jdk/src/share/native/java/lang/fdlibm/src/e_jn.c
changeset 10204 bbd2c5e0ce05
parent 10203 cca843a7d258
parent 10174 e63dffa79ddb
child 10205 de9223c94f9c
equal deleted inserted replaced
10203:cca843a7d258 10204:bbd2c5e0ce05
     1 
       
     2 /*
       
     3  * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
       
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     5  *
       
     6  * This code is free software; you can redistribute it and/or modify it
       
     7  * under the terms of the GNU General Public License version 2 only, as
       
     8  * published by the Free Software Foundation.  Oracle designates this
       
     9  * particular file as subject to the "Classpath" exception as provided
       
    10  * by Oracle in the LICENSE file that accompanied this code.
       
    11  *
       
    12  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    15  * version 2 for more details (a copy is included in the LICENSE file that
       
    16  * accompanied this code).
       
    17  *
       
    18  * You should have received a copy of the GNU General Public License version
       
    19  * 2 along with this work; if not, write to the Free Software Foundation,
       
    20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    21  *
       
    22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    23  * or visit www.oracle.com if you need additional information or have any
       
    24  * questions.
       
    25  */
       
    26 
       
    27 /*
       
    28  * __ieee754_jn(n, x), __ieee754_yn(n, x)
       
    29  * floating point Bessel's function of the 1st and 2nd kind
       
    30  * of order n
       
    31  *
       
    32  * Special cases:
       
    33  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
       
    34  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
       
    35  * Note 2. About jn(n,x), yn(n,x)
       
    36  *      For n=0, j0(x) is called,
       
    37  *      for n=1, j1(x) is called,
       
    38  *      for n<x, forward recursion us used starting
       
    39  *      from values of j0(x) and j1(x).
       
    40  *      for n>x, a continued fraction approximation to
       
    41  *      j(n,x)/j(n-1,x) is evaluated and then backward
       
    42  *      recursion is used starting from a supposed value
       
    43  *      for j(n,x). The resulting value of j(0,x) is
       
    44  *      compared with the actual value to correct the
       
    45  *      supposed value of j(n,x).
       
    46  *
       
    47  *      yn(n,x) is similar in all respects, except
       
    48  *      that forward recursion is used for all
       
    49  *      values of n>1.
       
    50  *
       
    51  */
       
    52 
       
    53 #include "fdlibm.h"
       
    54 
       
    55 #ifdef __STDC__
       
    56 static const double
       
    57 #else
       
    58 static double
       
    59 #endif
       
    60 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
       
    61 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
       
    62 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
       
    63 
       
    64 static double zero  =  0.00000000000000000000e+00;
       
    65 
       
    66 #ifdef __STDC__
       
    67         double __ieee754_jn(int n, double x)
       
    68 #else
       
    69         double __ieee754_jn(n,x)
       
    70         int n; double x;
       
    71 #endif
       
    72 {
       
    73         int i,hx,ix,lx, sgn;
       
    74         double a, b, temp = 0, di;
       
    75         double z, w;
       
    76 
       
    77     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
       
    78      * Thus, J(-n,x) = J(n,-x)
       
    79      */
       
    80         hx = __HI(x);
       
    81         ix = 0x7fffffff&hx;
       
    82         lx = __LO(x);
       
    83     /* if J(n,NaN) is NaN */
       
    84         if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
       
    85         if(n<0){
       
    86                 n = -n;
       
    87                 x = -x;
       
    88                 hx ^= 0x80000000;
       
    89         }
       
    90         if(n==0) return(__ieee754_j0(x));
       
    91         if(n==1) return(__ieee754_j1(x));
       
    92         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
       
    93         x = fabs(x);
       
    94         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
       
    95             b = zero;
       
    96         else if((double)n<=x) {
       
    97                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
       
    98             if(ix>=0x52D00000) { /* x > 2**302 */
       
    99     /* (x >> n**2)
       
   100      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
       
   101      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
       
   102      *      Let s=sin(x), c=cos(x),
       
   103      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
       
   104      *
       
   105      *             n    sin(xn)*sqt2    cos(xn)*sqt2
       
   106      *          ----------------------------------
       
   107      *             0     s-c             c+s
       
   108      *             1    -s-c            -c+s
       
   109      *             2    -s+c            -c-s
       
   110      *             3     s+c             c-s
       
   111      */
       
   112                 switch(n&3) {
       
   113                     case 0: temp =  cos(x)+sin(x); break;
       
   114                     case 1: temp = -cos(x)+sin(x); break;
       
   115                     case 2: temp = -cos(x)-sin(x); break;
       
   116                     case 3: temp =  cos(x)-sin(x); break;
       
   117                 }
       
   118                 b = invsqrtpi*temp/sqrt(x);
       
   119             } else {
       
   120                 a = __ieee754_j0(x);
       
   121                 b = __ieee754_j1(x);
       
   122                 for(i=1;i<n;i++){
       
   123                     temp = b;
       
   124                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
       
   125                     a = temp;
       
   126                 }
       
   127             }
       
   128         } else {
       
   129             if(ix<0x3e100000) { /* x < 2**-29 */
       
   130     /* x is tiny, return the first Taylor expansion of J(n,x)
       
   131      * J(n,x) = 1/n!*(x/2)^n  - ...
       
   132      */
       
   133                 if(n>33)        /* underflow */
       
   134                     b = zero;
       
   135                 else {
       
   136                     temp = x*0.5; b = temp;
       
   137                     for (a=one,i=2;i<=n;i++) {
       
   138                         a *= (double)i;         /* a = n! */
       
   139                         b *= temp;              /* b = (x/2)^n */
       
   140                     }
       
   141                     b = b/a;
       
   142                 }
       
   143             } else {
       
   144                 /* use backward recurrence */
       
   145                 /*                      x      x^2      x^2
       
   146                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
       
   147                  *                      2n  - 2(n+1) - 2(n+2)
       
   148                  *
       
   149                  *                      1      1        1
       
   150                  *  (for large x)   =  ----  ------   ------   .....
       
   151                  *                      2n   2(n+1)   2(n+2)
       
   152                  *                      -- - ------ - ------ -
       
   153                  *                       x     x         x
       
   154                  *
       
   155                  * Let w = 2n/x and h=2/x, then the above quotient
       
   156                  * is equal to the continued fraction:
       
   157                  *                  1
       
   158                  *      = -----------------------
       
   159                  *                     1
       
   160                  *         w - -----------------
       
   161                  *                        1
       
   162                  *              w+h - ---------
       
   163                  *                     w+2h - ...
       
   164                  *
       
   165                  * To determine how many terms needed, let
       
   166                  * Q(0) = w, Q(1) = w(w+h) - 1,
       
   167                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
       
   168                  * When Q(k) > 1e4      good for single
       
   169                  * When Q(k) > 1e9      good for double
       
   170                  * When Q(k) > 1e17     good for quadruple
       
   171                  */
       
   172             /* determine k */
       
   173                 double t,v;
       
   174                 double q0,q1,h,tmp; int k,m;
       
   175                 w  = (n+n)/(double)x; h = 2.0/(double)x;
       
   176                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
       
   177                 while(q1<1.0e9) {
       
   178                         k += 1; z += h;
       
   179                         tmp = z*q1 - q0;
       
   180                         q0 = q1;
       
   181                         q1 = tmp;
       
   182                 }
       
   183                 m = n+n;
       
   184                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
       
   185                 a = t;
       
   186                 b = one;
       
   187                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
       
   188                  *  Hence, if n*(log(2n/x)) > ...
       
   189                  *  single 8.8722839355e+01
       
   190                  *  double 7.09782712893383973096e+02
       
   191                  *  long double 1.1356523406294143949491931077970765006170e+04
       
   192                  *  then recurrent value may overflow and the result is
       
   193                  *  likely underflow to zero
       
   194                  */
       
   195                 tmp = n;
       
   196                 v = two/x;
       
   197                 tmp = tmp*__ieee754_log(fabs(v*tmp));
       
   198                 if(tmp<7.09782712893383973096e+02) {
       
   199                     for(i=n-1,di=(double)(i+i);i>0;i--){
       
   200                         temp = b;
       
   201                         b *= di;
       
   202                         b  = b/x - a;
       
   203                         a = temp;
       
   204                         di -= two;
       
   205                     }
       
   206                 } else {
       
   207                     for(i=n-1,di=(double)(i+i);i>0;i--){
       
   208                         temp = b;
       
   209                         b *= di;
       
   210                         b  = b/x - a;
       
   211                         a = temp;
       
   212                         di -= two;
       
   213                     /* scale b to avoid spurious overflow */
       
   214                         if(b>1e100) {
       
   215                             a /= b;
       
   216                             t /= b;
       
   217                             b  = one;
       
   218                         }
       
   219                     }
       
   220                 }
       
   221                 b = (t*__ieee754_j0(x)/b);
       
   222             }
       
   223         }
       
   224         if(sgn==1) return -b; else return b;
       
   225 }
       
   226 
       
   227 #ifdef __STDC__
       
   228         double __ieee754_yn(int n, double x)
       
   229 #else
       
   230         double __ieee754_yn(n,x)
       
   231         int n; double x;
       
   232 #endif
       
   233 {
       
   234         int i,hx,ix,lx;
       
   235         int sign;
       
   236         double a, b, temp = 0;
       
   237 
       
   238         hx = __HI(x);
       
   239         ix = 0x7fffffff&hx;
       
   240         lx = __LO(x);
       
   241     /* if Y(n,NaN) is NaN */
       
   242         if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
       
   243         if((ix|lx)==0) return -one/zero;
       
   244         if(hx<0) return zero/zero;
       
   245         sign = 1;
       
   246         if(n<0){
       
   247                 n = -n;
       
   248                 sign = 1 - ((n&1)<<1);
       
   249         }
       
   250         if(n==0) return(__ieee754_y0(x));
       
   251         if(n==1) return(sign*__ieee754_y1(x));
       
   252         if(ix==0x7ff00000) return zero;
       
   253         if(ix>=0x52D00000) { /* x > 2**302 */
       
   254     /* (x >> n**2)
       
   255      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
       
   256      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
       
   257      *      Let s=sin(x), c=cos(x),
       
   258      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
       
   259      *
       
   260      *             n    sin(xn)*sqt2    cos(xn)*sqt2
       
   261      *          ----------------------------------
       
   262      *             0     s-c             c+s
       
   263      *             1    -s-c            -c+s
       
   264      *             2    -s+c            -c-s
       
   265      *             3     s+c             c-s
       
   266      */
       
   267                 switch(n&3) {
       
   268                     case 0: temp =  sin(x)-cos(x); break;
       
   269                     case 1: temp = -sin(x)-cos(x); break;
       
   270                     case 2: temp = -sin(x)+cos(x); break;
       
   271                     case 3: temp =  sin(x)+cos(x); break;
       
   272                 }
       
   273                 b = invsqrtpi*temp/sqrt(x);
       
   274         } else {
       
   275             a = __ieee754_y0(x);
       
   276             b = __ieee754_y1(x);
       
   277         /* quit if b is -inf */
       
   278             for(i=1;i<n&&(__HI(b) != 0xfff00000);i++){
       
   279                 temp = b;
       
   280                 b = ((double)(i+i)/x)*b - a;
       
   281                 a = temp;
       
   282             }
       
   283         }
       
   284         if(sign>0) return b; else return -b;
       
   285 }