jdk/src/share/native/java/lang/fdlibm/src/e_jn.c
changeset 10204 bbd2c5e0ce05
parent 10203 cca843a7d258
parent 10174 e63dffa79ddb
child 10205 de9223c94f9c
--- a/jdk/src/share/native/java/lang/fdlibm/src/e_jn.c	Fri Aug 05 19:41:05 2011 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,285 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/*
- * __ieee754_jn(n, x), __ieee754_yn(n, x)
- * floating point Bessel's function of the 1st and 2nd kind
- * of order n
- *
- * Special cases:
- *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
- *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
- * Note 2. About jn(n,x), yn(n,x)
- *      For n=0, j0(x) is called,
- *      for n=1, j1(x) is called,
- *      for n<x, forward recursion us used starting
- *      from values of j0(x) and j1(x).
- *      for n>x, a continued fraction approximation to
- *      j(n,x)/j(n-1,x) is evaluated and then backward
- *      recursion is used starting from a supposed value
- *      for j(n,x). The resulting value of j(0,x) is
- *      compared with the actual value to correct the
- *      supposed value of j(n,x).
- *
- *      yn(n,x) is similar in all respects, except
- *      that forward recursion is used for all
- *      values of n>1.
- *
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
-two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
-one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
-
-static double zero  =  0.00000000000000000000e+00;
-
-#ifdef __STDC__
-        double __ieee754_jn(int n, double x)
-#else
-        double __ieee754_jn(n,x)
-        int n; double x;
-#endif
-{
-        int i,hx,ix,lx, sgn;
-        double a, b, temp = 0, di;
-        double z, w;
-
-    /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
-     * Thus, J(-n,x) = J(n,-x)
-     */
-        hx = __HI(x);
-        ix = 0x7fffffff&hx;
-        lx = __LO(x);
-    /* if J(n,NaN) is NaN */
-        if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
-        if(n<0){
-                n = -n;
-                x = -x;
-                hx ^= 0x80000000;
-        }
-        if(n==0) return(__ieee754_j0(x));
-        if(n==1) return(__ieee754_j1(x));
-        sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
-        x = fabs(x);
-        if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
-            b = zero;
-        else if((double)n<=x) {
-                /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
-            if(ix>=0x52D00000) { /* x > 2**302 */
-    /* (x >> n**2)
-     *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *      Let s=sin(x), c=cos(x),
-     *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
-     *
-     *             n    sin(xn)*sqt2    cos(xn)*sqt2
-     *          ----------------------------------
-     *             0     s-c             c+s
-     *             1    -s-c            -c+s
-     *             2    -s+c            -c-s
-     *             3     s+c             c-s
-     */
-                switch(n&3) {
-                    case 0: temp =  cos(x)+sin(x); break;
-                    case 1: temp = -cos(x)+sin(x); break;
-                    case 2: temp = -cos(x)-sin(x); break;
-                    case 3: temp =  cos(x)-sin(x); break;
-                }
-                b = invsqrtpi*temp/sqrt(x);
-            } else {
-                a = __ieee754_j0(x);
-                b = __ieee754_j1(x);
-                for(i=1;i<n;i++){
-                    temp = b;
-                    b = b*((double)(i+i)/x) - a; /* avoid underflow */
-                    a = temp;
-                }
-            }
-        } else {
-            if(ix<0x3e100000) { /* x < 2**-29 */
-    /* x is tiny, return the first Taylor expansion of J(n,x)
-     * J(n,x) = 1/n!*(x/2)^n  - ...
-     */
-                if(n>33)        /* underflow */
-                    b = zero;
-                else {
-                    temp = x*0.5; b = temp;
-                    for (a=one,i=2;i<=n;i++) {
-                        a *= (double)i;         /* a = n! */
-                        b *= temp;              /* b = (x/2)^n */
-                    }
-                    b = b/a;
-                }
-            } else {
-                /* use backward recurrence */
-                /*                      x      x^2      x^2
-                 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
-                 *                      2n  - 2(n+1) - 2(n+2)
-                 *
-                 *                      1      1        1
-                 *  (for large x)   =  ----  ------   ------   .....
-                 *                      2n   2(n+1)   2(n+2)
-                 *                      -- - ------ - ------ -
-                 *                       x     x         x
-                 *
-                 * Let w = 2n/x and h=2/x, then the above quotient
-                 * is equal to the continued fraction:
-                 *                  1
-                 *      = -----------------------
-                 *                     1
-                 *         w - -----------------
-                 *                        1
-                 *              w+h - ---------
-                 *                     w+2h - ...
-                 *
-                 * To determine how many terms needed, let
-                 * Q(0) = w, Q(1) = w(w+h) - 1,
-                 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
-                 * When Q(k) > 1e4      good for single
-                 * When Q(k) > 1e9      good for double
-                 * When Q(k) > 1e17     good for quadruple
-                 */
-            /* determine k */
-                double t,v;
-                double q0,q1,h,tmp; int k,m;
-                w  = (n+n)/(double)x; h = 2.0/(double)x;
-                q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
-                while(q1<1.0e9) {
-                        k += 1; z += h;
-                        tmp = z*q1 - q0;
-                        q0 = q1;
-                        q1 = tmp;
-                }
-                m = n+n;
-                for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
-                a = t;
-                b = one;
-                /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
-                 *  Hence, if n*(log(2n/x)) > ...
-                 *  single 8.8722839355e+01
-                 *  double 7.09782712893383973096e+02
-                 *  long double 1.1356523406294143949491931077970765006170e+04
-                 *  then recurrent value may overflow and the result is
-                 *  likely underflow to zero
-                 */
-                tmp = n;
-                v = two/x;
-                tmp = tmp*__ieee754_log(fabs(v*tmp));
-                if(tmp<7.09782712893383973096e+02) {
-                    for(i=n-1,di=(double)(i+i);i>0;i--){
-                        temp = b;
-                        b *= di;
-                        b  = b/x - a;
-                        a = temp;
-                        di -= two;
-                    }
-                } else {
-                    for(i=n-1,di=(double)(i+i);i>0;i--){
-                        temp = b;
-                        b *= di;
-                        b  = b/x - a;
-                        a = temp;
-                        di -= two;
-                    /* scale b to avoid spurious overflow */
-                        if(b>1e100) {
-                            a /= b;
-                            t /= b;
-                            b  = one;
-                        }
-                    }
-                }
-                b = (t*__ieee754_j0(x)/b);
-            }
-        }
-        if(sgn==1) return -b; else return b;
-}
-
-#ifdef __STDC__
-        double __ieee754_yn(int n, double x)
-#else
-        double __ieee754_yn(n,x)
-        int n; double x;
-#endif
-{
-        int i,hx,ix,lx;
-        int sign;
-        double a, b, temp = 0;
-
-        hx = __HI(x);
-        ix = 0x7fffffff&hx;
-        lx = __LO(x);
-    /* if Y(n,NaN) is NaN */
-        if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
-        if((ix|lx)==0) return -one/zero;
-        if(hx<0) return zero/zero;
-        sign = 1;
-        if(n<0){
-                n = -n;
-                sign = 1 - ((n&1)<<1);
-        }
-        if(n==0) return(__ieee754_y0(x));
-        if(n==1) return(sign*__ieee754_y1(x));
-        if(ix==0x7ff00000) return zero;
-        if(ix>=0x52D00000) { /* x > 2**302 */
-    /* (x >> n**2)
-     *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-     *      Let s=sin(x), c=cos(x),
-     *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
-     *
-     *             n    sin(xn)*sqt2    cos(xn)*sqt2
-     *          ----------------------------------
-     *             0     s-c             c+s
-     *             1    -s-c            -c+s
-     *             2    -s+c            -c-s
-     *             3     s+c             c-s
-     */
-                switch(n&3) {
-                    case 0: temp =  sin(x)-cos(x); break;
-                    case 1: temp = -sin(x)-cos(x); break;
-                    case 2: temp = -sin(x)+cos(x); break;
-                    case 3: temp =  sin(x)+cos(x); break;
-                }
-                b = invsqrtpi*temp/sqrt(x);
-        } else {
-            a = __ieee754_y0(x);
-            b = __ieee754_y1(x);
-        /* quit if b is -inf */
-            for(i=1;i<n&&(__HI(b) != 0xfff00000);i++){
-                temp = b;
-                b = ((double)(i+i)/x)*b - a;
-                a = temp;
-            }
-        }
-        if(sign>0) return b; else return -b;
-}