--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/ppc/vm/templateTable_ppc_64.cpp Mon Mar 10 12:58:02 2014 +0100
@@ -0,0 +1,4082 @@
+/*
+ * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
+ * Copyright 2013, 2014 SAP AG. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "asm/macroAssembler.inline.hpp"
+#include "interpreter/interpreter.hpp"
+#include "interpreter/interpreterRuntime.hpp"
+#include "interpreter/templateInterpreter.hpp"
+#include "interpreter/templateTable.hpp"
+#include "memory/universe.inline.hpp"
+#include "oops/objArrayKlass.hpp"
+#include "oops/oop.inline.hpp"
+#include "prims/methodHandles.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "runtime/synchronizer.hpp"
+#include "utilities/macros.hpp"
+
+#ifndef CC_INTERP
+
+#undef __
+#define __ _masm->
+
+// ============================================================================
+// Misc helpers
+
+// Do an oop store like *(base + index) = val OR *(base + offset) = val
+// (only one of both variants is possible at the same time).
+// Index can be noreg.
+// Kills:
+// Rbase, Rtmp
+static void do_oop_store(InterpreterMacroAssembler* _masm,
+ Register Rbase,
+ RegisterOrConstant offset,
+ Register Rval, // Noreg means always null.
+ Register Rtmp1,
+ Register Rtmp2,
+ Register Rtmp3,
+ BarrierSet::Name barrier,
+ bool precise,
+ bool check_null) {
+ assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase);
+
+ switch (barrier) {
+#ifndef SERIALGC
+ case BarrierSet::G1SATBCT:
+ case BarrierSet::G1SATBCTLogging:
+ {
+ // Load and record the previous value.
+ __ g1_write_barrier_pre(Rbase, offset,
+ Rtmp3, /* holder of pre_val ? */
+ Rtmp1, Rtmp2, false /* frame */);
+
+ Label Lnull, Ldone;
+ if (Rval != noreg) {
+ if (check_null) {
+ __ cmpdi(CCR0, Rval, 0);
+ __ beq(CCR0, Lnull);
+ }
+ __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1);
+ // Mark the card.
+ if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
+ __ add(Rbase, offset, Rbase);
+ }
+ __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone);
+ if (check_null) { __ b(Ldone); }
+ }
+
+ if (Rval == noreg || check_null) { // Store null oop.
+ Register Rnull = Rval;
+ __ bind(Lnull);
+ if (Rval == noreg) {
+ Rnull = Rtmp1;
+ __ li(Rnull, 0);
+ }
+ if (UseCompressedOops) {
+ __ stw(Rnull, offset, Rbase);
+ } else {
+ __ std(Rnull, offset, Rbase);
+ }
+ }
+ __ bind(Ldone);
+ }
+ break;
+#endif // SERIALGC
+ case BarrierSet::CardTableModRef:
+ case BarrierSet::CardTableExtension:
+ {
+ Label Lnull, Ldone;
+ if (Rval != noreg) {
+ if (check_null) {
+ __ cmpdi(CCR0, Rval, 0);
+ __ beq(CCR0, Lnull);
+ }
+ __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1);
+ // Mark the card.
+ if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
+ __ add(Rbase, offset, Rbase);
+ }
+ __ card_write_barrier_post(Rbase, Rval, Rtmp1);
+ if (check_null) {
+ __ b(Ldone);
+ }
+ }
+
+ if (Rval == noreg || check_null) { // Store null oop.
+ Register Rnull = Rval;
+ __ bind(Lnull);
+ if (Rval == noreg) {
+ Rnull = Rtmp1;
+ __ li(Rnull, 0);
+ }
+ if (UseCompressedOops) {
+ __ stw(Rnull, offset, Rbase);
+ } else {
+ __ std(Rnull, offset, Rbase);
+ }
+ }
+ __ bind(Ldone);
+ }
+ break;
+ case BarrierSet::ModRef:
+ case BarrierSet::Other:
+ ShouldNotReachHere();
+ break;
+ default:
+ ShouldNotReachHere();
+ }
+}
+
+// ============================================================================
+// Platform-dependent initialization
+
+void TemplateTable::pd_initialize() {
+ // No ppc64 specific initialization.
+}
+
+Address TemplateTable::at_bcp(int offset) {
+ // Not used on ppc.
+ ShouldNotReachHere();
+ return Address();
+}
+
+// Patches the current bytecode (ptr to it located in bcp)
+// in the bytecode stream with a new one.
+void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) {
+ // With sharing on, may need to test method flag.
+ if (!RewriteBytecodes) return;
+ Label L_patch_done;
+
+ switch (new_bc) {
+ case Bytecodes::_fast_aputfield:
+ case Bytecodes::_fast_bputfield:
+ case Bytecodes::_fast_cputfield:
+ case Bytecodes::_fast_dputfield:
+ case Bytecodes::_fast_fputfield:
+ case Bytecodes::_fast_iputfield:
+ case Bytecodes::_fast_lputfield:
+ case Bytecodes::_fast_sputfield:
+ {
+ // We skip bytecode quickening for putfield instructions when
+ // the put_code written to the constant pool cache is zero.
+ // This is required so that every execution of this instruction
+ // calls out to InterpreterRuntime::resolve_get_put to do
+ // additional, required work.
+ assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
+ assert(load_bc_into_bc_reg, "we use bc_reg as temp");
+ __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1);
+ // Big Endian: ((*(cache+indices))>>((1+byte_no)*8))&0xFF
+ __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp);
+ __ cmpwi(CCR0, Rnew_bc, 0);
+ __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
+ __ beq(CCR0, L_patch_done);
+ // __ isync(); // acquire not needed
+ break;
+ }
+
+ default:
+ assert(byte_no == -1, "sanity");
+ if (load_bc_into_bc_reg) {
+ __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
+ }
+ }
+
+ if (JvmtiExport::can_post_breakpoint()) {
+ Label L_fast_patch;
+ __ lbz(Rtemp, 0, R14_bcp);
+ __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint);
+ __ bne(CCR0, L_fast_patch);
+ // Perform the quickening, slowly, in the bowels of the breakpoint table.
+ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc);
+ __ b(L_patch_done);
+ __ bind(L_fast_patch);
+ }
+
+ // Patch bytecode.
+ __ stb(Rnew_bc, 0, R14_bcp);
+
+ __ bind(L_patch_done);
+}
+
+// ============================================================================
+// Individual instructions
+
+void TemplateTable::nop() {
+ transition(vtos, vtos);
+ // Nothing to do.
+}
+
+void TemplateTable::shouldnotreachhere() {
+ transition(vtos, vtos);
+ __ stop("shouldnotreachhere bytecode");
+}
+
+void TemplateTable::aconst_null() {
+ transition(vtos, atos);
+ __ li(R17_tos, 0);
+}
+
+void TemplateTable::iconst(int value) {
+ transition(vtos, itos);
+ assert(value >= -1 && value <= 5, "");
+ __ li(R17_tos, value);
+}
+
+void TemplateTable::lconst(int value) {
+ transition(vtos, ltos);
+ assert(value >= -1 && value <= 5, "");
+ __ li(R17_tos, value);
+}
+
+void TemplateTable::fconst(int value) {
+ transition(vtos, ftos);
+ static float zero = 0.0;
+ static float one = 1.0;
+ static float two = 2.0;
+ switch (value) {
+ default: ShouldNotReachHere();
+ case 0: {
+ int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0);
+ __ lfs(F15_ftos, simm16_offset, R11_scratch1);
+ break;
+ }
+ case 1: {
+ int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0);
+ __ lfs(F15_ftos, simm16_offset, R11_scratch1);
+ break;
+ }
+ case 2: {
+ int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0);
+ __ lfs(F15_ftos, simm16_offset, R11_scratch1);
+ break;
+ }
+ }
+}
+
+void TemplateTable::dconst(int value) {
+ transition(vtos, dtos);
+ static double zero = 0.0;
+ static double one = 1.0;
+ switch (value) {
+ case 0: {
+ int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0);
+ __ lfd(F15_ftos, simm16_offset, R11_scratch1);
+ break;
+ }
+ case 1: {
+ int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0);
+ __ lfd(F15_ftos, simm16_offset, R11_scratch1);
+ break;
+ }
+ default: ShouldNotReachHere();
+ }
+}
+
+void TemplateTable::bipush() {
+ transition(vtos, itos);
+ __ lbz(R17_tos, 1, R14_bcp);
+ __ extsb(R17_tos, R17_tos);
+}
+
+void TemplateTable::sipush() {
+ transition(vtos, itos);
+ __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed);
+}
+
+void TemplateTable::ldc(bool wide) {
+ Register Rscratch1 = R11_scratch1,
+ Rscratch2 = R12_scratch2,
+ Rcpool = R3_ARG1;
+
+ transition(vtos, vtos);
+ Label notInt, notClass, exit;
+
+ __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags.
+ if (wide) { // Read index.
+ __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned);
+ } else {
+ __ lbz(Rscratch1, 1, R14_bcp);
+ }
+
+ const int base_offset = ConstantPool::header_size() * wordSize;
+ const int tags_offset = Array<u1>::base_offset_in_bytes();
+
+ // Get type from tags.
+ __ addi(Rscratch2, Rscratch2, tags_offset);
+ __ lbzx(Rscratch2, Rscratch2, Rscratch1);
+
+ __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class?
+ __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state?
+ __ cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
+
+ // Resolved class - need to call vm to get java mirror of the class.
+ __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class);
+ __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // Neither resolved class nor unresolved case from above?
+ __ beq(CCR0, notClass);
+
+ __ li(R4, wide ? 1 : 0);
+ call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4);
+ __ push(atos);
+ __ b(exit);
+
+ __ align(32, 12);
+ __ bind(notClass);
+ __ addi(Rcpool, Rcpool, base_offset);
+ __ sldi(Rscratch1, Rscratch1, LogBytesPerWord);
+ __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer);
+ __ bne(CCR0, notInt);
+ __ isync(); // Order load of constant wrt. tags.
+ __ lwax(R17_tos, Rcpool, Rscratch1);
+ __ push(itos);
+ __ b(exit);
+
+ __ align(32, 12);
+ __ bind(notInt);
+#ifdef ASSERT
+ // String and Object are rewritten to fast_aldc
+ __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float);
+ __ asm_assert_eq("unexpected type", 0x8765);
+#endif
+ __ isync(); // Order load of constant wrt. tags.
+ __ lfsx(F15_ftos, Rcpool, Rscratch1);
+ __ push(ftos);
+
+ __ align(32, 12);
+ __ bind(exit);
+}
+
+// Fast path for caching oop constants.
+void TemplateTable::fast_aldc(bool wide) {
+ transition(vtos, atos);
+
+ int index_size = wide ? sizeof(u2) : sizeof(u1);
+ const Register Rscratch = R11_scratch1;
+ Label resolved;
+
+ // We are resolved if the resolved reference cache entry contains a
+ // non-null object (CallSite, etc.)
+ __ get_cache_index_at_bcp(Rscratch, 1, index_size); // Load index.
+ __ load_resolved_reference_at_index(R17_tos, Rscratch);
+ __ cmpdi(CCR0, R17_tos, 0);
+ __ bne(CCR0, resolved);
+ __ load_const_optimized(R3_ARG1, (int)bytecode());
+
+ address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
+
+ // First time invocation - must resolve first.
+ __ call_VM(R17_tos, entry, R3_ARG1);
+
+ __ align(32, 12);
+ __ bind(resolved);
+ __ verify_oop(R17_tos);
+}
+
+void TemplateTable::ldc2_w() {
+ transition(vtos, vtos);
+ Label Llong, Lexit;
+
+ Register Rindex = R11_scratch1,
+ Rcpool = R12_scratch2,
+ Rtag = R3_ARG1;
+ __ get_cpool_and_tags(Rcpool, Rtag);
+ __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
+
+ const int base_offset = ConstantPool::header_size() * wordSize;
+ const int tags_offset = Array<u1>::base_offset_in_bytes();
+ // Get type from tags.
+ __ addi(Rcpool, Rcpool, base_offset);
+ __ addi(Rtag, Rtag, tags_offset);
+
+ __ lbzx(Rtag, Rtag, Rindex);
+
+ __ sldi(Rindex, Rindex, LogBytesPerWord);
+ __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double);
+ __ bne(CCR0, Llong);
+ // A double can be placed at word-aligned locations in the constant pool.
+ // Check out Conversions.java for an example.
+ // Also ConstantPool::header_size() is 20, which makes it very difficult
+ // to double-align double on the constant pool. SG, 11/7/97
+ __ isync(); // Order load of constant wrt. tags.
+ __ lfdx(F15_ftos, Rcpool, Rindex);
+ __ push(dtos);
+ __ b(Lexit);
+
+ __ bind(Llong);
+ __ isync(); // Order load of constant wrt. tags.
+ __ ldx(R17_tos, Rcpool, Rindex);
+ __ push(ltos);
+
+ __ bind(Lexit);
+}
+
+// Get the locals index located in the bytecode stream at bcp + offset.
+void TemplateTable::locals_index(Register Rdst, int offset) {
+ __ lbz(Rdst, offset, R14_bcp);
+}
+
+void TemplateTable::iload() {
+ transition(vtos, itos);
+
+ // Get the local value into tos
+ const Register Rindex = R22_tmp2;
+ locals_index(Rindex);
+
+ // Rewrite iload,iload pair into fast_iload2
+ // iload,caload pair into fast_icaload
+ if (RewriteFrequentPairs) {
+ Label Lrewrite, Ldone;
+ Register Rnext_byte = R3_ARG1,
+ Rrewrite_to = R6_ARG4,
+ Rscratch = R11_scratch1;
+
+ // get next byte
+ __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp);
+
+ // if _iload, wait to rewrite to iload2. We only want to rewrite the
+ // last two iloads in a pair. Comparing against fast_iload means that
+ // the next bytecode is neither an iload or a caload, and therefore
+ // an iload pair.
+ __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload);
+ __ beq(CCR0, Ldone);
+
+ __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
+ __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2);
+ __ beq(CCR1, Lrewrite);
+
+ __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload);
+ __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload);
+ __ beq(CCR0, Lrewrite);
+
+ __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
+
+ __ bind(Lrewrite);
+ patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false);
+ __ bind(Ldone);
+ }
+
+ __ load_local_int(R17_tos, Rindex, Rindex);
+}
+
+// Load 2 integers in a row without dispatching
+void TemplateTable::fast_iload2() {
+ transition(vtos, itos);
+
+ __ lbz(R3_ARG1, 1, R14_bcp);
+ __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp);
+
+ __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1);
+ __ load_local_int(R17_tos, R12_scratch2, R17_tos);
+ __ push_i(R3_ARG1);
+}
+
+void TemplateTable::fast_iload() {
+ transition(vtos, itos);
+ // Get the local value into tos
+
+ const Register Rindex = R11_scratch1;
+ locals_index(Rindex);
+ __ load_local_int(R17_tos, Rindex, Rindex);
+}
+
+// Load a local variable type long from locals area to TOS cache register.
+// Local index resides in bytecodestream.
+void TemplateTable::lload() {
+ transition(vtos, ltos);
+
+ const Register Rindex = R11_scratch1;
+ locals_index(Rindex);
+ __ load_local_long(R17_tos, Rindex, Rindex);
+}
+
+void TemplateTable::fload() {
+ transition(vtos, ftos);
+
+ const Register Rindex = R11_scratch1;
+ locals_index(Rindex);
+ __ load_local_float(F15_ftos, Rindex, Rindex);
+}
+
+void TemplateTable::dload() {
+ transition(vtos, dtos);
+
+ const Register Rindex = R11_scratch1;
+ locals_index(Rindex);
+ __ load_local_double(F15_ftos, Rindex, Rindex);
+}
+
+void TemplateTable::aload() {
+ transition(vtos, atos);
+
+ const Register Rindex = R11_scratch1;
+ locals_index(Rindex);
+ __ load_local_ptr(R17_tos, Rindex, Rindex);
+}
+
+void TemplateTable::locals_index_wide(Register Rdst) {
+ // Offset is 2, not 1, because Lbcp points to wide prefix code.
+ __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned);
+}
+
+void TemplateTable::wide_iload() {
+ // Get the local value into tos.
+
+ const Register Rindex = R11_scratch1;
+ locals_index_wide(Rindex);
+ __ load_local_int(R17_tos, Rindex, Rindex);
+}
+
+void TemplateTable::wide_lload() {
+ transition(vtos, ltos);
+
+ const Register Rindex = R11_scratch1;
+ locals_index_wide(Rindex);
+ __ load_local_long(R17_tos, Rindex, Rindex);
+}
+
+void TemplateTable::wide_fload() {
+ transition(vtos, ftos);
+
+ const Register Rindex = R11_scratch1;
+ locals_index_wide(Rindex);
+ __ load_local_float(F15_ftos, Rindex, Rindex);
+}
+
+void TemplateTable::wide_dload() {
+ transition(vtos, dtos);
+
+ const Register Rindex = R11_scratch1;
+ locals_index_wide(Rindex);
+ __ load_local_double(F15_ftos, Rindex, Rindex);
+}
+
+void TemplateTable::wide_aload() {
+ transition(vtos, atos);
+
+ const Register Rindex = R11_scratch1;
+ locals_index_wide(Rindex);
+ __ load_local_ptr(R17_tos, Rindex, Rindex);
+}
+
+void TemplateTable::iaload() {
+ transition(itos, itos);
+
+ const Register Rload_addr = R3_ARG1,
+ Rarray = R4_ARG2,
+ Rtemp = R5_ARG3;
+ __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
+ __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr);
+}
+
+void TemplateTable::laload() {
+ transition(itos, ltos);
+
+ const Register Rload_addr = R3_ARG1,
+ Rarray = R4_ARG2,
+ Rtemp = R5_ARG3;
+ __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
+ __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr);
+}
+
+void TemplateTable::faload() {
+ transition(itos, ftos);
+
+ const Register Rload_addr = R3_ARG1,
+ Rarray = R4_ARG2,
+ Rtemp = R5_ARG3;
+ __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
+ __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr);
+}
+
+void TemplateTable::daload() {
+ transition(itos, dtos);
+
+ const Register Rload_addr = R3_ARG1,
+ Rarray = R4_ARG2,
+ Rtemp = R5_ARG3;
+ __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
+ __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr);
+}
+
+void TemplateTable::aaload() {
+ transition(itos, atos);
+
+ // tos: index
+ // result tos: array
+ const Register Rload_addr = R3_ARG1,
+ Rarray = R4_ARG2,
+ Rtemp = R5_ARG3;
+ __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
+ __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr);
+ __ verify_oop(R17_tos);
+ //__ dcbt(R17_tos); // prefetch
+}
+
+void TemplateTable::baload() {
+ transition(itos, itos);
+
+ const Register Rload_addr = R3_ARG1,
+ Rarray = R4_ARG2,
+ Rtemp = R5_ARG3;
+ __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr);
+ __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr);
+ __ extsb(R17_tos, R17_tos);
+}
+
+void TemplateTable::caload() {
+ transition(itos, itos);
+
+ const Register Rload_addr = R3_ARG1,
+ Rarray = R4_ARG2,
+ Rtemp = R5_ARG3;
+ __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
+ __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
+}
+
+// Iload followed by caload frequent pair.
+void TemplateTable::fast_icaload() {
+ transition(vtos, itos);
+
+ const Register Rload_addr = R3_ARG1,
+ Rarray = R4_ARG2,
+ Rtemp = R11_scratch1;
+
+ locals_index(R17_tos);
+ __ load_local_int(R17_tos, Rtemp, R17_tos);
+ __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
+ __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
+}
+
+void TemplateTable::saload() {
+ transition(itos, itos);
+
+ const Register Rload_addr = R11_scratch1,
+ Rarray = R12_scratch2,
+ Rtemp = R3_ARG1;
+ __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
+ __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr);
+}
+
+void TemplateTable::iload(int n) {
+ transition(vtos, itos);
+
+ __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
+}
+
+void TemplateTable::lload(int n) {
+ transition(vtos, ltos);
+
+ __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
+}
+
+void TemplateTable::fload(int n) {
+ transition(vtos, ftos);
+
+ __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
+}
+
+void TemplateTable::dload(int n) {
+ transition(vtos, dtos);
+
+ __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
+}
+
+void TemplateTable::aload(int n) {
+ transition(vtos, atos);
+
+ __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
+}
+
+void TemplateTable::aload_0() {
+ transition(vtos, atos);
+ // According to bytecode histograms, the pairs:
+ //
+ // _aload_0, _fast_igetfield
+ // _aload_0, _fast_agetfield
+ // _aload_0, _fast_fgetfield
+ //
+ // occur frequently. If RewriteFrequentPairs is set, the (slow)
+ // _aload_0 bytecode checks if the next bytecode is either
+ // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
+ // rewrites the current bytecode into a pair bytecode; otherwise it
+ // rewrites the current bytecode into _0 that doesn't do
+ // the pair check anymore.
+ //
+ // Note: If the next bytecode is _getfield, the rewrite must be
+ // delayed, otherwise we may miss an opportunity for a pair.
+ //
+ // Also rewrite frequent pairs
+ // aload_0, aload_1
+ // aload_0, iload_1
+ // These bytecodes with a small amount of code are most profitable
+ // to rewrite.
+
+ if (RewriteFrequentPairs) {
+
+ Label Lrewrite, Ldont_rewrite;
+ Register Rnext_byte = R3_ARG1,
+ Rrewrite_to = R6_ARG4,
+ Rscratch = R11_scratch1;
+
+ // Get next byte.
+ __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp);
+
+ // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair.
+ __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield);
+ __ beq(CCR0, Ldont_rewrite);
+
+ __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield);
+ __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0);
+ __ beq(CCR1, Lrewrite);
+
+ __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield);
+ __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0);
+ __ beq(CCR0, Lrewrite);
+
+ __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield);
+ __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0);
+ __ beq(CCR1, Lrewrite);
+
+ __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0);
+
+ __ bind(Lrewrite);
+ patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false);
+ __ bind(Ldont_rewrite);
+ }
+
+ // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
+ aload(0);
+}
+
+void TemplateTable::istore() {
+ transition(itos, vtos);
+
+ const Register Rindex = R11_scratch1;
+ locals_index(Rindex);
+ __ store_local_int(R17_tos, Rindex);
+}
+
+void TemplateTable::lstore() {
+ transition(ltos, vtos);
+ const Register Rindex = R11_scratch1;
+ locals_index(Rindex);
+ __ store_local_long(R17_tos, Rindex);
+}
+
+void TemplateTable::fstore() {
+ transition(ftos, vtos);
+
+ const Register Rindex = R11_scratch1;
+ locals_index(Rindex);
+ __ store_local_float(F15_ftos, Rindex);
+}
+
+void TemplateTable::dstore() {
+ transition(dtos, vtos);
+
+ const Register Rindex = R11_scratch1;
+ locals_index(Rindex);
+ __ store_local_double(F15_ftos, Rindex);
+}
+
+void TemplateTable::astore() {
+ transition(vtos, vtos);
+
+ const Register Rindex = R11_scratch1;
+ __ pop_ptr();
+ __ verify_oop_or_return_address(R17_tos, Rindex);
+ locals_index(Rindex);
+ __ store_local_ptr(R17_tos, Rindex);
+}
+
+void TemplateTable::wide_istore() {
+ transition(vtos, vtos);
+
+ const Register Rindex = R11_scratch1;
+ __ pop_i();
+ locals_index_wide(Rindex);
+ __ store_local_int(R17_tos, Rindex);
+}
+
+void TemplateTable::wide_lstore() {
+ transition(vtos, vtos);
+
+ const Register Rindex = R11_scratch1;
+ __ pop_l();
+ locals_index_wide(Rindex);
+ __ store_local_long(R17_tos, Rindex);
+}
+
+void TemplateTable::wide_fstore() {
+ transition(vtos, vtos);
+
+ const Register Rindex = R11_scratch1;
+ __ pop_f();
+ locals_index_wide(Rindex);
+ __ store_local_float(F15_ftos, Rindex);
+}
+
+void TemplateTable::wide_dstore() {
+ transition(vtos, vtos);
+
+ const Register Rindex = R11_scratch1;
+ __ pop_d();
+ locals_index_wide(Rindex);
+ __ store_local_double(F15_ftos, Rindex);
+}
+
+void TemplateTable::wide_astore() {
+ transition(vtos, vtos);
+
+ const Register Rindex = R11_scratch1;
+ __ pop_ptr();
+ __ verify_oop_or_return_address(R17_tos, Rindex);
+ locals_index_wide(Rindex);
+ __ store_local_ptr(R17_tos, Rindex);
+}
+
+void TemplateTable::iastore() {
+ transition(itos, vtos);
+
+ const Register Rindex = R3_ARG1,
+ Rstore_addr = R4_ARG2,
+ Rarray = R5_ARG3,
+ Rtemp = R6_ARG4;
+ __ pop_i(Rindex);
+ __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
+ __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr);
+ }
+
+void TemplateTable::lastore() {
+ transition(ltos, vtos);
+
+ const Register Rindex = R3_ARG1,
+ Rstore_addr = R4_ARG2,
+ Rarray = R5_ARG3,
+ Rtemp = R6_ARG4;
+ __ pop_i(Rindex);
+ __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
+ __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr);
+ }
+
+void TemplateTable::fastore() {
+ transition(ftos, vtos);
+
+ const Register Rindex = R3_ARG1,
+ Rstore_addr = R4_ARG2,
+ Rarray = R5_ARG3,
+ Rtemp = R6_ARG4;
+ __ pop_i(Rindex);
+ __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
+ __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr);
+ }
+
+void TemplateTable::dastore() {
+ transition(dtos, vtos);
+
+ const Register Rindex = R3_ARG1,
+ Rstore_addr = R4_ARG2,
+ Rarray = R5_ARG3,
+ Rtemp = R6_ARG4;
+ __ pop_i(Rindex);
+ __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
+ __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr);
+ }
+
+// Pop 3 values from the stack and...
+void TemplateTable::aastore() {
+ transition(vtos, vtos);
+
+ Label Lstore_ok, Lis_null, Ldone;
+ const Register Rindex = R3_ARG1,
+ Rarray = R4_ARG2,
+ Rscratch = R11_scratch1,
+ Rscratch2 = R12_scratch2,
+ Rarray_klass = R5_ARG3,
+ Rarray_element_klass = Rarray_klass,
+ Rvalue_klass = R6_ARG4,
+ Rstore_addr = R31; // Use register which survives VM call.
+
+ __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store.
+ __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index.
+ __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp); // Get array.
+
+ __ verify_oop(R17_tos);
+ __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr);
+ // Rindex is dead!
+ Register Rscratch3 = Rindex;
+
+ // Do array store check - check for NULL value first.
+ __ cmpdi(CCR0, R17_tos, 0);
+ __ beq(CCR0, Lis_null);
+
+ __ load_klass(Rarray_klass, Rarray);
+ __ load_klass(Rvalue_klass, R17_tos);
+
+ // Do fast instanceof cache test.
+ __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass);
+
+ // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure.
+ __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok);
+
+ // Fell through: subtype check failed => throw an exception.
+ __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry);
+ __ mtctr(R11_scratch1);
+ __ bctr();
+
+ __ bind(Lis_null);
+ do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
+ Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
+ __ profile_null_seen(Rscratch, Rscratch2);
+ __ b(Ldone);
+
+ // Store is OK.
+ __ bind(Lstore_ok);
+ do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
+ Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
+
+ __ bind(Ldone);
+ // Adjust sp (pops array, index and value).
+ __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize);
+}
+
+void TemplateTable::bastore() {
+ transition(itos, vtos);
+
+ const Register Rindex = R11_scratch1,
+ Rarray = R12_scratch2,
+ Rscratch = R3_ARG1;
+ __ pop_i(Rindex);
+ // tos: val
+ // Rarray: array ptr (popped by index_check)
+ __ index_check(Rarray, Rindex, 0, Rscratch, Rarray);
+ __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray);
+}
+
+void TemplateTable::castore() {
+ transition(itos, vtos);
+
+ const Register Rindex = R11_scratch1,
+ Rarray = R12_scratch2,
+ Rscratch = R3_ARG1;
+ __ pop_i(Rindex);
+ // tos: val
+ // Rarray: array ptr (popped by index_check)
+ __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray);
+ __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray);
+}
+
+void TemplateTable::sastore() {
+ castore();
+}
+
+void TemplateTable::istore(int n) {
+ transition(itos, vtos);
+ __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
+}
+
+void TemplateTable::lstore(int n) {
+ transition(ltos, vtos);
+ __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
+}
+
+void TemplateTable::fstore(int n) {
+ transition(ftos, vtos);
+ __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
+}
+
+void TemplateTable::dstore(int n) {
+ transition(dtos, vtos);
+ __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
+}
+
+void TemplateTable::astore(int n) {
+ transition(vtos, vtos);
+
+ __ pop_ptr();
+ __ verify_oop_or_return_address(R17_tos, R11_scratch1);
+ __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
+}
+
+void TemplateTable::pop() {
+ transition(vtos, vtos);
+
+ __ addi(R15_esp, R15_esp, Interpreter::stackElementSize);
+}
+
+void TemplateTable::pop2() {
+ transition(vtos, vtos);
+
+ __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2);
+}
+
+void TemplateTable::dup() {
+ transition(vtos, vtos);
+
+ __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp);
+ __ push_ptr(R11_scratch1);
+}
+
+void TemplateTable::dup_x1() {
+ transition(vtos, vtos);
+
+ Register Ra = R11_scratch1,
+ Rb = R12_scratch2;
+ // stack: ..., a, b
+ __ ld(Rb, Interpreter::stackElementSize, R15_esp);
+ __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
+ __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
+ __ std(Ra, Interpreter::stackElementSize, R15_esp);
+ __ push_ptr(Rb);
+ // stack: ..., b, a, b
+}
+
+void TemplateTable::dup_x2() {
+ transition(vtos, vtos);
+
+ Register Ra = R11_scratch1,
+ Rb = R12_scratch2,
+ Rc = R3_ARG1;
+
+ // stack: ..., a, b, c
+ __ ld(Rc, Interpreter::stackElementSize, R15_esp); // load c
+ __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp); // load a
+ __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a
+ __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp); // load b
+ // stack: ..., c, b, c
+ __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b
+ // stack: ..., c, a, c
+ __ std(Rb, Interpreter::stackElementSize, R15_esp); // store b in c
+ __ push_ptr(Rc); // push c
+ // stack: ..., c, a, b, c
+}
+
+void TemplateTable::dup2() {
+ transition(vtos, vtos);
+
+ Register Ra = R11_scratch1,
+ Rb = R12_scratch2;
+ // stack: ..., a, b
+ __ ld(Rb, Interpreter::stackElementSize, R15_esp);
+ __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
+ __ push_2ptrs(Ra, Rb);
+ // stack: ..., a, b, a, b
+}
+
+void TemplateTable::dup2_x1() {
+ transition(vtos, vtos);
+
+ Register Ra = R11_scratch1,
+ Rb = R12_scratch2,
+ Rc = R3_ARG1;
+ // stack: ..., a, b, c
+ __ ld(Rc, Interpreter::stackElementSize, R15_esp);
+ __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);
+ __ std(Rc, Interpreter::stackElementSize * 2, R15_esp);
+ __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);
+ __ std(Ra, Interpreter::stackElementSize, R15_esp);
+ __ std(Rb, Interpreter::stackElementSize * 3, R15_esp);
+ // stack: ..., b, c, a
+ __ push_2ptrs(Rb, Rc);
+ // stack: ..., b, c, a, b, c
+}
+
+void TemplateTable::dup2_x2() {
+ transition(vtos, vtos);
+
+ Register Ra = R11_scratch1,
+ Rb = R12_scratch2,
+ Rc = R3_ARG1,
+ Rd = R4_ARG2;
+ // stack: ..., a, b, c, d
+ __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp);
+ __ ld(Rd, Interpreter::stackElementSize, R15_esp);
+ __ std(Rb, Interpreter::stackElementSize, R15_esp); // store b in d
+ __ std(Rd, Interpreter::stackElementSize * 3, R15_esp); // store d in b
+ __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp);
+ __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp);
+ __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in c
+ __ std(Rc, Interpreter::stackElementSize * 4, R15_esp); // store c in a
+ // stack: ..., c, d, a, b
+ __ push_2ptrs(Rc, Rd);
+ // stack: ..., c, d, a, b, c, d
+}
+
+void TemplateTable::swap() {
+ transition(vtos, vtos);
+ // stack: ..., a, b
+
+ Register Ra = R11_scratch1,
+ Rb = R12_scratch2;
+ // stack: ..., a, b
+ __ ld(Rb, Interpreter::stackElementSize, R15_esp);
+ __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
+ __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
+ __ std(Ra, Interpreter::stackElementSize, R15_esp);
+ // stack: ..., b, a
+}
+
+void TemplateTable::iop2(Operation op) {
+ transition(itos, itos);
+
+ Register Rscratch = R11_scratch1;
+
+ __ pop_i(Rscratch);
+ // tos = number of bits to shift
+ // Rscratch = value to shift
+ switch (op) {
+ case add: __ add(R17_tos, Rscratch, R17_tos); break;
+ case sub: __ sub(R17_tos, Rscratch, R17_tos); break;
+ case mul: __ mullw(R17_tos, Rscratch, R17_tos); break;
+ case _and: __ andr(R17_tos, Rscratch, R17_tos); break;
+ case _or: __ orr(R17_tos, Rscratch, R17_tos); break;
+ case _xor: __ xorr(R17_tos, Rscratch, R17_tos); break;
+ case shl: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break;
+ case shr: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break;
+ case ushr: __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break;
+ default: ShouldNotReachHere();
+ }
+}
+
+void TemplateTable::lop2(Operation op) {
+ transition(ltos, ltos);
+
+ Register Rscratch = R11_scratch1;
+ __ pop_l(Rscratch);
+ switch (op) {
+ case add: __ add(R17_tos, Rscratch, R17_tos); break;
+ case sub: __ sub(R17_tos, Rscratch, R17_tos); break;
+ case _and: __ andr(R17_tos, Rscratch, R17_tos); break;
+ case _or: __ orr(R17_tos, Rscratch, R17_tos); break;
+ case _xor: __ xorr(R17_tos, Rscratch, R17_tos); break;
+ default: ShouldNotReachHere();
+ }
+}
+
+void TemplateTable::idiv() {
+ transition(itos, itos);
+
+ Label Lnormal, Lexception, Ldone;
+ Register Rdividend = R11_scratch1; // Used by irem.
+
+ __ addi(R0, R17_tos, 1);
+ __ cmplwi(CCR0, R0, 2);
+ __ bgt(CCR0, Lnormal); // divisor <-1 or >1
+
+ __ cmpwi(CCR1, R17_tos, 0);
+ __ beq(CCR1, Lexception); // divisor == 0
+
+ __ pop_i(Rdividend);
+ __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1
+ __ b(Ldone);
+
+ __ bind(Lexception);
+ __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
+ __ mtctr(R11_scratch1);
+ __ bctr();
+
+ __ align(32, 12);
+ __ bind(Lnormal);
+ __ pop_i(Rdividend);
+ __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
+ __ bind(Ldone);
+}
+
+void TemplateTable::irem() {
+ transition(itos, itos);
+
+ __ mr(R12_scratch2, R17_tos);
+ idiv();
+ __ mullw(R17_tos, R17_tos, R12_scratch2);
+ __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv.
+}
+
+void TemplateTable::lmul() {
+ transition(ltos, ltos);
+
+ __ pop_l(R11_scratch1);
+ __ mulld(R17_tos, R11_scratch1, R17_tos);
+}
+
+void TemplateTable::ldiv() {
+ transition(ltos, ltos);
+
+ Label Lnormal, Lexception, Ldone;
+ Register Rdividend = R11_scratch1; // Used by lrem.
+
+ __ addi(R0, R17_tos, 1);
+ __ cmpldi(CCR0, R0, 2);
+ __ bgt(CCR0, Lnormal); // divisor <-1 or >1
+
+ __ cmpdi(CCR1, R17_tos, 0);
+ __ beq(CCR1, Lexception); // divisor == 0
+
+ __ pop_l(Rdividend);
+ __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1
+ __ b(Ldone);
+
+ __ bind(Lexception);
+ __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
+ __ mtctr(R11_scratch1);
+ __ bctr();
+
+ __ align(32, 12);
+ __ bind(Lnormal);
+ __ pop_l(Rdividend);
+ __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
+ __ bind(Ldone);
+}
+
+void TemplateTable::lrem() {
+ transition(ltos, ltos);
+
+ __ mr(R12_scratch2, R17_tos);
+ ldiv();
+ __ mulld(R17_tos, R17_tos, R12_scratch2);
+ __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv.
+}
+
+void TemplateTable::lshl() {
+ transition(itos, ltos);
+
+ __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
+ __ pop_l(R11_scratch1);
+ __ sld(R17_tos, R11_scratch1, R17_tos);
+}
+
+void TemplateTable::lshr() {
+ transition(itos, ltos);
+
+ __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
+ __ pop_l(R11_scratch1);
+ __ srad(R17_tos, R11_scratch1, R17_tos);
+}
+
+void TemplateTable::lushr() {
+ transition(itos, ltos);
+
+ __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
+ __ pop_l(R11_scratch1);
+ __ srd(R17_tos, R11_scratch1, R17_tos);
+}
+
+void TemplateTable::fop2(Operation op) {
+ transition(ftos, ftos);
+
+ switch (op) {
+ case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break;
+ case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break;
+ case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break;
+ case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break;
+ case rem:
+ __ pop_f(F1_ARG1);
+ __ fmr(F2_ARG2, F15_ftos);
+ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
+ __ fmr(F15_ftos, F1_RET);
+ break;
+
+ default: ShouldNotReachHere();
+ }
+}
+
+void TemplateTable::dop2(Operation op) {
+ transition(dtos, dtos);
+
+ switch (op) {
+ case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break;
+ case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break;
+ case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break;
+ case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break;
+ case rem:
+ __ pop_d(F1_ARG1);
+ __ fmr(F2_ARG2, F15_ftos);
+ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
+ __ fmr(F15_ftos, F1_RET);
+ break;
+
+ default: ShouldNotReachHere();
+ }
+}
+
+// Negate the value in the TOS cache.
+void TemplateTable::ineg() {
+ transition(itos, itos);
+
+ __ neg(R17_tos, R17_tos);
+}
+
+// Negate the value in the TOS cache.
+void TemplateTable::lneg() {
+ transition(ltos, ltos);
+
+ __ neg(R17_tos, R17_tos);
+}
+
+void TemplateTable::fneg() {
+ transition(ftos, ftos);
+
+ __ fneg(F15_ftos, F15_ftos);
+}
+
+void TemplateTable::dneg() {
+ transition(dtos, dtos);
+
+ __ fneg(F15_ftos, F15_ftos);
+}
+
+// Increments a local variable in place.
+void TemplateTable::iinc() {
+ transition(vtos, vtos);
+
+ const Register Rindex = R11_scratch1,
+ Rincrement = R0,
+ Rvalue = R12_scratch2;
+
+ locals_index(Rindex); // Load locals index from bytecode stream.
+ __ lbz(Rincrement, 2, R14_bcp); // Load increment from the bytecode stream.
+ __ extsb(Rincrement, Rincrement);
+
+ __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex.
+
+ __ add(Rvalue, Rincrement, Rvalue);
+ __ stw(Rvalue, 0, Rindex);
+}
+
+void TemplateTable::wide_iinc() {
+ transition(vtos, vtos);
+
+ Register Rindex = R11_scratch1,
+ Rlocals_addr = Rindex,
+ Rincr = R12_scratch2;
+ locals_index_wide(Rindex);
+ __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed);
+ __ load_local_int(R17_tos, Rlocals_addr, Rindex);
+ __ add(R17_tos, Rincr, R17_tos);
+ __ stw(R17_tos, 0, Rlocals_addr);
+}
+
+void TemplateTable::convert() {
+ // %%%%% Factor this first part accross platforms
+#ifdef ASSERT
+ TosState tos_in = ilgl;
+ TosState tos_out = ilgl;
+ switch (bytecode()) {
+ case Bytecodes::_i2l: // fall through
+ case Bytecodes::_i2f: // fall through
+ case Bytecodes::_i2d: // fall through
+ case Bytecodes::_i2b: // fall through
+ case Bytecodes::_i2c: // fall through
+ case Bytecodes::_i2s: tos_in = itos; break;
+ case Bytecodes::_l2i: // fall through
+ case Bytecodes::_l2f: // fall through
+ case Bytecodes::_l2d: tos_in = ltos; break;
+ case Bytecodes::_f2i: // fall through
+ case Bytecodes::_f2l: // fall through
+ case Bytecodes::_f2d: tos_in = ftos; break;
+ case Bytecodes::_d2i: // fall through
+ case Bytecodes::_d2l: // fall through
+ case Bytecodes::_d2f: tos_in = dtos; break;
+ default : ShouldNotReachHere();
+ }
+ switch (bytecode()) {
+ case Bytecodes::_l2i: // fall through
+ case Bytecodes::_f2i: // fall through
+ case Bytecodes::_d2i: // fall through
+ case Bytecodes::_i2b: // fall through
+ case Bytecodes::_i2c: // fall through
+ case Bytecodes::_i2s: tos_out = itos; break;
+ case Bytecodes::_i2l: // fall through
+ case Bytecodes::_f2l: // fall through
+ case Bytecodes::_d2l: tos_out = ltos; break;
+ case Bytecodes::_i2f: // fall through
+ case Bytecodes::_l2f: // fall through
+ case Bytecodes::_d2f: tos_out = ftos; break;
+ case Bytecodes::_i2d: // fall through
+ case Bytecodes::_l2d: // fall through
+ case Bytecodes::_f2d: tos_out = dtos; break;
+ default : ShouldNotReachHere();
+ }
+ transition(tos_in, tos_out);
+#endif
+
+ // Conversion
+ Label done;
+ switch (bytecode()) {
+ case Bytecodes::_i2l:
+ __ extsw(R17_tos, R17_tos);
+ break;
+
+ case Bytecodes::_l2i:
+ // Nothing to do, we'll continue to work with the lower bits.
+ break;
+
+ case Bytecodes::_i2b:
+ __ extsb(R17_tos, R17_tos);
+ break;
+
+ case Bytecodes::_i2c:
+ __ rldicl(R17_tos, R17_tos, 0, 64-2*8);
+ break;
+
+ case Bytecodes::_i2s:
+ __ extsh(R17_tos, R17_tos);
+ break;
+
+ case Bytecodes::_i2d:
+ __ extsw(R17_tos, R17_tos);
+ case Bytecodes::_l2d:
+ __ push_l_pop_d();
+ __ fcfid(F15_ftos, F15_ftos);
+ break;
+
+ case Bytecodes::_i2f:
+ __ extsw(R17_tos, R17_tos);
+ __ push_l_pop_d();
+ if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
+ // Comment: alternatively, load with sign extend could be done by lfiwax.
+ __ fcfids(F15_ftos, F15_ftos);
+ } else {
+ __ fcfid(F15_ftos, F15_ftos);
+ __ frsp(F15_ftos, F15_ftos);
+ }
+ break;
+
+ case Bytecodes::_l2f:
+ if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
+ __ push_l_pop_d();
+ __ fcfids(F15_ftos, F15_ftos);
+ } else {
+ // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp.
+ __ mr(R3_ARG1, R17_tos);
+ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f));
+ __ fmr(F15_ftos, F1_RET);
+ }
+ break;
+
+ case Bytecodes::_f2d:
+ // empty
+ break;
+
+ case Bytecodes::_d2f:
+ __ frsp(F15_ftos, F15_ftos);
+ break;
+
+ case Bytecodes::_d2i:
+ case Bytecodes::_f2i:
+ __ fcmpu(CCR0, F15_ftos, F15_ftos);
+ __ li(R17_tos, 0); // 0 in case of NAN
+ __ bso(CCR0, done);
+ __ fctiwz(F15_ftos, F15_ftos);
+ __ push_d_pop_l();
+ break;
+
+ case Bytecodes::_d2l:
+ case Bytecodes::_f2l:
+ __ fcmpu(CCR0, F15_ftos, F15_ftos);
+ __ li(R17_tos, 0); // 0 in case of NAN
+ __ bso(CCR0, done);
+ __ fctidz(F15_ftos, F15_ftos);
+ __ push_d_pop_l();
+ break;
+
+ default: ShouldNotReachHere();
+ }
+ __ bind(done);
+}
+
+// Long compare
+void TemplateTable::lcmp() {
+ transition(ltos, itos);
+
+ const Register Rscratch = R11_scratch1;
+ __ pop_l(Rscratch); // first operand, deeper in stack
+
+ __ cmpd(CCR0, Rscratch, R17_tos); // compare
+ __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
+ __ srwi(Rscratch, R17_tos, 30);
+ __ srawi(R17_tos, R17_tos, 31);
+ __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
+}
+
+// fcmpl/fcmpg and dcmpl/dcmpg bytecodes
+// unordered_result == -1 => fcmpl or dcmpl
+// unordered_result == 1 => fcmpg or dcmpg
+void TemplateTable::float_cmp(bool is_float, int unordered_result) {
+ const FloatRegister Rfirst = F0_SCRATCH,
+ Rsecond = F15_ftos;
+ const Register Rscratch = R11_scratch1;
+
+ if (is_float) {
+ __ pop_f(Rfirst);
+ } else {
+ __ pop_d(Rfirst);
+ }
+
+ Label Lunordered, Ldone;
+ __ fcmpu(CCR0, Rfirst, Rsecond); // compare
+ if (unordered_result) {
+ __ bso(CCR0, Lunordered);
+ }
+ __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
+ __ srwi(Rscratch, R17_tos, 30);
+ __ srawi(R17_tos, R17_tos, 31);
+ __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
+ if (unordered_result) {
+ __ b(Ldone);
+ __ bind(Lunordered);
+ __ load_const_optimized(R17_tos, unordered_result);
+ }
+ __ bind(Ldone);
+}
+
+// Branch_conditional which takes TemplateTable::Condition.
+void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) {
+ bool positive = false;
+ Assembler::Condition cond = Assembler::equal;
+ switch (cc) {
+ case TemplateTable::equal: positive = true ; cond = Assembler::equal ; break;
+ case TemplateTable::not_equal: positive = false; cond = Assembler::equal ; break;
+ case TemplateTable::less: positive = true ; cond = Assembler::less ; break;
+ case TemplateTable::less_equal: positive = false; cond = Assembler::greater; break;
+ case TemplateTable::greater: positive = true ; cond = Assembler::greater; break;
+ case TemplateTable::greater_equal: positive = false; cond = Assembler::less ; break;
+ default: ShouldNotReachHere();
+ }
+ int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
+ int bi = Assembler::bi0(crx, cond);
+ __ bc(bo, bi, L);
+}
+
+void TemplateTable::branch(bool is_jsr, bool is_wide) {
+
+ // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
+ __ verify_thread();
+
+ const Register Rscratch1 = R11_scratch1,
+ Rscratch2 = R12_scratch2,
+ Rscratch3 = R3_ARG1,
+ R4_counters = R4_ARG2,
+ bumped_count = R31,
+ Rdisp = R22_tmp2;
+
+ __ profile_taken_branch(Rscratch1, bumped_count);
+
+ // Get (wide) offset.
+ if (is_wide) {
+ __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
+ } else {
+ __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
+ }
+
+ // --------------------------------------------------------------------------
+ // Handle all the JSR stuff here, then exit.
+ // It's much shorter and cleaner than intermingling with the
+ // non-JSR normal-branch stuff occurring below.
+ if (is_jsr) {
+ // Compute return address as bci in Otos_i.
+ __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
+ __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3));
+ __ subf(R17_tos, Rscratch1, Rscratch2);
+
+ // Bump bcp to target of JSR.
+ __ add(R14_bcp, Rdisp, R14_bcp);
+ // Push returnAddress for "ret" on stack.
+ __ push_ptr(R17_tos);
+ // And away we go!
+ __ dispatch_next(vtos);
+ return;
+ }
+
+ // --------------------------------------------------------------------------
+ // Normal (non-jsr) branch handling
+
+ const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
+ if (increment_invocation_counter_for_backward_branches) {
+ //__ unimplemented("branch invocation counter");
+
+ Label Lforward;
+ __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
+
+ // Check branch direction.
+ __ cmpdi(CCR0, Rdisp, 0);
+ __ bgt(CCR0, Lforward);
+
+ __ get_method_counters(R19_method, R4_counters, Lforward);
+
+ if (TieredCompilation) {
+ Label Lno_mdo, Loverflow;
+ const int increment = InvocationCounter::count_increment;
+ const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
+ if (ProfileInterpreter) {
+ Register Rmdo = Rscratch1;
+
+ // If no method data exists, go to profile_continue.
+ __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
+ __ cmpdi(CCR0, Rmdo, 0);
+ __ beq(CCR0, Lno_mdo);
+
+ // Increment backedge counter in the MDO.
+ const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
+ __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
+ __ load_const_optimized(Rscratch3, mask, R0);
+ __ addi(Rscratch2, Rscratch2, increment);
+ __ stw(Rscratch2, mdo_bc_offs, Rmdo);
+ __ and_(Rscratch3, Rscratch2, Rscratch3);
+ __ bne(CCR0, Lforward);
+ __ b(Loverflow);
+ }
+
+ // If there's no MDO, increment counter in method.
+ const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
+ __ bind(Lno_mdo);
+ __ lwz(Rscratch2, mo_bc_offs, R4_counters);
+ __ load_const_optimized(Rscratch3, mask, R0);
+ __ addi(Rscratch2, Rscratch2, increment);
+ __ stw(Rscratch2, mo_bc_offs, R19_method);
+ __ and_(Rscratch3, Rscratch2, Rscratch3);
+ __ bne(CCR0, Lforward);
+
+ __ bind(Loverflow);
+
+ // Notify point for loop, pass branch bytecode.
+ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true);
+
+ // Was an OSR adapter generated?
+ // O0 = osr nmethod
+ __ cmpdi(CCR0, R3_RET, 0);
+ __ beq(CCR0, Lforward);
+
+ // Has the nmethod been invalidated already?
+ __ lwz(R0, nmethod::entry_bci_offset(), R3_RET);
+ __ cmpwi(CCR0, R0, InvalidOSREntryBci);
+ __ beq(CCR0, Lforward);
+
+ // Migrate the interpreter frame off of the stack.
+ // We can use all registers because we will not return to interpreter from this point.
+
+ // Save nmethod.
+ const Register osr_nmethod = R31;
+ __ mr(osr_nmethod, R3_RET);
+ __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
+ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
+ __ reset_last_Java_frame();
+ // OSR buffer is in ARG1.
+
+ // Remove the interpreter frame.
+ __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
+
+ // Jump to the osr code.
+ __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
+ __ mtlr(R0);
+ __ mtctr(R11_scratch1);
+ __ bctr();
+
+ } else {
+
+ const Register invoke_ctr = Rscratch1;
+ // Update Backedge branch separately from invocations.
+ __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3);
+
+ if (ProfileInterpreter) {
+ __ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward);
+ if (UseOnStackReplacement) {
+ __ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2);
+ }
+ } else {
+ if (UseOnStackReplacement) {
+ __ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2);
+ }
+ }
+ }
+
+ __ bind(Lforward);
+
+ } else {
+ // Bump bytecode pointer by displacement (take the branch).
+ __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
+ }
+ // Continue with bytecode @ target.
+ // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
+ // %%%%% and changing dispatch_next to dispatch_only.
+ __ dispatch_next(vtos);
+}
+
+// Helper function for if_cmp* methods below.
+// Factored out common compare and branch code.
+void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) {
+ Label Lnot_taken;
+ // Note: The condition code we get is the condition under which we
+ // *fall through*! So we have to inverse the CC here.
+
+ if (is_jint) {
+ if (cmp0) {
+ __ cmpwi(CCR0, Rfirst, 0);
+ } else {
+ __ cmpw(CCR0, Rfirst, Rsecond);
+ }
+ } else {
+ if (cmp0) {
+ __ cmpdi(CCR0, Rfirst, 0);
+ } else {
+ __ cmpd(CCR0, Rfirst, Rsecond);
+ }
+ }
+ branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true);
+
+ // Conition is false => Jump!
+ branch(false, false);
+
+ // Condition is not true => Continue.
+ __ align(32, 12);
+ __ bind(Lnot_taken);
+ __ profile_not_taken_branch(Rscratch1, Rscratch2);
+}
+
+// Compare integer values with zero and fall through if CC holds, branch away otherwise.
+void TemplateTable::if_0cmp(Condition cc) {
+ transition(itos, vtos);
+
+ if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true);
+}
+
+// Compare integer values and fall through if CC holds, branch away otherwise.
+//
+// Interface:
+// - Rfirst: First operand (older stack value)
+// - tos: Second operand (younger stack value)
+void TemplateTable::if_icmp(Condition cc) {
+ transition(itos, vtos);
+
+ const Register Rfirst = R0,
+ Rsecond = R17_tos;
+
+ __ pop_i(Rfirst);
+ if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false);
+}
+
+void TemplateTable::if_nullcmp(Condition cc) {
+ transition(atos, vtos);
+
+ if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true);
+}
+
+void TemplateTable::if_acmp(Condition cc) {
+ transition(atos, vtos);
+
+ const Register Rfirst = R0,
+ Rsecond = R17_tos;
+
+ __ pop_ptr(Rfirst);
+ if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false);
+}
+
+void TemplateTable::ret() {
+ locals_index(R11_scratch1);
+ __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1);
+
+ __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2);
+
+ __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
+ __ add(R11_scratch1, R17_tos, R11_scratch1);
+ __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
+ __ dispatch_next(vtos);
+}
+
+void TemplateTable::wide_ret() {
+ transition(vtos, vtos);
+
+ const Register Rindex = R3_ARG1,
+ Rscratch1 = R11_scratch1,
+ Rscratch2 = R12_scratch2;
+
+ locals_index_wide(Rindex);
+ __ load_local_ptr(R17_tos, R17_tos, Rindex);
+ __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2);
+ // Tos now contains the bci, compute the bcp from that.
+ __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
+ __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset()));
+ __ add(R14_bcp, Rscratch1, Rscratch2);
+ __ dispatch_next(vtos);
+}
+
+void TemplateTable::tableswitch() {
+ transition(itos, vtos);
+
+ Label Ldispatch, Ldefault_case;
+ Register Rlow_byte = R3_ARG1,
+ Rindex = Rlow_byte,
+ Rhigh_byte = R4_ARG2,
+ Rdef_offset_addr = R5_ARG3, // is going to contain address of default offset
+ Rscratch1 = R11_scratch1,
+ Rscratch2 = R12_scratch2,
+ Roffset = R6_ARG4;
+
+ // Align bcp.
+ __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
+ __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
+
+ // Load lo & hi.
+ __ lwz(Rlow_byte, BytesPerInt, Rdef_offset_addr);
+ __ lwz(Rhigh_byte, BytesPerInt * 2, Rdef_offset_addr);
+
+ // Check for default case (=index outside [low,high]).
+ __ cmpw(CCR0, R17_tos, Rlow_byte);
+ __ cmpw(CCR1, R17_tos, Rhigh_byte);
+ __ blt(CCR0, Ldefault_case);
+ __ bgt(CCR1, Ldefault_case);
+
+ // Lookup dispatch offset.
+ __ sub(Rindex, R17_tos, Rlow_byte);
+ __ extsw(Rindex, Rindex);
+ __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2);
+ __ sldi(Rindex, Rindex, LogBytesPerInt);
+ __ addi(Rindex, Rindex, 3 * BytesPerInt);
+ __ lwax(Roffset, Rdef_offset_addr, Rindex);
+ __ b(Ldispatch);
+
+ __ bind(Ldefault_case);
+ __ profile_switch_default(Rhigh_byte, Rscratch1);
+ __ lwa(Roffset, 0, Rdef_offset_addr);
+
+ __ bind(Ldispatch);
+
+ __ add(R14_bcp, Roffset, R14_bcp);
+ __ dispatch_next(vtos);
+}
+
+void TemplateTable::lookupswitch() {
+ transition(itos, itos);
+ __ stop("lookupswitch bytecode should have been rewritten");
+}
+
+// Table switch using linear search through cases.
+// Bytecode stream format:
+// Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
+// Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
+void TemplateTable::fast_linearswitch() {
+ transition(itos, vtos);
+
+ Label Lloop_entry, Lsearch_loop, Lfound, Lcontinue_execution, Ldefault_case;
+
+ Register Rcount = R3_ARG1,
+ Rcurrent_pair = R4_ARG2,
+ Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset.
+ Roffset = R31, // Might need to survive C call.
+ Rvalue = R12_scratch2,
+ Rscratch = R11_scratch1,
+ Rcmp_value = R17_tos;
+
+ // Align bcp.
+ __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
+ __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
+
+ // Setup loop counter and limit.
+ __ lwz(Rcount, BytesPerInt, Rdef_offset_addr); // Load count.
+ __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair.
+
+ // Set up search loop.
+ __ cmpwi(CCR0, Rcount, 0);
+ __ beq(CCR0, Ldefault_case);
+
+ __ mtctr(Rcount);
+
+ // linear table search
+ __ bind(Lsearch_loop);
+
+ __ lwz(Rvalue, 0, Rcurrent_pair);
+ __ lwa(Roffset, 1 * BytesPerInt, Rcurrent_pair);
+
+ __ cmpw(CCR0, Rvalue, Rcmp_value);
+ __ beq(CCR0, Lfound);
+
+ __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt);
+ __ bdnz(Lsearch_loop);
+
+ // default case
+ __ bind(Ldefault_case);
+
+ __ lwa(Roffset, 0, Rdef_offset_addr);
+ if (ProfileInterpreter) {
+ __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */);
+ __ b(Lcontinue_execution);
+ }
+
+ // Entry found, skip Roffset bytecodes and continue.
+ __ bind(Lfound);
+ if (ProfileInterpreter) {
+ // Calc the num of the pair we hit. Careful, Rcurrent_pair points 2 ints
+ // beyond the actual current pair due to the auto update load above!
+ __ sub(Rcurrent_pair, Rcurrent_pair, Rdef_offset_addr);
+ __ addi(Rcurrent_pair, Rcurrent_pair, - 2 * BytesPerInt);
+ __ srdi(Rcurrent_pair, Rcurrent_pair, LogBytesPerInt + 1);
+ __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch);
+ __ bind(Lcontinue_execution);
+ }
+ __ add(R14_bcp, Roffset, R14_bcp);
+ __ dispatch_next(vtos);
+}
+
+// Table switch using binary search (value/offset pairs are ordered).
+// Bytecode stream format:
+// Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
+// Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
+void TemplateTable::fast_binaryswitch() {
+
+ transition(itos, vtos);
+ // Implementation using the following core algorithm: (copied from Intel)
+ //
+ // int binary_search(int key, LookupswitchPair* array, int n) {
+ // // Binary search according to "Methodik des Programmierens" by
+ // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
+ // int i = 0;
+ // int j = n;
+ // while (i+1 < j) {
+ // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
+ // // with Q: for all i: 0 <= i < n: key < a[i]
+ // // where a stands for the array and assuming that the (inexisting)
+ // // element a[n] is infinitely big.
+ // int h = (i + j) >> 1;
+ // // i < h < j
+ // if (key < array[h].fast_match()) {
+ // j = h;
+ // } else {
+ // i = h;
+ // }
+ // }
+ // // R: a[i] <= key < a[i+1] or Q
+ // // (i.e., if key is within array, i is the correct index)
+ // return i;
+ // }
+
+ // register allocation
+ const Register Rkey = R17_tos; // already set (tosca)
+ const Register Rarray = R3_ARG1;
+ const Register Ri = R4_ARG2;
+ const Register Rj = R5_ARG3;
+ const Register Rh = R6_ARG4;
+ const Register Rscratch = R11_scratch1;
+
+ const int log_entry_size = 3;
+ const int entry_size = 1 << log_entry_size;
+
+ Label found;
+
+ // Find Array start,
+ __ addi(Rarray, R14_bcp, 3 * BytesPerInt);
+ __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt));
+
+ // initialize i & j
+ __ li(Ri,0);
+ __ lwz(Rj, -BytesPerInt, Rarray);
+
+ // and start.
+ Label entry;
+ __ b(entry);
+
+ // binary search loop
+ { Label loop;
+ __ bind(loop);
+ // int h = (i + j) >> 1;
+ __ srdi(Rh, Rh, 1);
+ // if (key < array[h].fast_match()) {
+ // j = h;
+ // } else {
+ // i = h;
+ // }
+ __ sldi(Rscratch, Rh, log_entry_size);
+ __ lwzx(Rscratch, Rscratch, Rarray);
+
+ // if (key < current value)
+ // Rh = Rj
+ // else
+ // Rh = Ri
+ Label Lgreater;
+ __ cmpw(CCR0, Rkey, Rscratch);
+ __ bge(CCR0, Lgreater);
+ __ mr(Rj, Rh);
+ __ b(entry);
+ __ bind(Lgreater);
+ __ mr(Ri, Rh);
+
+ // while (i+1 < j)
+ __ bind(entry);
+ __ addi(Rscratch, Ri, 1);
+ __ cmpw(CCR0, Rscratch, Rj);
+ __ add(Rh, Ri, Rj); // start h = i + j >> 1;
+
+ __ blt(CCR0, loop);
+ }
+
+ // End of binary search, result index is i (must check again!).
+ Label default_case;
+ Label continue_execution;
+ if (ProfileInterpreter) {
+ __ mr(Rh, Ri); // Save index in i for profiling.
+ }
+ // Ri = value offset
+ __ sldi(Ri, Ri, log_entry_size);
+ __ add(Ri, Ri, Rarray);
+ __ lwz(Rscratch, 0, Ri);
+
+ Label not_found;
+ // Ri = offset offset
+ __ cmpw(CCR0, Rkey, Rscratch);
+ __ beq(CCR0, not_found);
+ // entry not found -> j = default offset
+ __ lwz(Rj, -2 * BytesPerInt, Rarray);
+ __ b(default_case);
+
+ __ bind(not_found);
+ // entry found -> j = offset
+ __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
+ __ lwz(Rj, BytesPerInt, Ri);
+
+ if (ProfileInterpreter) {
+ __ b(continue_execution);
+ }
+
+ __ bind(default_case); // fall through (if not profiling)
+ __ profile_switch_default(Ri, Rscratch);
+
+ __ bind(continue_execution);
+
+ __ extsw(Rj, Rj);
+ __ add(R14_bcp, Rj, R14_bcp);
+ __ dispatch_next(vtos);
+}
+
+void TemplateTable::_return(TosState state) {
+ transition(state, state);
+ assert(_desc->calls_vm(),
+ "inconsistent calls_vm information"); // call in remove_activation
+
+ if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
+
+ Register Rscratch = R11_scratch1,
+ Rklass = R12_scratch2,
+ Rklass_flags = Rklass;
+ Label Lskip_register_finalizer;
+
+ // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case.
+ assert(state == vtos, "only valid state");
+ __ ld(R17_tos, 0, R18_locals);
+
+ // Load klass of this obj.
+ __ load_klass(Rklass, R17_tos);
+ __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass);
+ __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER));
+ __ bfalse(CCR0, Lskip_register_finalizer);
+
+ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */);
+
+ __ align(32, 12);
+ __ bind(Lskip_register_finalizer);
+ }
+
+ // Move the result value into the correct register and remove memory stack frame.
+ __ remove_activation(state, /* throw_monitor_exception */ true);
+ // Restoration of lr done by remove_activation.
+ switch (state) {
+ case ltos:
+ case btos:
+ case ctos:
+ case stos:
+ case atos:
+ case itos: __ mr(R3_RET, R17_tos); break;
+ case ftos:
+ case dtos: __ fmr(F1_RET, F15_ftos); break;
+ case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
+ // to get visible before the reference to the object gets stored anywhere.
+ __ membar(Assembler::StoreStore); break;
+ default : ShouldNotReachHere();
+ }
+ __ blr();
+}
+
+// ============================================================================
+// Constant pool cache access
+//
+// Memory ordering:
+//
+// Like done in C++ interpreter, we load the fields
+// - _indices
+// - _f12_oop
+// acquired, because these are asked if the cache is already resolved. We don't
+// want to float loads above this check.
+// See also comments in ConstantPoolCacheEntry::bytecode_1(),
+// ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1();
+
+// Call into the VM if call site is not yet resolved
+//
+// Input regs:
+// - None, all passed regs are outputs.
+//
+// Returns:
+// - Rcache: The const pool cache entry that contains the resolved result.
+// - Rresult: Either noreg or output for f1/f2.
+//
+// Kills:
+// - Rscratch
+void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) {
+
+ __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
+ Label Lresolved, Ldone;
+
+ assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
+ // We are resolved if the indices offset contains the current bytecode.
+ // Big Endian:
+ __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache);
+ // Acquire by cmp-br-isync (see below).
+ __ cmpdi(CCR0, Rscratch, (int)bytecode());
+ __ beq(CCR0, Lresolved);
+
+ address entry = NULL;
+ switch (bytecode()) {
+ case Bytecodes::_getstatic : // fall through
+ case Bytecodes::_putstatic : // fall through
+ case Bytecodes::_getfield : // fall through
+ case Bytecodes::_putfield : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
+ case Bytecodes::_invokevirtual : // fall through
+ case Bytecodes::_invokespecial : // fall through
+ case Bytecodes::_invokestatic : // fall through
+ case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
+ case Bytecodes::_invokehandle : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
+ case Bytecodes::_invokedynamic : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
+ default : ShouldNotReachHere(); break;
+ }
+ __ li(R4_ARG2, (int)bytecode());
+ __ call_VM(noreg, entry, R4_ARG2, true);
+
+ // Update registers with resolved info.
+ __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
+ __ b(Ldone);
+
+ __ bind(Lresolved);
+ __ isync(); // Order load wrt. succeeding loads.
+ __ bind(Ldone);
+}
+
+// Load the constant pool cache entry at field accesses into registers.
+// The Rcache and Rindex registers must be set before call.
+// Input:
+// - Rcache, Rindex
+// Output:
+// - Robj, Roffset, Rflags
+void TemplateTable::load_field_cp_cache_entry(Register Robj,
+ Register Rcache,
+ Register Rindex /* unused on PPC64 */,
+ Register Roffset,
+ Register Rflags,
+ bool is_static = false) {
+ assert_different_registers(Rcache, Rflags, Roffset);
+ // assert(Rindex == noreg, "parameter not used on PPC64");
+
+ ByteSize cp_base_offset = ConstantPoolCache::base_offset();
+ __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache);
+ __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache);
+ if (is_static) {
+ __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache);
+ __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj);
+ // Acquire not needed here. Following access has an address dependency on this value.
+ }
+}
+
+// Load the constant pool cache entry at invokes into registers.
+// Resolve if necessary.
+
+// Input Registers:
+// - None, bcp is used, though
+//
+// Return registers:
+// - Rmethod (f1 field or f2 if invokevirtual)
+// - Ritable_index (f2 field)
+// - Rflags (flags field)
+//
+// Kills:
+// - R21
+//
+void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
+ Register Rmethod,
+ Register Ritable_index,
+ Register Rflags,
+ bool is_invokevirtual,
+ bool is_invokevfinal,
+ bool is_invokedynamic) {
+
+ ByteSize cp_base_offset = ConstantPoolCache::base_offset();
+ // Determine constant pool cache field offsets.
+ assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
+ const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset()));
+ const int flags_offset = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset());
+ // Access constant pool cache fields.
+ const int index_offset = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset());
+
+ Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP.
+
+ if (is_invokevfinal) {
+ assert(Ritable_index == noreg, "register not used");
+ // Already resolved.
+ __ get_cache_and_index_at_bcp(Rcache, 1);
+ } else {
+ resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2));
+ }
+
+ __ ld(Rmethod, method_offset, Rcache);
+ __ ld(Rflags, flags_offset, Rcache);
+
+ if (Ritable_index != noreg) {
+ __ ld(Ritable_index, index_offset, Rcache);
+ }
+}
+
+// ============================================================================
+// Field access
+
+// Volatile variables demand their effects be made known to all CPU's
+// in order. Store buffers on most chips allow reads & writes to
+// reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
+// without some kind of memory barrier (i.e., it's not sufficient that
+// the interpreter does not reorder volatile references, the hardware
+// also must not reorder them).
+//
+// According to the new Java Memory Model (JMM):
+// (1) All volatiles are serialized wrt to each other. ALSO reads &
+// writes act as aquire & release, so:
+// (2) A read cannot let unrelated NON-volatile memory refs that
+// happen after the read float up to before the read. It's OK for
+// non-volatile memory refs that happen before the volatile read to
+// float down below it.
+// (3) Similar a volatile write cannot let unrelated NON-volatile
+// memory refs that happen BEFORE the write float down to after the
+// write. It's OK for non-volatile memory refs that happen after the
+// volatile write to float up before it.
+//
+// We only put in barriers around volatile refs (they are expensive),
+// not _between_ memory refs (that would require us to track the
+// flavor of the previous memory refs). Requirements (2) and (3)
+// require some barriers before volatile stores and after volatile
+// loads. These nearly cover requirement (1) but miss the
+// volatile-store-volatile-load case. This final case is placed after
+// volatile-stores although it could just as well go before
+// volatile-loads.
+
+// The registers cache and index expected to be set before call.
+// Correct values of the cache and index registers are preserved.
+// Kills:
+// Rcache (if has_tos)
+// Rscratch
+void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) {
+
+ assert_different_registers(Rcache, Rscratch);
+
+ if (JvmtiExport::can_post_field_access()) {
+ ByteSize cp_base_offset = ConstantPoolCache::base_offset();
+ Label Lno_field_access_post;
+
+ // Check if post field access in enabled.
+ int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true);
+ __ lwz(Rscratch, offs, Rscratch);
+
+ __ cmpwi(CCR0, Rscratch, 0);
+ __ beq(CCR0, Lno_field_access_post);
+
+ // Post access enabled - do it!
+ __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
+ if (is_static) {
+ __ li(R17_tos, 0);
+ } else {
+ if (has_tos) {
+ // The fast bytecode versions have obj ptr in register.
+ // Thus, save object pointer before call_VM() clobbers it
+ // put object on tos where GC wants it.
+ __ push_ptr(R17_tos);
+ } else {
+ // Load top of stack (do not pop the value off the stack).
+ __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp);
+ }
+ __ verify_oop(R17_tos);
+ }
+ // tos: object pointer or NULL if static
+ // cache: cache entry pointer
+ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache);
+ if (!is_static && has_tos) {
+ // Restore object pointer.
+ __ pop_ptr(R17_tos);
+ __ verify_oop(R17_tos);
+ } else {
+ // Cache is still needed to get class or obj.
+ __ get_cache_and_index_at_bcp(Rcache, 1);
+ }
+
+ __ align(32, 12);
+ __ bind(Lno_field_access_post);
+ }
+}
+
+// kills R11_scratch1
+void TemplateTable::pop_and_check_object(Register Roop) {
+ Register Rtmp = R11_scratch1;
+
+ assert_different_registers(Rtmp, Roop);
+ __ pop_ptr(Roop);
+ // For field access must check obj.
+ __ null_check_throw(Roop, -1, Rtmp);
+ __ verify_oop(Roop);
+}
+
+// PPC64: implement volatile loads as fence-store-acquire.
+void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
+ transition(vtos, vtos);
+
+ Label Lacquire, Lisync;
+
+ const Register Rcache = R3_ARG1,
+ Rclass_or_obj = R22_tmp2,
+ Roffset = R23_tmp3,
+ Rflags = R31,
+ Rbtable = R5_ARG3,
+ Rbc = R6_ARG4,
+ Rscratch = R12_scratch2;
+
+ static address field_branch_table[number_of_states],
+ static_branch_table[number_of_states];
+
+ address* branch_table = is_static ? static_branch_table : field_branch_table;
+
+ // Get field offset.
+ resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
+
+ // JVMTI support
+ jvmti_post_field_access(Rcache, Rscratch, is_static, false);
+
+ // Load after possible GC.
+ load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
+
+ // Load pointer to branch table.
+ __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
+
+ // Get volatile flag.
+ __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
+ // Note: sync is needed before volatile load on PPC64.
+
+ // Check field type.
+ __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
+
+#ifdef ASSERT
+ Label LFlagInvalid;
+ __ cmpldi(CCR0, Rflags, number_of_states);
+ __ bge(CCR0, LFlagInvalid);
+#endif
+
+ // Load from branch table and dispatch (volatile case: one instruction ahead).
+ __ sldi(Rflags, Rflags, LogBytesPerWord);
+ __ cmpwi(CCR6, Rscratch, 1); // Volatile?
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0.
+ }
+ __ ldx(Rbtable, Rbtable, Rflags);
+
+ // Get the obj from stack.
+ if (!is_static) {
+ pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
+ } else {
+ __ verify_oop(Rclass_or_obj);
+ }
+
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
+ }
+ __ mtctr(Rbtable);
+ __ bctr();
+
+#ifdef ASSERT
+ __ bind(LFlagInvalid);
+ __ stop("got invalid flag", 0x654);
+
+ // __ bind(Lvtos);
+ address pc_before_fence = __ pc();
+ __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
+ assert(branch_table[vtos] == 0, "can't compute twice");
+ branch_table[vtos] = __ pc(); // non-volatile_entry point
+ __ stop("vtos unexpected", 0x655);
+#endif
+
+ __ align(32, 28, 28); // Align load.
+ // __ bind(Ldtos);
+ __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[dtos] == 0, "can't compute twice");
+ branch_table[dtos] = __ pc(); // non-volatile_entry point
+ __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
+ __ push(dtos);
+ if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch);
+ {
+ Label acquire_double;
+ __ beq(CCR6, acquire_double); // Volatile?
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ bind(acquire_double);
+ __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
+ __ beq_predict_taken(CCR0, Lisync);
+ __ b(Lisync); // In case of NAN.
+ }
+
+ __ align(32, 28, 28); // Align load.
+ // __ bind(Lftos);
+ __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[ftos] == 0, "can't compute twice");
+ branch_table[ftos] = __ pc(); // non-volatile_entry point
+ __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
+ __ push(ftos);
+ if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); }
+ {
+ Label acquire_float;
+ __ beq(CCR6, acquire_float); // Volatile?
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ bind(acquire_float);
+ __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
+ __ beq_predict_taken(CCR0, Lisync);
+ __ b(Lisync); // In case of NAN.
+ }
+
+ __ align(32, 28, 28); // Align load.
+ // __ bind(Litos);
+ __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[itos] == 0, "can't compute twice");
+ branch_table[itos] = __ pc(); // non-volatile_entry point
+ __ lwax(R17_tos, Rclass_or_obj, Roffset);
+ __ push(itos);
+ if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch);
+ __ beq(CCR6, Lacquire); // Volatile?
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align load.
+ // __ bind(Lltos);
+ __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[ltos] == 0, "can't compute twice");
+ branch_table[ltos] = __ pc(); // non-volatile_entry point
+ __ ldx(R17_tos, Rclass_or_obj, Roffset);
+ __ push(ltos);
+ if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch);
+ __ beq(CCR6, Lacquire); // Volatile?
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align load.
+ // __ bind(Lbtos);
+ __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[btos] == 0, "can't compute twice");
+ branch_table[btos] = __ pc(); // non-volatile_entry point
+ __ lbzx(R17_tos, Rclass_or_obj, Roffset);
+ __ extsb(R17_tos, R17_tos);
+ __ push(btos);
+ if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
+ __ beq(CCR6, Lacquire); // Volatile?
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align load.
+ // __ bind(Lctos);
+ __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[ctos] == 0, "can't compute twice");
+ branch_table[ctos] = __ pc(); // non-volatile_entry point
+ __ lhzx(R17_tos, Rclass_or_obj, Roffset);
+ __ push(ctos);
+ if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch);
+ __ beq(CCR6, Lacquire); // Volatile?
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align load.
+ // __ bind(Lstos);
+ __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[stos] == 0, "can't compute twice");
+ branch_table[stos] = __ pc(); // non-volatile_entry point
+ __ lhax(R17_tos, Rclass_or_obj, Roffset);
+ __ push(stos);
+ if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch);
+ __ beq(CCR6, Lacquire); // Volatile?
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align load.
+ // __ bind(Latos);
+ __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[atos] == 0, "can't compute twice");
+ branch_table[atos] = __ pc(); // non-volatile_entry point
+ __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
+ __ verify_oop(R17_tos);
+ __ push(atos);
+ //__ dcbt(R17_tos); // prefetch
+ if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch);
+ __ beq(CCR6, Lacquire); // Volatile?
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 12);
+ __ bind(Lacquire);
+ __ twi_0(R17_tos);
+ __ bind(Lisync);
+ __ isync(); // acquire
+
+#ifdef ASSERT
+ for (int i = 0; i<number_of_states; ++i) {
+ assert(branch_table[i], "get initialization");
+ //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
+ // is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
+ }
+#endif
+}
+
+void TemplateTable::getfield(int byte_no) {
+ getfield_or_static(byte_no, false);
+}
+
+void TemplateTable::getstatic(int byte_no) {
+ getfield_or_static(byte_no, true);
+}
+
+// The registers cache and index expected to be set before call.
+// The function may destroy various registers, just not the cache and index registers.
+void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) {
+
+ assert_different_registers(Rcache, Rscratch, R6_ARG4);
+
+ if (JvmtiExport::can_post_field_modification()) {
+ Label Lno_field_mod_post;
+
+ // Check if post field access in enabled.
+ int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true);
+ __ lwz(Rscratch, offs, Rscratch);
+
+ __ cmpwi(CCR0, Rscratch, 0);
+ __ beq(CCR0, Lno_field_mod_post);
+
+ // Do the post
+ ByteSize cp_base_offset = ConstantPoolCache::base_offset();
+ const Register Robj = Rscratch;
+
+ __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
+ if (is_static) {
+ // Life is simple. Null out the object pointer.
+ __ li(Robj, 0);
+ } else {
+ // In case of the fast versions, value lives in registers => put it back on tos.
+ int offs = Interpreter::expr_offset_in_bytes(0);
+ Register base = R15_esp;
+ switch(bytecode()) {
+ case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break;
+ case Bytecodes::_fast_iputfield: // Fall through
+ case Bytecodes::_fast_bputfield: // Fall through
+ case Bytecodes::_fast_cputfield: // Fall through
+ case Bytecodes::_fast_sputfield: __ push_i(); offs+= Interpreter::stackElementSize; break;
+ case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break;
+ case Bytecodes::_fast_fputfield: __ push_f(); offs+= Interpreter::stackElementSize; break;
+ case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break;
+ default: {
+ offs = 0;
+ base = Robj;
+ const Register Rflags = Robj;
+ Label is_one_slot;
+ // Life is harder. The stack holds the value on top, followed by the
+ // object. We don't know the size of the value, though; it could be
+ // one or two words depending on its type. As a result, we must find
+ // the type to determine where the object is.
+ __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian
+ __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
+
+ __ cmpwi(CCR0, Rflags, ltos);
+ __ cmpwi(CCR1, Rflags, dtos);
+ __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1));
+ __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
+ __ beq(CCR0, is_one_slot);
+ __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2));
+ __ bind(is_one_slot);
+ break;
+ }
+ }
+ __ ld(Robj, offs, base);
+ __ verify_oop(Robj);
+ }
+
+ __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0));
+ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4);
+ __ get_cache_and_index_at_bcp(Rcache, 1);
+
+ // In case of the fast versions, value lives in registers => put it back on tos.
+ switch(bytecode()) {
+ case Bytecodes::_fast_aputfield: __ pop_ptr(); break;
+ case Bytecodes::_fast_iputfield: // Fall through
+ case Bytecodes::_fast_bputfield: // Fall through
+ case Bytecodes::_fast_cputfield: // Fall through
+ case Bytecodes::_fast_sputfield: __ pop_i(); break;
+ case Bytecodes::_fast_lputfield: __ pop_l(); break;
+ case Bytecodes::_fast_fputfield: __ pop_f(); break;
+ case Bytecodes::_fast_dputfield: __ pop_d(); break;
+ default: break; // Nothin' to do.
+ }
+
+ __ align(32, 12);
+ __ bind(Lno_field_mod_post);
+ }
+}
+
+// PPC64: implement volatile stores as release-store (return bytecode contains an additional release).
+void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
+ Label Lvolatile;
+
+ const Register Rcache = R5_ARG3, // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
+ Rclass_or_obj = R31, // Needs to survive C call.
+ Roffset = R22_tmp2, // Needs to survive C call.
+ Rflags = R3_ARG1,
+ Rbtable = R4_ARG2,
+ Rscratch = R11_scratch1,
+ Rscratch2 = R12_scratch2,
+ Rscratch3 = R6_ARG4,
+ Rbc = Rscratch3;
+ const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
+
+ static address field_branch_table[number_of_states],
+ static_branch_table[number_of_states];
+
+ address* branch_table = is_static ? static_branch_table : field_branch_table;
+
+ // Stack (grows up):
+ // value
+ // obj
+
+ // Load the field offset.
+ resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
+ jvmti_post_field_mod(Rcache, Rscratch, is_static);
+ load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
+
+ // Load pointer to branch table.
+ __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
+
+ // Get volatile flag.
+ __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
+
+ // Check the field type.
+ __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
+
+#ifdef ASSERT
+ Label LFlagInvalid;
+ __ cmpldi(CCR0, Rflags, number_of_states);
+ __ bge(CCR0, LFlagInvalid);
+#endif
+
+ // Load from branch table and dispatch (volatile case: one instruction ahead).
+ __ sldi(Rflags, Rflags, LogBytesPerWord);
+ if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile?
+ __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0.
+ __ ldx(Rbtable, Rbtable, Rflags);
+
+ __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
+ __ mtctr(Rbtable);
+ __ bctr();
+
+#ifdef ASSERT
+ __ bind(LFlagInvalid);
+ __ stop("got invalid flag", 0x656);
+
+ // __ bind(Lvtos);
+ address pc_before_release = __ pc();
+ __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
+ assert(branch_table[vtos] == 0, "can't compute twice");
+ branch_table[vtos] = __ pc(); // non-volatile_entry point
+ __ stop("vtos unexpected", 0x657);
+#endif
+
+ __ align(32, 28, 28); // Align pop.
+ // __ bind(Ldtos);
+ __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[dtos] == 0, "can't compute twice");
+ branch_table[dtos] = __ pc(); // non-volatile_entry point
+ __ pop(dtos);
+ if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
+ __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
+ if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); }
+ if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ __ beq(CR_is_vol, Lvolatile); // Volatile?
+ }
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align pop.
+ // __ bind(Lftos);
+ __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[ftos] == 0, "can't compute twice");
+ branch_table[ftos] = __ pc(); // non-volatile_entry point
+ __ pop(ftos);
+ if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
+ __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
+ if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); }
+ if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ __ beq(CR_is_vol, Lvolatile); // Volatile?
+ }
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align pop.
+ // __ bind(Litos);
+ __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[itos] == 0, "can't compute twice");
+ branch_table[itos] = __ pc(); // non-volatile_entry point
+ __ pop(itos);
+ if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
+ __ stwx(R17_tos, Rclass_or_obj, Roffset);
+ if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); }
+ if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ __ beq(CR_is_vol, Lvolatile); // Volatile?
+ }
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align pop.
+ // __ bind(Lltos);
+ __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[ltos] == 0, "can't compute twice");
+ branch_table[ltos] = __ pc(); // non-volatile_entry point
+ __ pop(ltos);
+ if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
+ __ stdx(R17_tos, Rclass_or_obj, Roffset);
+ if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); }
+ if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ __ beq(CR_is_vol, Lvolatile); // Volatile?
+ }
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align pop.
+ // __ bind(Lbtos);
+ __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[btos] == 0, "can't compute twice");
+ branch_table[btos] = __ pc(); // non-volatile_entry point
+ __ pop(btos);
+ if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
+ __ stbx(R17_tos, Rclass_or_obj, Roffset);
+ if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); }
+ if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ __ beq(CR_is_vol, Lvolatile); // Volatile?
+ }
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align pop.
+ // __ bind(Lctos);
+ __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[ctos] == 0, "can't compute twice");
+ branch_table[ctos] = __ pc(); // non-volatile_entry point
+ __ pop(ctos);
+ if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1..
+ __ sthx(R17_tos, Rclass_or_obj, Roffset);
+ if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); }
+ if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ __ beq(CR_is_vol, Lvolatile); // Volatile?
+ }
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align pop.
+ // __ bind(Lstos);
+ __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[stos] == 0, "can't compute twice");
+ branch_table[stos] = __ pc(); // non-volatile_entry point
+ __ pop(stos);
+ if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
+ __ sthx(R17_tos, Rclass_or_obj, Roffset);
+ if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); }
+ if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ __ beq(CR_is_vol, Lvolatile); // Volatile?
+ }
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 28, 28); // Align pop.
+ // __ bind(Latos);
+ __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
+ assert(branch_table[atos] == 0, "can't compute twice");
+ branch_table[atos] = __ pc(); // non-volatile_entry point
+ __ pop(atos);
+ if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
+ do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
+ if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); }
+ if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ __ beq(CR_is_vol, Lvolatile); // Volatile?
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 12);
+ __ bind(Lvolatile);
+ __ fence();
+ }
+ // fallthru: __ b(Lexit);
+
+#ifdef ASSERT
+ for (int i = 0; i<number_of_states; ++i) {
+ assert(branch_table[i], "put initialization");
+ //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
+ // is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
+ }
+#endif
+}
+
+void TemplateTable::putfield(int byte_no) {
+ putfield_or_static(byte_no, false);
+}
+
+void TemplateTable::putstatic(int byte_no) {
+ putfield_or_static(byte_no, true);
+}
+
+// See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job.
+void TemplateTable::jvmti_post_fast_field_mod() {
+ __ should_not_reach_here();
+}
+
+void TemplateTable::fast_storefield(TosState state) {
+ transition(state, vtos);
+
+ const Register Rcache = R5_ARG3, // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
+ Rclass_or_obj = R31, // Needs to survive C call.
+ Roffset = R22_tmp2, // Needs to survive C call.
+ Rflags = R3_ARG1,
+ Rscratch = R11_scratch1,
+ Rscratch2 = R12_scratch2,
+ Rscratch3 = R4_ARG2;
+ const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
+
+ // Constant pool already resolved => Load flags and offset of field.
+ __ get_cache_and_index_at_bcp(Rcache, 1);
+ jvmti_post_field_mod(Rcache, Rscratch, false /* not static */);
+ load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
+
+ // Get the obj and the final store addr.
+ pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
+
+ // Get volatile flag.
+ __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
+ if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); }
+ {
+ Label LnotVolatile;
+ __ beq(CCR0, LnotVolatile);
+ __ release();
+ __ align(32, 12);
+ __ bind(LnotVolatile);
+ }
+
+ // Do the store and fencing.
+ switch(bytecode()) {
+ case Bytecodes::_fast_aputfield:
+ // Store into the field.
+ do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
+ break;
+
+ case Bytecodes::_fast_iputfield:
+ __ stwx(R17_tos, Rclass_or_obj, Roffset);
+ break;
+
+ case Bytecodes::_fast_lputfield:
+ __ stdx(R17_tos, Rclass_or_obj, Roffset);
+ break;
+
+ case Bytecodes::_fast_bputfield:
+ __ stbx(R17_tos, Rclass_or_obj, Roffset);
+ break;
+
+ case Bytecodes::_fast_cputfield:
+ case Bytecodes::_fast_sputfield:
+ __ sthx(R17_tos, Rclass_or_obj, Roffset);
+ break;
+
+ case Bytecodes::_fast_fputfield:
+ __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
+ break;
+
+ case Bytecodes::_fast_dputfield:
+ __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
+ break;
+
+ default: ShouldNotReachHere();
+ }
+
+ if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
+ Label LVolatile;
+ __ beq(CR_is_vol, LVolatile);
+ __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
+
+ __ align(32, 12);
+ __ bind(LVolatile);
+ __ fence();
+ }
+}
+
+void TemplateTable::fast_accessfield(TosState state) {
+ transition(atos, state);
+
+ Label LisVolatile;
+ ByteSize cp_base_offset = ConstantPoolCache::base_offset();
+
+ const Register Rcache = R3_ARG1,
+ Rclass_or_obj = R17_tos,
+ Roffset = R22_tmp2,
+ Rflags = R23_tmp3,
+ Rscratch = R12_scratch2;
+
+ // Constant pool already resolved. Get the field offset.
+ __ get_cache_and_index_at_bcp(Rcache, 1);
+ load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
+
+ // JVMTI support
+ jvmti_post_field_access(Rcache, Rscratch, false, true);
+
+ // Get the load address.
+ __ null_check_throw(Rclass_or_obj, -1, Rscratch);
+
+ // Get volatile flag.
+ __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
+ __ bne(CCR0, LisVolatile);
+
+ switch(bytecode()) {
+ case Bytecodes::_fast_agetfield:
+ {
+ __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
+ __ verify_oop(R17_tos);
+ __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
+
+ __ bind(LisVolatile);
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
+ __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
+ __ verify_oop(R17_tos);
+ __ twi_0(R17_tos);
+ __ isync();
+ break;
+ }
+ case Bytecodes::_fast_igetfield:
+ {
+ __ lwax(R17_tos, Rclass_or_obj, Roffset);
+ __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
+
+ __ bind(LisVolatile);
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
+ __ lwax(R17_tos, Rclass_or_obj, Roffset);
+ __ twi_0(R17_tos);
+ __ isync();
+ break;
+ }
+ case Bytecodes::_fast_lgetfield:
+ {
+ __ ldx(R17_tos, Rclass_or_obj, Roffset);
+ __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
+
+ __ bind(LisVolatile);
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
+ __ ldx(R17_tos, Rclass_or_obj, Roffset);
+ __ twi_0(R17_tos);
+ __ isync();
+ break;
+ }
+ case Bytecodes::_fast_bgetfield:
+ {
+ __ lbzx(R17_tos, Rclass_or_obj, Roffset);
+ __ extsb(R17_tos, R17_tos);
+ __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
+
+ __ bind(LisVolatile);
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
+ __ lbzx(R17_tos, Rclass_or_obj, Roffset);
+ __ twi_0(R17_tos);
+ __ extsb(R17_tos, R17_tos);
+ __ isync();
+ break;
+ }
+ case Bytecodes::_fast_cgetfield:
+ {
+ __ lhzx(R17_tos, Rclass_or_obj, Roffset);
+ __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
+
+ __ bind(LisVolatile);
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
+ __ lhzx(R17_tos, Rclass_or_obj, Roffset);
+ __ twi_0(R17_tos);
+ __ isync();
+ break;
+ }
+ case Bytecodes::_fast_sgetfield:
+ {
+ __ lhax(R17_tos, Rclass_or_obj, Roffset);
+ __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
+
+ __ bind(LisVolatile);
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
+ __ lhax(R17_tos, Rclass_or_obj, Roffset);
+ __ twi_0(R17_tos);
+ __ isync();
+ break;
+ }
+ case Bytecodes::_fast_fgetfield:
+ {
+ __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
+ __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
+
+ __ bind(LisVolatile);
+ Label Ldummy;
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
+ __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
+ __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
+ __ bne_predict_not_taken(CCR0, Ldummy);
+ __ bind(Ldummy);
+ __ isync();
+ break;
+ }
+ case Bytecodes::_fast_dgetfield:
+ {
+ __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
+ __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
+
+ __ bind(LisVolatile);
+ Label Ldummy;
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
+ __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
+ __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
+ __ bne_predict_not_taken(CCR0, Ldummy);
+ __ bind(Ldummy);
+ __ isync();
+ break;
+ }
+ default: ShouldNotReachHere();
+ }
+}
+
+void TemplateTable::fast_xaccess(TosState state) {
+ transition(vtos, state);
+
+ Label LisVolatile;
+ ByteSize cp_base_offset = ConstantPoolCache::base_offset();
+ const Register Rcache = R3_ARG1,
+ Rclass_or_obj = R17_tos,
+ Roffset = R22_tmp2,
+ Rflags = R23_tmp3,
+ Rscratch = R12_scratch2;
+
+ __ ld(Rclass_or_obj, 0, R18_locals);
+
+ // Constant pool already resolved. Get the field offset.
+ __ get_cache_and_index_at_bcp(Rcache, 2);
+ load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
+
+ // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches.
+
+ // Needed to report exception at the correct bcp.
+ __ addi(R14_bcp, R14_bcp, 1);
+
+ // Get the load address.
+ __ null_check_throw(Rclass_or_obj, -1, Rscratch);
+
+ // Get volatile flag.
+ __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
+ __ bne(CCR0, LisVolatile);
+
+ switch(state) {
+ case atos:
+ {
+ __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
+ __ verify_oop(R17_tos);
+ __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
+
+ __ bind(LisVolatile);
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
+ __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
+ __ verify_oop(R17_tos);
+ __ twi_0(R17_tos);
+ __ isync();
+ break;
+ }
+ case itos:
+ {
+ __ lwax(R17_tos, Rclass_or_obj, Roffset);
+ __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
+
+ __ bind(LisVolatile);
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
+ __ lwax(R17_tos, Rclass_or_obj, Roffset);
+ __ twi_0(R17_tos);
+ __ isync();
+ break;
+ }
+ case ftos:
+ {
+ __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
+ __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
+
+ __ bind(LisVolatile);
+ Label Ldummy;
+ if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
+ __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
+ __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
+ __ bne_predict_not_taken(CCR0, Ldummy);
+ __ bind(Ldummy);
+ __ isync();
+ break;
+ }
+ default: ShouldNotReachHere();
+ }
+ __ addi(R14_bcp, R14_bcp, -1);
+}
+
+// ============================================================================
+// Calls
+
+// Common code for invoke
+//
+// Input:
+// - byte_no
+//
+// Output:
+// - Rmethod: The method to invoke next.
+// - Rret_addr: The return address to return to.
+// - Rindex: MethodType (invokehandle) or CallSite obj (invokedynamic)
+// - Rrecv: Cache for "this" pointer, might be noreg if static call.
+// - Rflags: Method flags from const pool cache.
+//
+// Kills:
+// - Rscratch1
+//
+void TemplateTable::prepare_invoke(int byte_no,
+ Register Rmethod, // linked method (or i-klass)
+ Register Rret_addr,// return address
+ Register Rindex, // itable index, MethodType, etc.
+ Register Rrecv, // If caller wants to see it.
+ Register Rflags, // If caller wants to test it.
+ Register Rscratch
+ ) {
+ // Determine flags.
+ const Bytecodes::Code code = bytecode();
+ const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
+ const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
+ const bool is_invokehandle = code == Bytecodes::_invokehandle;
+ const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
+ const bool is_invokespecial = code == Bytecodes::_invokespecial;
+ const bool load_receiver = (Rrecv != noreg);
+ assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
+
+ assert_different_registers(Rmethod, Rindex, Rflags, Rscratch);
+ assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch);
+ assert_different_registers(Rret_addr, Rscratch);
+
+ load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic);
+
+ // Saving of SP done in call_from_interpreter.
+
+ // Maybe push "appendix" to arguments.
+ if (is_invokedynamic || is_invokehandle) {
+ Label Ldone;
+ __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63);
+ __ beq(CCR0, Ldone);
+ // Push "appendix" (MethodType, CallSite, etc.).
+ // This must be done before we get the receiver,
+ // since the parameter_size includes it.
+ __ load_resolved_reference_at_index(Rscratch, Rindex);
+ __ verify_oop(Rscratch);
+ __ push_ptr(Rscratch);
+ __ bind(Ldone);
+ }
+
+ // Load receiver if needed (after appendix is pushed so parameter size is correct).
+ if (load_receiver) {
+ const Register Rparam_count = Rscratch;
+ __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask);
+ __ load_receiver(Rparam_count, Rrecv);
+ __ verify_oop(Rrecv);
+ }
+
+ // Get return address.
+ {
+ Register Rtable_addr = Rscratch;
+ Register Rret_type = Rret_addr;
+ address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
+
+ // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
+ __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
+ __ load_dispatch_table(Rtable_addr, (address*)table_addr);
+ __ sldi(Rret_type, Rret_type, LogBytesPerWord);
+ // Get return address.
+ __ ldx(Rret_addr, Rtable_addr, Rret_type);
+ }
+}
+
+// Helper for virtual calls. Load target out of vtable and jump off!
+// Kills all passed registers.
+void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) {
+
+ assert_different_registers(Rrecv_klass, Rtemp, Rret);
+ const Register Rtarget_method = Rindex;
+
+ // Get target method & entry point.
+ const int base = InstanceKlass::vtable_start_offset() * wordSize;
+ // Calc vtable addr scale the vtable index by 8.
+ __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize));
+ // Load target.
+ __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes());
+ __ ldx(Rtarget_method, Rindex, Rrecv_klass);
+ __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */);
+}
+
+// Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time.
+void TemplateTable::invokevirtual(int byte_no) {
+ transition(vtos, vtos);
+
+ Register Rtable_addr = R11_scratch1,
+ Rret_type = R12_scratch2,
+ Rret_addr = R5_ARG3,
+ Rflags = R22_tmp2, // Should survive C call.
+ Rrecv = R3_ARG1,
+ Rrecv_klass = Rrecv,
+ Rvtableindex_or_method = R31, // Should survive C call.
+ Rnum_params = R4_ARG2,
+ Rnew_bc = R6_ARG4;
+
+ Label LnotFinal;
+
+ load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false);
+
+ __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
+ __ bfalse(CCR0, LnotFinal);
+
+ patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2);
+ invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2);
+
+ __ align(32, 12);
+ __ bind(LnotFinal);
+ // Load "this" pointer (receiver).
+ __ rldicl(Rnum_params, Rflags, 64, 48);
+ __ load_receiver(Rnum_params, Rrecv);
+ __ verify_oop(Rrecv);
+
+ // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
+ __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
+ __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
+ __ sldi(Rret_type, Rret_type, LogBytesPerWord);
+ __ ldx(Rret_addr, Rret_type, Rtable_addr);
+ __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1);
+ __ load_klass(Rrecv_klass, Rrecv);
+ __ verify_klass_ptr(Rrecv_klass);
+ __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false);
+
+ generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1);
+}
+
+void TemplateTable::fast_invokevfinal(int byte_no) {
+ transition(vtos, vtos);
+
+ assert(byte_no == f2_byte, "use this argument");
+ Register Rflags = R22_tmp2,
+ Rmethod = R31;
+ load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false);
+ invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2);
+}
+
+void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) {
+
+ assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2);
+
+ // Load receiver from stack slot.
+ Register Rrecv = Rscratch2;
+ Register Rnum_params = Rrecv;
+
+ __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod);
+ __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params);
+
+ // Get return address.
+ Register Rtable_addr = Rscratch1,
+ Rret_addr = Rflags,
+ Rret_type = Rret_addr;
+ // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
+ __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
+ __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
+ __ sldi(Rret_type, Rret_type, LogBytesPerWord);
+ __ ldx(Rret_addr, Rret_type, Rtable_addr);
+
+ // Load receiver and receiver NULL check.
+ __ load_receiver(Rnum_params, Rrecv);
+ __ null_check_throw(Rrecv, -1, Rscratch1);
+
+ __ profile_final_call(Rrecv, Rscratch1);
+
+ // Do the call.
+ __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2);
+}
+
+void TemplateTable::invokespecial(int byte_no) {
+ assert(byte_no == f1_byte, "use this argument");
+ transition(vtos, vtos);
+
+ Register Rtable_addr = R3_ARG1,
+ Rret_addr = R4_ARG2,
+ Rflags = R5_ARG3,
+ Rreceiver = R6_ARG4,
+ Rmethod = R31;
+
+ prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1);
+
+ // Receiver NULL check.
+ __ null_check_throw(Rreceiver, -1, R11_scratch1);
+
+ __ profile_call(R11_scratch1, R12_scratch2);
+ __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2);
+}
+
+void TemplateTable::invokestatic(int byte_no) {
+ assert(byte_no == f1_byte, "use this argument");
+ transition(vtos, vtos);
+
+ Register Rtable_addr = R3_ARG1,
+ Rret_addr = R4_ARG2,
+ Rflags = R5_ARG3;
+
+ prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1);
+
+ __ profile_call(R11_scratch1, R12_scratch2);
+ __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2);
+}
+
+void TemplateTable::invokeinterface_object_method(Register Rrecv_klass,
+ Register Rret,
+ Register Rflags,
+ Register Rindex,
+ Register Rtemp1,
+ Register Rtemp2) {
+
+ assert_different_registers(Rindex, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2);
+ Label LnotFinal;
+
+ // Check for vfinal.
+ __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
+ __ bfalse(CCR0, LnotFinal);
+
+ Register Rscratch = Rflags; // Rflags is dead now.
+
+ // Final call case.
+ __ profile_final_call(Rtemp1, Rscratch);
+ // Do the final call - the index (f2) contains the method.
+ __ call_from_interpreter(Rindex, Rret, Rscratch, Rrecv_klass /* scratch */);
+
+ // Non-final callc case.
+ __ bind(LnotFinal);
+ __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false);
+ generate_vtable_call(Rrecv_klass, Rindex, Rret, Rscratch);
+}
+
+void TemplateTable::invokeinterface(int byte_no) {
+ assert(byte_no == f1_byte, "use this argument");
+ transition(vtos, vtos);
+
+ const Register Rscratch1 = R11_scratch1,
+ Rscratch2 = R12_scratch2,
+ Rscratch3 = R9_ARG7,
+ Rscratch4 = R10_ARG8,
+ Rtable_addr = Rscratch2,
+ Rinterface_klass = R5_ARG3,
+ Rret_type = R8_ARG6,
+ Rret_addr = Rret_type,
+ Rindex = R6_ARG4,
+ Rreceiver = R4_ARG2,
+ Rrecv_klass = Rreceiver,
+ Rflags = R7_ARG5;
+
+ prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rindex, Rreceiver, Rflags, Rscratch1);
+
+ // Get receiver klass.
+ __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch3);
+ __ load_klass(Rrecv_klass, Rreceiver);
+
+ // Check corner case object method.
+ Label LobjectMethod;
+
+ __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift);
+ __ btrue(CCR0, LobjectMethod);
+
+ // Fallthrough: The normal invokeinterface case.
+ __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false);
+
+ // Find entry point to call.
+ Label Lthrow_icc, Lthrow_ame;
+ // Result will be returned in Rindex.
+ __ mr(Rscratch4, Rrecv_klass);
+ __ mr(Rscratch3, Rindex);
+ __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rindex, Rscratch1, Rscratch2, Lthrow_icc);
+
+ __ cmpdi(CCR0, Rindex, 0);
+ __ beq(CCR0, Lthrow_ame);
+ // Found entry. Jump off!
+ __ call_from_interpreter(Rindex, Rret_addr, Rscratch1, Rscratch2);
+
+ // Vtable entry was NULL => Throw abstract method error.
+ __ bind(Lthrow_ame);
+ __ mr(Rrecv_klass, Rscratch4);
+ __ mr(Rindex, Rscratch3);
+ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
+
+ // Interface was not found => Throw incompatible class change error.
+ __ bind(Lthrow_icc);
+ __ mr(Rrecv_klass, Rscratch4);
+ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
+
+ __ should_not_reach_here();
+
+ // Special case of invokeinterface called for virtual method of
+ // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details:
+ // The invokeinterface was rewritten to a invokevirtual, hence we have
+ // to handle this corner case. This code isn't produced by javac, but could
+ // be produced by another compliant java compiler.
+ __ bind(LobjectMethod);
+ invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rindex, Rscratch1, Rscratch2);
+}
+
+void TemplateTable::invokedynamic(int byte_no) {
+ transition(vtos, vtos);
+
+ const Register Rret_addr = R3_ARG1,
+ Rflags = R4_ARG2,
+ Rmethod = R22_tmp2,
+ Rscratch1 = R11_scratch1,
+ Rscratch2 = R12_scratch2;
+
+ if (!EnableInvokeDynamic) {
+ // We should not encounter this bytecode if !EnableInvokeDynamic.
+ // The verifier will stop it. However, if we get past the verifier,
+ // this will stop the thread in a reasonable way, without crashing the JVM.
+ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
+ // The call_VM checks for exception, so we should never return here.
+ __ should_not_reach_here();
+ return;
+ }
+
+ prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2);
+
+ // Profile this call.
+ __ profile_call(Rscratch1, Rscratch2);
+
+ // Off we go. With the new method handles, we don't jump to a method handle
+ // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens
+ // to be the callsite object the bootstrap method returned. This is passed to a
+ // "link" method which does the dispatch (Most likely just grabs the MH stored
+ // inside the callsite and does an invokehandle).
+ __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
+}
+
+void TemplateTable::invokehandle(int byte_no) {
+ transition(vtos, vtos);
+
+ const Register Rret_addr = R3_ARG1,
+ Rflags = R4_ARG2,
+ Rrecv = R5_ARG3,
+ Rmethod = R22_tmp2,
+ Rscratch1 = R11_scratch1,
+ Rscratch2 = R12_scratch2;
+
+ if (!EnableInvokeDynamic) {
+ // Rewriter does not generate this bytecode.
+ __ should_not_reach_here();
+ return;
+ }
+
+ prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2);
+ __ verify_method_ptr(Rmethod);
+ __ null_check_throw(Rrecv, -1, Rscratch2);
+
+ __ profile_final_call(Rrecv, Rscratch1);
+
+ // Still no call from handle => We call the method handle interpreter here.
+ __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
+}
+
+// =============================================================================
+// Allocation
+
+// Puts allocated obj ref onto the expression stack.
+void TemplateTable::_new() {
+ transition(vtos, atos);
+
+ Label Lslow_case,
+ Ldone,
+ Linitialize_header,
+ Lallocate_shared,
+ Linitialize_object; // Including clearing the fields.
+
+ const Register RallocatedObject = R17_tos,
+ RinstanceKlass = R9_ARG7,
+ Rscratch = R11_scratch1,
+ Roffset = R8_ARG6,
+ Rinstance_size = Roffset,
+ Rcpool = R4_ARG2,
+ Rtags = R3_ARG1,
+ Rindex = R5_ARG3;
+
+ const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
+
+ // --------------------------------------------------------------------------
+ // Check if fast case is possible.
+
+ // Load pointers to const pool and const pool's tags array.
+ __ get_cpool_and_tags(Rcpool, Rtags);
+ // Load index of constant pool entry.
+ __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
+
+ if (UseTLAB) {
+ // Make sure the class we're about to instantiate has been resolved
+ // This is done before loading instanceKlass to be consistent with the order
+ // how Constant Pool is updated (see ConstantPoolCache::klass_at_put).
+ __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
+ __ lbzx(Rtags, Rindex, Rtags);
+
+ __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
+ __ bne(CCR0, Lslow_case);
+
+ // Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord).
+ __ sldi(Roffset, Rindex, LogBytesPerWord);
+ __ addi(Rscratch, Rcpool, sizeof(ConstantPool));
+ __ isync(); // Order load of instance Klass wrt. tags.
+ __ ldx(RinstanceKlass, Roffset, Rscratch);
+
+ // Make sure klass is fully initialized and get instance_size.
+ __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass);
+ __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass);
+
+ __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized);
+ // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class.
+ __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0?
+
+ __ crnand(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // slow path bit set or not fully initialized?
+ __ beq(CCR0, Lslow_case);
+
+ // --------------------------------------------------------------------------
+ // Fast case:
+ // Allocate the instance.
+ // 1) Try to allocate in the TLAB.
+ // 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden.
+ // 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.).
+
+ Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits.
+ Register RnewTopValue = R6_ARG4;
+ Register RendValue = R7_ARG5;
+
+ // Check if we can allocate in the TLAB.
+ __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
+ __ ld(RendValue, in_bytes(JavaThread::tlab_end_offset()), R16_thread);
+
+ __ add(RnewTopValue, Rinstance_size, RoldTopValue);
+
+ // If there is enough space, we do not CAS and do not clear.
+ __ cmpld(CCR0, RnewTopValue, RendValue);
+ __ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case);
+
+ __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
+
+ if (ZeroTLAB) {
+ // The fields have already been cleared.
+ __ b(Linitialize_header);
+ } else {
+ // Initialize both the header and fields.
+ __ b(Linitialize_object);
+ }
+
+ // Fall through: TLAB was too small.
+ if (allow_shared_alloc) {
+ Register RtlabWasteLimitValue = R10_ARG8;
+ Register RfreeValue = RnewTopValue;
+
+ __ bind(Lallocate_shared);
+ // Check if tlab should be discarded (refill_waste_limit >= free).
+ __ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
+ __ subf(RfreeValue, RoldTopValue, RendValue);
+ __ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords
+ __ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue);
+ __ bge(CCR0, Lslow_case);
+
+ // Increment waste limit to prevent getting stuck on this slow path.
+ __ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment());
+ __ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
+ }
+ // else: No allocation in the shared eden. // fallthru: __ b(Lslow_case);
+ }
+ // else: Always go the slow path.
+
+ // --------------------------------------------------------------------------
+ // slow case
+ __ bind(Lslow_case);
+ call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
+
+ if (UseTLAB) {
+ __ b(Ldone);
+ // --------------------------------------------------------------------------
+ // Init1: Zero out newly allocated memory.
+
+ if (!ZeroTLAB || allow_shared_alloc) {
+ // Clear object fields.
+ __ bind(Linitialize_object);
+
+ // Initialize remaining object fields.
+ Register Rbase = Rtags;
+ __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc));
+ __ addi(Rbase, RallocatedObject, sizeof(oopDesc));
+ __ srdi(Rinstance_size, Rinstance_size, 3);
+
+ // Clear out object skipping header. Takes also care of the zero length case.
+ __ clear_memory_doubleword(Rbase, Rinstance_size);
+ // fallthru: __ b(Linitialize_header);
+ }
+
+ // --------------------------------------------------------------------------
+ // Init2: Initialize the header: mark, klass
+ __ bind(Linitialize_header);
+
+ // Init mark.
+ if (UseBiasedLocking) {
+ __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass);
+ } else {
+ __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0);
+ }
+ __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject);
+
+ // Init klass.
+ __ store_klass_gap(RallocatedObject);
+ __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms)
+
+ // Check and trigger dtrace event.
+ {
+ SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes);
+ __ push(atos);
+ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc));
+ __ pop(atos);
+ }
+ }
+
+ // continue
+ __ bind(Ldone);
+
+ // Must prevent reordering of stores for object initialization with stores that publish the new object.
+ __ membar(Assembler::StoreStore);
+}
+
+void TemplateTable::newarray() {
+ transition(itos, atos);
+
+ __ lbz(R4, 1, R14_bcp);
+ __ extsw(R5, R17_tos);
+ call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */);
+
+ // Must prevent reordering of stores for object initialization with stores that publish the new object.
+ __ membar(Assembler::StoreStore);
+}
+
+void TemplateTable::anewarray() {
+ transition(itos, atos);
+
+ __ get_constant_pool(R4);
+ __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned);
+ __ extsw(R6, R17_tos); // size
+ call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */);
+
+ // Must prevent reordering of stores for object initialization with stores that publish the new object.
+ __ membar(Assembler::StoreStore);
+}
+
+// Allocate a multi dimensional array
+void TemplateTable::multianewarray() {
+ transition(vtos, atos);
+
+ Register Rptr = R31; // Needs to survive C call.
+
+ // Put ndims * wordSize into frame temp slot
+ __ lbz(Rptr, 3, R14_bcp);
+ __ sldi(Rptr, Rptr, Interpreter::logStackElementSize);
+ // Esp points past last_dim, so set to R4 to first_dim address.
+ __ add(R4, Rptr, R15_esp);
+ call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */);
+ // Pop all dimensions off the stack.
+ __ add(R15_esp, Rptr, R15_esp);
+
+ // Must prevent reordering of stores for object initialization with stores that publish the new object.
+ __ membar(Assembler::StoreStore);
+}
+
+void TemplateTable::arraylength() {
+ transition(atos, itos);
+
+ Label LnoException;
+ __ verify_oop(R17_tos);
+ __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1);
+ __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos);
+}
+
+// ============================================================================
+// Typechecks
+
+void TemplateTable::checkcast() {
+ transition(atos, atos);
+
+ Label Ldone, Lis_null, Lquicked, Lresolved;
+ Register Roffset = R5_ARG3,
+ RobjKlass = R4_ARG2,
+ RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect this register.
+ Rcpool = R11_scratch1,
+ Rtags = R12_scratch2;
+
+ // Null does not pass.
+ __ cmpdi(CCR0, R17_tos, 0);
+ __ beq(CCR0, Lis_null);
+
+ // Get constant pool tag to find out if the bytecode has already been "quickened".
+ __ get_cpool_and_tags(Rcpool, Rtags);
+
+ __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
+
+ __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
+ __ lbzx(Rtags, Rtags, Roffset);
+
+ __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
+ __ beq(CCR0, Lquicked);
+
+ // Call into the VM to "quicken" instanceof.
+ __ push_ptr(); // for GC
+ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
+ __ get_vm_result_2(RspecifiedKlass);
+ __ pop_ptr(); // Restore receiver.
+ __ b(Lresolved);
+
+ // Extract target class from constant pool.
+ __ bind(Lquicked);
+ __ sldi(Roffset, Roffset, LogBytesPerWord);
+ __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
+ __ isync(); // Order load of specified Klass wrt. tags.
+ __ ldx(RspecifiedKlass, Rcpool, Roffset);
+
+ // Do the checkcast.
+ __ bind(Lresolved);
+ // Get value klass in RobjKlass.
+ __ load_klass(RobjKlass, R17_tos);
+ // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
+ __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
+
+ // Not a subtype; so must throw exception
+ // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention.
+ __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry);
+ __ mtctr(R11_scratch1);
+ __ bctr();
+
+ // Profile the null case.
+ __ align(32, 12);
+ __ bind(Lis_null);
+ __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch.
+
+ __ align(32, 12);
+ __ bind(Ldone);
+}
+
+// Output:
+// - tos == 0: Obj was null or not an instance of class.
+// - tos == 1: Obj was an instance of class.
+void TemplateTable::instanceof() {
+ transition(atos, itos);
+
+ Label Ldone, Lis_null, Lquicked, Lresolved;
+ Register Roffset = R5_ARG3,
+ RobjKlass = R4_ARG2,
+ RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect the value in this register.
+ Rcpool = R11_scratch1,
+ Rtags = R12_scratch2;
+
+ // Null does not pass.
+ __ cmpdi(CCR0, R17_tos, 0);
+ __ beq(CCR0, Lis_null);
+
+ // Get constant pool tag to find out if the bytecode has already been "quickened".
+ __ get_cpool_and_tags(Rcpool, Rtags);
+
+ __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
+
+ __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
+ __ lbzx(Rtags, Rtags, Roffset);
+
+ __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
+ __ beq(CCR0, Lquicked);
+
+ // Call into the VM to "quicken" instanceof.
+ __ push_ptr(); // for GC
+ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
+ __ get_vm_result_2(RspecifiedKlass);
+ __ pop_ptr(); // Restore receiver.
+ __ b(Lresolved);
+
+ // Extract target class from constant pool.
+ __ bind(Lquicked);
+ __ sldi(Roffset, Roffset, LogBytesPerWord);
+ __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
+ __ isync(); // Order load of specified Klass wrt. tags.
+ __ ldx(RspecifiedKlass, Rcpool, Roffset);
+
+ // Do the checkcast.
+ __ bind(Lresolved);
+ // Get value klass in RobjKlass.
+ __ load_klass(RobjKlass, R17_tos);
+ // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
+ __ li(R17_tos, 1);
+ __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
+ __ li(R17_tos, 0);
+
+ if (ProfileInterpreter) {
+ __ b(Ldone);
+ }
+
+ // Profile the null case.
+ __ align(32, 12);
+ __ bind(Lis_null);
+ __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch.
+
+ __ align(32, 12);
+ __ bind(Ldone);
+}
+
+// =============================================================================
+// Breakpoints
+
+void TemplateTable::_breakpoint() {
+ transition(vtos, vtos);
+
+ // Get the unpatched byte code.
+ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp);
+ __ mr(R31, R3_RET);
+
+ // Post the breakpoint event.
+ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp);
+
+ // Complete the execution of original bytecode.
+ __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos));
+}
+
+// =============================================================================
+// Exceptions
+
+void TemplateTable::athrow() {
+ transition(atos, vtos);
+
+ // Exception oop is in tos
+ __ verify_oop(R17_tos);
+
+ __ null_check_throw(R17_tos, -1, R11_scratch1);
+
+ // Throw exception interpreter entry expects exception oop to be in R3.
+ __ mr(R3_RET, R17_tos);
+ __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry());
+ __ mtctr(R11_scratch1);
+ __ bctr();
+}
+
+// =============================================================================
+// Synchronization
+// Searches the basic object lock list on the stack for a free slot
+// and uses it to lock the obect in tos.
+//
+// Recursive locking is enabled by exiting the search if the same
+// object is already found in the list. Thus, a new basic lock obj lock
+// is allocated "higher up" in the stack and thus is found first
+// at next monitor exit.
+void TemplateTable::monitorenter() {
+ transition(atos, vtos);
+
+ __ verify_oop(R17_tos);
+
+ Register Rcurrent_monitor = R11_scratch1,
+ Rcurrent_obj = R12_scratch2,
+ Robj_to_lock = R17_tos,
+ Rscratch1 = R3_ARG1,
+ Rscratch2 = R4_ARG2,
+ Rscratch3 = R5_ARG3,
+ Rcurrent_obj_addr = R6_ARG4;
+
+ // ------------------------------------------------------------------------------
+ // Null pointer exception.
+ __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
+
+ // Try to acquire a lock on the object.
+ // Repeat until succeeded (i.e., until monitorenter returns true).
+
+ // ------------------------------------------------------------------------------
+ // Find a free slot in the monitor block.
+ Label Lfound, Lexit, Lallocate_new;
+ ConditionRegister found_free_slot = CCR0,
+ found_same_obj = CCR1,
+ reached_limit = CCR6;
+ {
+ Label Lloop, Lentry;
+ Register Rlimit = Rcurrent_monitor;
+
+ // Set up search loop - start with topmost monitor.
+ __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
+
+ __ ld(Rlimit, 0, R1_SP);
+ __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base
+
+ // Check if any slot is present => short cut to allocation if not.
+ __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
+ __ bgt(reached_limit, Lallocate_new);
+
+ // Pre-load topmost slot.
+ __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
+ __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
+ // The search loop.
+ __ bind(Lloop);
+ // Found free slot?
+ __ cmpdi(found_free_slot, Rcurrent_obj, 0);
+ // Is this entry for same obj? If so, stop the search and take the found
+ // free slot or allocate a new one to enable recursive locking.
+ __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock);
+ __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
+ __ beq(found_free_slot, Lexit);
+ __ beq(found_same_obj, Lallocate_new);
+ __ bgt(reached_limit, Lallocate_new);
+ // Check if last allocated BasicLockObj reached.
+ __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
+ __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
+ // Next iteration if unchecked BasicObjectLocks exist on the stack.
+ __ b(Lloop);
+ }
+
+ // ------------------------------------------------------------------------------
+ // Check if we found a free slot.
+ __ bind(Lexit);
+
+ __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
+ __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize);
+ __ b(Lfound);
+
+ // We didn't find a free BasicObjLock => allocate one.
+ __ align(32, 12);
+ __ bind(Lallocate_new);
+ __ add_monitor_to_stack(false, Rscratch1, Rscratch2);
+ __ mr(Rcurrent_monitor, R26_monitor);
+ __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
+
+ // ------------------------------------------------------------------------------
+ // We now have a slot to lock.
+ __ bind(Lfound);
+
+ // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
+ // The object has already been poped from the stack, so the expression stack looks correct.
+ __ addi(R14_bcp, R14_bcp, 1);
+
+ __ std(Robj_to_lock, 0, Rcurrent_obj_addr);
+ __ lock_object(Rcurrent_monitor, Robj_to_lock);
+
+ // Check if there's enough space on the stack for the monitors after locking.
+ Label Lskip_stack_check;
+ // Optimization: If the monitors stack section is less then a std page size (4K) don't run
+ // the stack check. There should be enough shadow pages to fit that in.
+ __ ld(Rscratch3, 0, R1_SP);
+ __ sub(Rscratch3, Rscratch3, R26_monitor);
+ __ cmpdi(CCR0, Rscratch3, 4*K);
+ __ blt(CCR0, Lskip_stack_check);
+
+ DEBUG_ONLY(__ untested("stack overflow check during monitor enter");)
+ __ li(Rscratch1, 0);
+ __ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2);
+
+ __ align(32, 12);
+ __ bind(Lskip_stack_check);
+
+ // The bcp has already been incremented. Just need to dispatch to next instruction.
+ __ dispatch_next(vtos);
+}
+
+void TemplateTable::monitorexit() {
+ transition(atos, vtos);
+ __ verify_oop(R17_tos);
+
+ Register Rcurrent_monitor = R11_scratch1,
+ Rcurrent_obj = R12_scratch2,
+ Robj_to_lock = R17_tos,
+ Rcurrent_obj_addr = R3_ARG1,
+ Rlimit = R4_ARG2;
+ Label Lfound, Lillegal_monitor_state;
+
+ // Check corner case: unbalanced monitorEnter / Exit.
+ __ ld(Rlimit, 0, R1_SP);
+ __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
+
+ // Null pointer check.
+ __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
+
+ __ cmpld(CCR0, R26_monitor, Rlimit);
+ __ bgt(CCR0, Lillegal_monitor_state);
+
+ // Find the corresponding slot in the monitors stack section.
+ {
+ Label Lloop;
+
+ // Start with topmost monitor.
+ __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
+ __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes());
+ __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
+ __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
+
+ __ bind(Lloop);
+ // Is this entry for same obj?
+ __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock);
+ __ beq(CCR0, Lfound);
+
+ // Check if last allocated BasicLockObj reached.
+
+ __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
+ __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit);
+ __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
+
+ // Next iteration if unchecked BasicObjectLocks exist on the stack.
+ __ ble(CCR0, Lloop);
+ }
+
+ // Fell through without finding the basic obj lock => throw up!
+ __ bind(Lillegal_monitor_state);
+ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
+ __ should_not_reach_here();
+
+ __ align(32, 12);
+ __ bind(Lfound);
+ __ addi(Rcurrent_monitor, Rcurrent_obj_addr,
+ -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
+ __ unlock_object(Rcurrent_monitor);
+}
+
+// ============================================================================
+// Wide bytecodes
+
+// Wide instructions. Simply redirects to the wide entry point for that instruction.
+void TemplateTable::wide() {
+ transition(vtos, vtos);
+
+ const Register Rtable = R11_scratch1,
+ Rindex = R12_scratch2,
+ Rtmp = R0;
+
+ __ lbz(Rindex, 1, R14_bcp);
+
+ __ load_dispatch_table(Rtable, Interpreter::_wentry_point);
+
+ __ slwi(Rindex, Rindex, LogBytesPerWord);
+ __ ldx(Rtmp, Rtable, Rindex);
+ __ mtctr(Rtmp);
+ __ bctr();
+ // Note: the bcp increment step is part of the individual wide bytecode implementations.
+}
+#endif // !CC_INTERP