optimization)
       
   363  *
       
   364  * Common state transition patterns:
       
   365  * a. 0 -> 3 -> 4.
       
   366  *    The most common path. But note that even in this straightforward case
       
   367  *    profiling can start at level 0 and finish at level 3.
       
   368  *
       
   369  * b. 0 -> 2 -> 3 -> 4.
       
   370  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
       
   371  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
       
   372  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
       
   373  *
       
   374  * c. 0 -> (3->2) -> 4.
       
   375  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
       
   376  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
       
   377  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
       
   378  *    without full profiling while c2 is compiling.
       
   379  *
       
   380  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
       
   381  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
       
   382  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
       
   383  *
       
   384  * e. 0 -> 4.
       
   385  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
       
   386  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
       
   387  *    the compiled version already exists).
       
   388  *
       
   389  * Note that since state 0 can be reached from any other state via deoptimization different loops
       
   390  * are possible.
       
   391  *
       
   392  */
       
   393 
       
   394 // Common transition function. Given a predicate determines if a method should transition to another level.
       
   395 CompLevel AdvancedThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
       
   396   CompLevel next_level = cur_level;
       
   397   int i = method->invocation_count();
       
   398   int b = method->backedge_count();
       
   399 
       
   400   if (is_trivial(method)) {
       
   401     next_level = CompLevel_simple;
       
   402   } else {
       
   403     switch(cur_level) {
       
   404       default: break;
       
   405       case CompLevel_aot: {
       
   406       // If we were at full profile level, would we switch to full opt?
       
   407       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
       
   408         next_level = CompLevel_full_optimization;
       
   409       } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   410                                Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
       
   411                                (this->*p)(i, b, cur_level, method))) {
       
   412         next_level = CompLevel_full_profile;
       
   413       }
       
   414     }
       
   415     break;
       
   416     case CompLevel_none:
       
   417       // If we were at full profile level, would we switch to full opt?
       
   418       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
       
   419         next_level = CompLevel_full_optimization;
       
   420       } else if ((this->*p)(i, b, cur_level, method)) {
       
   421 #if INCLUDE_JVMCI
       
   422         if (EnableJVMCI && UseJVMCICompiler) {
       
   423           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
       
   424           // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
       
   425           // compilation method and all potential inlinees have mature profiles (which
       
   426           // includes type profiling). If it sees immature profiles, JVMCI's inliner
       
   427           // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
       
   428           // exploring/inlining too many graphs). Since a rewrite of the inliner is
       
   429           // in progress, we simply disable the dialing back heuristic for now and will
       
   430           // revisit this decision once the new inliner is completed.
       
   431           next_level = CompLevel_full_profile;
       
   432         } else
       
   433 #endif
       
   434         {
       
   435           // C1-generated fully profiled code is about 30% slower than the limited profile
       
   436           // code that has only invocation and backedge counters. The observation is that
       
   437           // if C2 queue is large enough we can spend too much time in the fully profiled code
       
   438           // while waiting for C2 to pick the method from the queue. To alleviate this problem
       
   439           // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
       
   440           // we choose to compile a limited profiled version and then recompile with full profiling
       
   441           // when the load on C2 goes down.
       
   442           if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
       
   443               Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
       
   444             next_level = CompLevel_limited_profile;
       
   445           } else {
       
   446             next_level = CompLevel_full_profile;
       
   447           }
       
   448         }
       
   449       }
       
   450       break;
       
   451     case CompLevel_limited_profile:
       
   452       if (is_method_profiled(method)) {
       
   453         // Special case: we got here because this method was fully profiled in the interpreter.
       
   454         next_level = CompLevel_full_optimization;
       
   455       } else {
       
   456         MethodData* mdo = method->method_data();
       
   457         if (mdo != NULL) {
       
   458           if (mdo->would_profile()) {
       
   459             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   460                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
       
   461                                      (this->*p)(i, b, cur_level, method))) {
       
   462               next_level = CompLevel_full_profile;
       
   463             }
       
   464           } else {
       
   465             next_level = CompLevel_full_optimization;
       
   466           }
       
   467         } else {
       
   468           // If there is no MDO we need to profile
       
   469           if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   470                                    Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
       
   471                                    (this->*p)(i, b, cur_level, method))) {
       
   472             next_level = CompLevel_full_profile;
       
   473           }
       
   474         }
       
   475       }
       
   476       break;
       
   477     case CompLevel_full_profile:
       
   478       {
       
   479         MethodData* mdo = method->method_data();
       
   480         if (mdo != NULL) {
       
   481           if (mdo->would_profile()) {
       
   482             int mdo_i = mdo->invocation_count_delta();
       
   483             int mdo_b = mdo->backedge_count_delta();
       
   484             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
       
   485               next_level = CompLevel_full_optimization;
       
   486             }
       
   487           } else {
       
   488             next_level = CompLevel_full_optimization;
       
   489           }
       
   490         }
       
   491       }
       
   492       break;
       
   493     }
       
   494   }
       
   495   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
       
   496 }
       
   497 
       
   498 // Determine if a method should be compiled with a normal entry point at a different level.
       
   499 CompLevel AdvancedThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
       
   500   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
       
   501                              common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true));
       
   502   CompLevel next_level = common(&AdvancedThresholdPolicy::call_predicate, method, cur_level);
       
   503 
       
   504   // If OSR method level is greater than the regular method level, the levels should be
       
   505   // equalized by raising the regular method level in order to avoid OSRs during each
       
   506   // invocation of the method.
       
   507   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
       
   508     MethodData* mdo = method->method_data();
       
   509     guarantee(mdo != NULL, "MDO should not be NULL");
       
   510     if (mdo->invocation_count() >= 1) {
       
   511       next_level = CompLevel_full_optimization;
       
   512     }
       
   513   } else {
       
   514     next_level = MAX2(osr_level, next_level);
       
   515   }
       
   516 #if INCLUDE_JVMCI
       
   517   if (UseJVMCICompiler) {
       
   518     next_level = JVMCIRuntime::adjust_comp_level(method, false, next_level, thread);
       
   519   }
       
   520 #endif
       
   521   return next_level;
       
   522 }
       
   523 
       
   524 // Determine if we should do an OSR compilation of a given method.
       
   525 CompLevel AdvancedThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread * thread) {
       
   526   CompLevel next_level = common(&AdvancedThresholdPolicy::loop_predicate, method, cur_level, true);
       
   527   if (cur_level == CompLevel_none) {
       
   528     // If there is a live OSR method that means that we deopted to the interpreter
       
   529     // for the transition.
       
   530     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
       
   531     if (osr_level > CompLevel_none) {
       
   532       return osr_level;
       
   533     }
       
   534   }
       
   535 #if INCLUDE_JVMCI
       
   536   if (UseJVMCICompiler) {
       
   537     next_level = JVMCIRuntime::adjust_comp_level(method, true, next_level, thread);
       
   538   }
       
   539 #endif
       
   540   return next_level;
       
   541 }
       
   542 
       
   543 // Update the rate and submit compile
       
   544 void AdvancedThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
       
   545   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
       
   546   update_rate(os::javaTimeMillis(), mh());
       
   547   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
       
   548 }
       
   549 
       
   550 bool AdvancedThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
       
   551   if (UseAOT && !delay_compilation_during_startup()) {
       
   552     if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
       
   553       // If the current level is full profile or interpreter and we're switching to any other level,
       
   554       // activate the AOT code back first so that we won't waste time overprofiling.
       
   555       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
       
   556       // Fall through for JIT compilation.
       
   557     }
       
   558     if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
       
   559       // If the next level is limited profile, use the aot code (if there is any),
       
   560       // since it's essentially the same thing.
       
   561       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
       
   562       // Not need to JIT, we're done.
       
   563       return true;
       
   564     }
       
   565   }
       
   566   return false;
       
   567 }
       
   568 
       
   569 
       
   570 // Handle the invocation event.
       
   571 void AdvancedThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
       
   572                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
       
   573   if (should_create_mdo(mh(), level)) {
       
   574     create_mdo(mh, thread);
       
   575   }
       
   576   CompLevel next_level = call_event(mh(), level, thread);
       
   577   if (next_level != level) {
       
   578     if (maybe_switch_to_aot(mh, level, next_level, thread)) {
       
   579       // No JITting necessary
       
   580       return;
       
   581     }
       
   582     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
       
   583       compile(mh, InvocationEntryBci, next_level, thread);
       
   584     }
       
   585   }
       
   586 }
       
   587 
       
   588 // Handle the back branch event. Notice that we can compile the method
       
   589 // with a regular entry from here.
       
   590 void AdvancedThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
       
   591                                                        int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
       
   592   if (should_create_mdo(mh(), level)) {
       
   593     create_mdo(mh, thread);
       
   594   }
       
   595   // Check if MDO should be created for the inlined method
       
   596   if (should_create_mdo(imh(), level)) {
       
   597     create_mdo(imh, thread);
       
   598   }
       
   599 
       
   600   if (is_compilation_enabled()) {
       
   601     CompLevel next_osr_level = loop_event(imh(), level, thread);
       
   602     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
       
   603     // At the very least compile the OSR version
       
   604     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
       
   605       compile(imh, bci, next_osr_level, thread);
       
   606     }
       
   607 
       
   608     // Use loop event as an opportunity to also check if there's been
       
   609     // enough calls.
       
   610     CompLevel cur_level, next_level;
       
   611     if (mh() != imh()) { // If there is an enclosing method
       
   612       if (level == CompLevel_aot) {
       
   613         // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
       
   614         if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
       
   615           compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
       
   616         }
       
   617       } else {
       
   618         // Current loop event level is not AOT
       
   619         guarantee(nm != NULL, "Should have nmethod here");
       
   620         cur_level = comp_level(mh());
       
   621         next_level = call_event(mh(), cur_level, thread);
       
   622 
       
   623         if (max_osr_level == CompLevel_full_optimization) {
       
   624           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
       
   625           bool make_not_entrant = false;
       
   626           if (nm->is_osr_method()) {
       
   627             // This is an osr method, just make it not entrant and recompile later if needed
       
   628             make_not_entrant = true;
       
   629           } else {
       
   630             if (next_level != CompLevel_full_optimization) {
       
   631               // next_level is not full opt, so we need to recompile the
       
   632               // enclosing method without the inlinee
       
   633               cur_level = CompLevel_none;
       
   634               make_not_entrant = true;
       
   635             }
       
   636           }
       
   637           if (make_not_entrant) {
       
   638             if (PrintTieredEvents) {
       
   639               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
       
   640               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
       
   641             }
       
   642             nm->make_not_entrant();
       
   643           }
       
   644         }
       
   645         // Fix up next_level if necessary to avoid deopts
       
   646         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
       
   647           next_level = CompLevel_full_profile;
       
   648         }
       
   649         if (cur_level != next_level) {
       
   650           if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
       
   651             compile(mh, InvocationEntryBci, next_level, thread);
       
   652           }
       
   653         }
       
   654       }
       
   655     } else {
       
   656       cur_level = comp_level(mh());
       
   657       next_level = call_event(mh(), cur_level, thread);
       
   658       if (next_level != cur_level) {
       
   659         if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
       
   660           compile(mh, InvocationEntryBci, next_level, thread);
       
   661         }
       
   662       }
       
   663     }
       
   664   }
       
   665 }
       
   666 
       
   667 #endif // TIERED