hotspot/src/cpu/ppc/vm/templateTable_ppc_64.cpp
changeset 23221 b70675ece1ce
child 24322 c2978d1578e3
equal deleted inserted replaced
23220:fc827339dc37 23221:b70675ece1ce
       
     1 /*
       
     2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
       
     3  * Copyright 2013, 2014 SAP AG. All rights reserved.
       
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     5  *
       
     6  * This code is free software; you can redistribute it and/or modify it
       
     7  * under the terms of the GNU General Public License version 2 only, as
       
     8  * published by the Free Software Foundation.
       
     9  *
       
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    13  * version 2 for more details (a copy is included in the LICENSE file that
       
    14  * accompanied this code).
       
    15  *
       
    16  * You should have received a copy of the GNU General Public License version
       
    17  * 2 along with this work; if not, write to the Free Software Foundation,
       
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    19  *
       
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    21  * or visit www.oracle.com if you need additional information or have any
       
    22  * questions.
       
    23  *
       
    24  */
       
    25 
       
    26 #include "precompiled.hpp"
       
    27 #include "asm/macroAssembler.inline.hpp"
       
    28 #include "interpreter/interpreter.hpp"
       
    29 #include "interpreter/interpreterRuntime.hpp"
       
    30 #include "interpreter/templateInterpreter.hpp"
       
    31 #include "interpreter/templateTable.hpp"
       
    32 #include "memory/universe.inline.hpp"
       
    33 #include "oops/objArrayKlass.hpp"
       
    34 #include "oops/oop.inline.hpp"
       
    35 #include "prims/methodHandles.hpp"
       
    36 #include "runtime/sharedRuntime.hpp"
       
    37 #include "runtime/stubRoutines.hpp"
       
    38 #include "runtime/synchronizer.hpp"
       
    39 #include "utilities/macros.hpp"
       
    40 
       
    41 #ifndef CC_INTERP
       
    42 
       
    43 #undef __
       
    44 #define __ _masm->
       
    45 
       
    46 // ============================================================================
       
    47 // Misc helpers
       
    48 
       
    49 // Do an oop store like *(base + index) = val OR *(base + offset) = val
       
    50 // (only one of both variants is possible at the same time).
       
    51 // Index can be noreg.
       
    52 // Kills:
       
    53 //   Rbase, Rtmp
       
    54 static void do_oop_store(InterpreterMacroAssembler* _masm,
       
    55                          Register           Rbase,
       
    56                          RegisterOrConstant offset,
       
    57                          Register           Rval,         // Noreg means always null.
       
    58                          Register           Rtmp1,
       
    59                          Register           Rtmp2,
       
    60                          Register           Rtmp3,
       
    61                          BarrierSet::Name   barrier,
       
    62                          bool               precise,
       
    63                          bool               check_null) {
       
    64   assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase);
       
    65 
       
    66   switch (barrier) {
       
    67 #ifndef SERIALGC
       
    68     case BarrierSet::G1SATBCT:
       
    69     case BarrierSet::G1SATBCTLogging:
       
    70       {
       
    71         // Load and record the previous value.
       
    72         __ g1_write_barrier_pre(Rbase, offset,
       
    73                                 Rtmp3, /* holder of pre_val ? */
       
    74                                 Rtmp1, Rtmp2, false /* frame */);
       
    75 
       
    76         Label Lnull, Ldone;
       
    77         if (Rval != noreg) {
       
    78           if (check_null) {
       
    79             __ cmpdi(CCR0, Rval, 0);
       
    80             __ beq(CCR0, Lnull);
       
    81           }
       
    82           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1);
       
    83           // Mark the card.
       
    84           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
       
    85             __ add(Rbase, offset, Rbase);
       
    86           }
       
    87           __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone);
       
    88           if (check_null) { __ b(Ldone); }
       
    89         }
       
    90 
       
    91         if (Rval == noreg || check_null) { // Store null oop.
       
    92           Register Rnull = Rval;
       
    93           __ bind(Lnull);
       
    94           if (Rval == noreg) {
       
    95             Rnull = Rtmp1;
       
    96             __ li(Rnull, 0);
       
    97           }
       
    98           if (UseCompressedOops) {
       
    99             __ stw(Rnull, offset, Rbase);
       
   100           } else {
       
   101             __ std(Rnull, offset, Rbase);
       
   102           }
       
   103         }
       
   104         __ bind(Ldone);
       
   105       }
       
   106       break;
       
   107 #endif // SERIALGC
       
   108     case BarrierSet::CardTableModRef:
       
   109     case BarrierSet::CardTableExtension:
       
   110       {
       
   111         Label Lnull, Ldone;
       
   112         if (Rval != noreg) {
       
   113           if (check_null) {
       
   114             __ cmpdi(CCR0, Rval, 0);
       
   115             __ beq(CCR0, Lnull);
       
   116           }
       
   117           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1);
       
   118           // Mark the card.
       
   119           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
       
   120             __ add(Rbase, offset, Rbase);
       
   121           }
       
   122           __ card_write_barrier_post(Rbase, Rval, Rtmp1);
       
   123           if (check_null) {
       
   124             __ b(Ldone);
       
   125           }
       
   126         }
       
   127 
       
   128         if (Rval == noreg || check_null) { // Store null oop.
       
   129           Register Rnull = Rval;
       
   130           __ bind(Lnull);
       
   131           if (Rval == noreg) {
       
   132             Rnull = Rtmp1;
       
   133             __ li(Rnull, 0);
       
   134           }
       
   135           if (UseCompressedOops) {
       
   136             __ stw(Rnull, offset, Rbase);
       
   137           } else {
       
   138             __ std(Rnull, offset, Rbase);
       
   139           }
       
   140         }
       
   141         __ bind(Ldone);
       
   142       }
       
   143       break;
       
   144     case BarrierSet::ModRef:
       
   145     case BarrierSet::Other:
       
   146       ShouldNotReachHere();
       
   147       break;
       
   148     default:
       
   149       ShouldNotReachHere();
       
   150   }
       
   151 }
       
   152 
       
   153 // ============================================================================
       
   154 // Platform-dependent initialization
       
   155 
       
   156 void TemplateTable::pd_initialize() {
       
   157   // No ppc64 specific initialization.
       
   158 }
       
   159 
       
   160 Address TemplateTable::at_bcp(int offset) {
       
   161   // Not used on ppc.
       
   162   ShouldNotReachHere();
       
   163   return Address();
       
   164 }
       
   165 
       
   166 // Patches the current bytecode (ptr to it located in bcp)
       
   167 // in the bytecode stream with a new one.
       
   168 void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) {
       
   169   // With sharing on, may need to test method flag.
       
   170   if (!RewriteBytecodes) return;
       
   171   Label L_patch_done;
       
   172 
       
   173   switch (new_bc) {
       
   174     case Bytecodes::_fast_aputfield:
       
   175     case Bytecodes::_fast_bputfield:
       
   176     case Bytecodes::_fast_cputfield:
       
   177     case Bytecodes::_fast_dputfield:
       
   178     case Bytecodes::_fast_fputfield:
       
   179     case Bytecodes::_fast_iputfield:
       
   180     case Bytecodes::_fast_lputfield:
       
   181     case Bytecodes::_fast_sputfield:
       
   182     {
       
   183       // We skip bytecode quickening for putfield instructions when
       
   184       // the put_code written to the constant pool cache is zero.
       
   185       // This is required so that every execution of this instruction
       
   186       // calls out to InterpreterRuntime::resolve_get_put to do
       
   187       // additional, required work.
       
   188       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
       
   189       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
       
   190       __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1);
       
   191       // Big Endian: ((*(cache+indices))>>((1+byte_no)*8))&0xFF
       
   192       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp);
       
   193       __ cmpwi(CCR0, Rnew_bc, 0);
       
   194       __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
       
   195       __ beq(CCR0, L_patch_done);
       
   196       // __ isync(); // acquire not needed
       
   197       break;
       
   198     }
       
   199 
       
   200     default:
       
   201       assert(byte_no == -1, "sanity");
       
   202       if (load_bc_into_bc_reg) {
       
   203         __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
       
   204       }
       
   205   }
       
   206 
       
   207   if (JvmtiExport::can_post_breakpoint()) {
       
   208     Label L_fast_patch;
       
   209     __ lbz(Rtemp, 0, R14_bcp);
       
   210     __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint);
       
   211     __ bne(CCR0, L_fast_patch);
       
   212     // Perform the quickening, slowly, in the bowels of the breakpoint table.
       
   213     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc);
       
   214     __ b(L_patch_done);
       
   215     __ bind(L_fast_patch);
       
   216   }
       
   217 
       
   218   // Patch bytecode.
       
   219   __ stb(Rnew_bc, 0, R14_bcp);
       
   220 
       
   221   __ bind(L_patch_done);
       
   222 }
       
   223 
       
   224 // ============================================================================
       
   225 // Individual instructions
       
   226 
       
   227 void TemplateTable::nop() {
       
   228   transition(vtos, vtos);
       
   229   // Nothing to do.
       
   230 }
       
   231 
       
   232 void TemplateTable::shouldnotreachhere() {
       
   233   transition(vtos, vtos);
       
   234   __ stop("shouldnotreachhere bytecode");
       
   235 }
       
   236 
       
   237 void TemplateTable::aconst_null() {
       
   238   transition(vtos, atos);
       
   239   __ li(R17_tos, 0);
       
   240 }
       
   241 
       
   242 void TemplateTable::iconst(int value) {
       
   243   transition(vtos, itos);
       
   244   assert(value >= -1 && value <= 5, "");
       
   245   __ li(R17_tos, value);
       
   246 }
       
   247 
       
   248 void TemplateTable::lconst(int value) {
       
   249   transition(vtos, ltos);
       
   250   assert(value >= -1 && value <= 5, "");
       
   251   __ li(R17_tos, value);
       
   252 }
       
   253 
       
   254 void TemplateTable::fconst(int value) {
       
   255   transition(vtos, ftos);
       
   256   static float zero = 0.0;
       
   257   static float one  = 1.0;
       
   258   static float two  = 2.0;
       
   259   switch (value) {
       
   260     default: ShouldNotReachHere();
       
   261     case 0: {
       
   262       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0);
       
   263       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
       
   264       break;
       
   265     }
       
   266     case 1: {
       
   267       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0);
       
   268       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
       
   269       break;
       
   270     }
       
   271     case 2: {
       
   272       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0);
       
   273       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
       
   274       break;
       
   275     }
       
   276   }
       
   277 }
       
   278 
       
   279 void TemplateTable::dconst(int value) {
       
   280   transition(vtos, dtos);
       
   281   static double zero = 0.0;
       
   282   static double one  = 1.0;
       
   283   switch (value) {
       
   284     case 0: {
       
   285       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0);
       
   286       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
       
   287       break;
       
   288     }
       
   289     case 1: {
       
   290       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0);
       
   291       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
       
   292       break;
       
   293     }
       
   294     default: ShouldNotReachHere();
       
   295   }
       
   296 }
       
   297 
       
   298 void TemplateTable::bipush() {
       
   299   transition(vtos, itos);
       
   300   __ lbz(R17_tos, 1, R14_bcp);
       
   301   __ extsb(R17_tos, R17_tos);
       
   302 }
       
   303 
       
   304 void TemplateTable::sipush() {
       
   305   transition(vtos, itos);
       
   306   __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed);
       
   307 }
       
   308 
       
   309 void TemplateTable::ldc(bool wide) {
       
   310   Register Rscratch1 = R11_scratch1,
       
   311            Rscratch2 = R12_scratch2,
       
   312            Rcpool    = R3_ARG1;
       
   313 
       
   314   transition(vtos, vtos);
       
   315   Label notInt, notClass, exit;
       
   316 
       
   317   __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags.
       
   318   if (wide) { // Read index.
       
   319     __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned);
       
   320   } else {
       
   321     __ lbz(Rscratch1, 1, R14_bcp);
       
   322   }
       
   323 
       
   324   const int base_offset = ConstantPool::header_size() * wordSize;
       
   325   const int tags_offset = Array<u1>::base_offset_in_bytes();
       
   326 
       
   327   // Get type from tags.
       
   328   __ addi(Rscratch2, Rscratch2, tags_offset);
       
   329   __ lbzx(Rscratch2, Rscratch2, Rscratch1);
       
   330 
       
   331   __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class?
       
   332   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state?
       
   333   __ cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
       
   334 
       
   335   // Resolved class - need to call vm to get java mirror of the class.
       
   336   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class);
       
   337   __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // Neither resolved class nor unresolved case from above?
       
   338   __ beq(CCR0, notClass);
       
   339 
       
   340   __ li(R4, wide ? 1 : 0);
       
   341   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4);
       
   342   __ push(atos);
       
   343   __ b(exit);
       
   344 
       
   345   __ align(32, 12);
       
   346   __ bind(notClass);
       
   347   __ addi(Rcpool, Rcpool, base_offset);
       
   348   __ sldi(Rscratch1, Rscratch1, LogBytesPerWord);
       
   349   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer);
       
   350   __ bne(CCR0, notInt);
       
   351   __ isync(); // Order load of constant wrt. tags.
       
   352   __ lwax(R17_tos, Rcpool, Rscratch1);
       
   353   __ push(itos);
       
   354   __ b(exit);
       
   355 
       
   356   __ align(32, 12);
       
   357   __ bind(notInt);
       
   358 #ifdef ASSERT
       
   359   // String and Object are rewritten to fast_aldc
       
   360   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float);
       
   361   __ asm_assert_eq("unexpected type", 0x8765);
       
   362 #endif
       
   363   __ isync(); // Order load of constant wrt. tags.
       
   364   __ lfsx(F15_ftos, Rcpool, Rscratch1);
       
   365   __ push(ftos);
       
   366 
       
   367   __ align(32, 12);
       
   368   __ bind(exit);
       
   369 }
       
   370 
       
   371 // Fast path for caching oop constants.
       
   372 void TemplateTable::fast_aldc(bool wide) {
       
   373   transition(vtos, atos);
       
   374 
       
   375   int index_size = wide ? sizeof(u2) : sizeof(u1);
       
   376   const Register Rscratch = R11_scratch1;
       
   377   Label resolved;
       
   378 
       
   379   // We are resolved if the resolved reference cache entry contains a
       
   380   // non-null object (CallSite, etc.)
       
   381   __ get_cache_index_at_bcp(Rscratch, 1, index_size);  // Load index.
       
   382   __ load_resolved_reference_at_index(R17_tos, Rscratch);
       
   383   __ cmpdi(CCR0, R17_tos, 0);
       
   384   __ bne(CCR0, resolved);
       
   385   __ load_const_optimized(R3_ARG1, (int)bytecode());
       
   386 
       
   387   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
       
   388 
       
   389   // First time invocation - must resolve first.
       
   390   __ call_VM(R17_tos, entry, R3_ARG1);
       
   391 
       
   392   __ align(32, 12);
       
   393   __ bind(resolved);
       
   394   __ verify_oop(R17_tos);
       
   395 }
       
   396 
       
   397 void TemplateTable::ldc2_w() {
       
   398   transition(vtos, vtos);
       
   399   Label Llong, Lexit;
       
   400 
       
   401   Register Rindex = R11_scratch1,
       
   402            Rcpool = R12_scratch2,
       
   403            Rtag   = R3_ARG1;
       
   404   __ get_cpool_and_tags(Rcpool, Rtag);
       
   405   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
       
   406 
       
   407   const int base_offset = ConstantPool::header_size() * wordSize;
       
   408   const int tags_offset = Array<u1>::base_offset_in_bytes();
       
   409   // Get type from tags.
       
   410   __ addi(Rcpool, Rcpool, base_offset);
       
   411   __ addi(Rtag, Rtag, tags_offset);
       
   412 
       
   413   __ lbzx(Rtag, Rtag, Rindex);
       
   414 
       
   415   __ sldi(Rindex, Rindex, LogBytesPerWord);
       
   416   __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double);
       
   417   __ bne(CCR0, Llong);
       
   418   // A double can be placed at word-aligned locations in the constant pool.
       
   419   // Check out Conversions.java for an example.
       
   420   // Also ConstantPool::header_size() is 20, which makes it very difficult
       
   421   // to double-align double on the constant pool. SG, 11/7/97
       
   422   __ isync(); // Order load of constant wrt. tags.
       
   423   __ lfdx(F15_ftos, Rcpool, Rindex);
       
   424   __ push(dtos);
       
   425   __ b(Lexit);
       
   426 
       
   427   __ bind(Llong);
       
   428   __ isync(); // Order load of constant wrt. tags.
       
   429   __ ldx(R17_tos, Rcpool, Rindex);
       
   430   __ push(ltos);
       
   431 
       
   432   __ bind(Lexit);
       
   433 }
       
   434 
       
   435 // Get the locals index located in the bytecode stream at bcp + offset.
       
   436 void TemplateTable::locals_index(Register Rdst, int offset) {
       
   437   __ lbz(Rdst, offset, R14_bcp);
       
   438 }
       
   439 
       
   440 void TemplateTable::iload() {
       
   441   transition(vtos, itos);
       
   442 
       
   443   // Get the local value into tos
       
   444   const Register Rindex = R22_tmp2;
       
   445   locals_index(Rindex);
       
   446 
       
   447   // Rewrite iload,iload  pair into fast_iload2
       
   448   //         iload,caload pair into fast_icaload
       
   449   if (RewriteFrequentPairs) {
       
   450     Label Lrewrite, Ldone;
       
   451     Register Rnext_byte  = R3_ARG1,
       
   452              Rrewrite_to = R6_ARG4,
       
   453              Rscratch    = R11_scratch1;
       
   454 
       
   455     // get next byte
       
   456     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp);
       
   457 
       
   458     // if _iload, wait to rewrite to iload2. We only want to rewrite the
       
   459     // last two iloads in a pair. Comparing against fast_iload means that
       
   460     // the next bytecode is neither an iload or a caload, and therefore
       
   461     // an iload pair.
       
   462     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload);
       
   463     __ beq(CCR0, Ldone);
       
   464 
       
   465     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
       
   466     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2);
       
   467     __ beq(CCR1, Lrewrite);
       
   468 
       
   469     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload);
       
   470     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload);
       
   471     __ beq(CCR0, Lrewrite);
       
   472 
       
   473     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
       
   474 
       
   475     __ bind(Lrewrite);
       
   476     patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false);
       
   477     __ bind(Ldone);
       
   478   }
       
   479 
       
   480   __ load_local_int(R17_tos, Rindex, Rindex);
       
   481 }
       
   482 
       
   483 // Load 2 integers in a row without dispatching
       
   484 void TemplateTable::fast_iload2() {
       
   485   transition(vtos, itos);
       
   486 
       
   487   __ lbz(R3_ARG1, 1, R14_bcp);
       
   488   __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp);
       
   489 
       
   490   __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1);
       
   491   __ load_local_int(R17_tos, R12_scratch2, R17_tos);
       
   492   __ push_i(R3_ARG1);
       
   493 }
       
   494 
       
   495 void TemplateTable::fast_iload() {
       
   496   transition(vtos, itos);
       
   497   // Get the local value into tos
       
   498 
       
   499   const Register Rindex = R11_scratch1;
       
   500   locals_index(Rindex);
       
   501   __ load_local_int(R17_tos, Rindex, Rindex);
       
   502 }
       
   503 
       
   504 // Load a local variable type long from locals area to TOS cache register.
       
   505 // Local index resides in bytecodestream.
       
   506 void TemplateTable::lload() {
       
   507   transition(vtos, ltos);
       
   508 
       
   509   const Register Rindex = R11_scratch1;
       
   510   locals_index(Rindex);
       
   511   __ load_local_long(R17_tos, Rindex, Rindex);
       
   512 }
       
   513 
       
   514 void TemplateTable::fload() {
       
   515   transition(vtos, ftos);
       
   516 
       
   517   const Register Rindex = R11_scratch1;
       
   518   locals_index(Rindex);
       
   519   __ load_local_float(F15_ftos, Rindex, Rindex);
       
   520 }
       
   521 
       
   522 void TemplateTable::dload() {
       
   523   transition(vtos, dtos);
       
   524 
       
   525   const Register Rindex = R11_scratch1;
       
   526   locals_index(Rindex);
       
   527   __ load_local_double(F15_ftos, Rindex, Rindex);
       
   528 }
       
   529 
       
   530 void TemplateTable::aload() {
       
   531   transition(vtos, atos);
       
   532 
       
   533   const Register Rindex = R11_scratch1;
       
   534   locals_index(Rindex);
       
   535   __ load_local_ptr(R17_tos, Rindex, Rindex);
       
   536 }
       
   537 
       
   538 void TemplateTable::locals_index_wide(Register Rdst) {
       
   539   // Offset is 2, not 1, because Lbcp points to wide prefix code.
       
   540   __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned);
       
   541 }
       
   542 
       
   543 void TemplateTable::wide_iload() {
       
   544   // Get the local value into tos.
       
   545 
       
   546   const Register Rindex = R11_scratch1;
       
   547   locals_index_wide(Rindex);
       
   548   __ load_local_int(R17_tos, Rindex, Rindex);
       
   549 }
       
   550 
       
   551 void TemplateTable::wide_lload() {
       
   552   transition(vtos, ltos);
       
   553 
       
   554   const Register Rindex = R11_scratch1;
       
   555   locals_index_wide(Rindex);
       
   556   __ load_local_long(R17_tos, Rindex, Rindex);
       
   557 }
       
   558 
       
   559 void TemplateTable::wide_fload() {
       
   560   transition(vtos, ftos);
       
   561 
       
   562   const Register Rindex = R11_scratch1;
       
   563   locals_index_wide(Rindex);
       
   564   __ load_local_float(F15_ftos, Rindex, Rindex);
       
   565 }
       
   566 
       
   567 void TemplateTable::wide_dload() {
       
   568   transition(vtos, dtos);
       
   569 
       
   570   const Register Rindex = R11_scratch1;
       
   571   locals_index_wide(Rindex);
       
   572   __ load_local_double(F15_ftos, Rindex, Rindex);
       
   573 }
       
   574 
       
   575 void TemplateTable::wide_aload() {
       
   576   transition(vtos, atos);
       
   577 
       
   578   const Register Rindex = R11_scratch1;
       
   579   locals_index_wide(Rindex);
       
   580   __ load_local_ptr(R17_tos, Rindex, Rindex);
       
   581 }
       
   582 
       
   583 void TemplateTable::iaload() {
       
   584   transition(itos, itos);
       
   585 
       
   586   const Register Rload_addr = R3_ARG1,
       
   587                  Rarray     = R4_ARG2,
       
   588                  Rtemp      = R5_ARG3;
       
   589   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
       
   590   __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr);
       
   591 }
       
   592 
       
   593 void TemplateTable::laload() {
       
   594   transition(itos, ltos);
       
   595 
       
   596   const Register Rload_addr = R3_ARG1,
       
   597                  Rarray     = R4_ARG2,
       
   598                  Rtemp      = R5_ARG3;
       
   599   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
       
   600   __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr);
       
   601 }
       
   602 
       
   603 void TemplateTable::faload() {
       
   604   transition(itos, ftos);
       
   605 
       
   606   const Register Rload_addr = R3_ARG1,
       
   607                  Rarray     = R4_ARG2,
       
   608                  Rtemp      = R5_ARG3;
       
   609   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
       
   610   __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr);
       
   611 }
       
   612 
       
   613 void TemplateTable::daload() {
       
   614   transition(itos, dtos);
       
   615 
       
   616   const Register Rload_addr = R3_ARG1,
       
   617                  Rarray     = R4_ARG2,
       
   618                  Rtemp      = R5_ARG3;
       
   619   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
       
   620   __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr);
       
   621 }
       
   622 
       
   623 void TemplateTable::aaload() {
       
   624   transition(itos, atos);
       
   625 
       
   626   // tos: index
       
   627   // result tos: array
       
   628   const Register Rload_addr = R3_ARG1,
       
   629                  Rarray     = R4_ARG2,
       
   630                  Rtemp      = R5_ARG3;
       
   631   __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
       
   632   __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr);
       
   633   __ verify_oop(R17_tos);
       
   634   //__ dcbt(R17_tos); // prefetch
       
   635 }
       
   636 
       
   637 void TemplateTable::baload() {
       
   638   transition(itos, itos);
       
   639 
       
   640   const Register Rload_addr = R3_ARG1,
       
   641                  Rarray     = R4_ARG2,
       
   642                  Rtemp      = R5_ARG3;
       
   643   __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr);
       
   644   __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr);
       
   645   __ extsb(R17_tos, R17_tos);
       
   646 }
       
   647 
       
   648 void TemplateTable::caload() {
       
   649   transition(itos, itos);
       
   650 
       
   651   const Register Rload_addr = R3_ARG1,
       
   652                  Rarray     = R4_ARG2,
       
   653                  Rtemp      = R5_ARG3;
       
   654   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
       
   655   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
       
   656 }
       
   657 
       
   658 // Iload followed by caload frequent pair.
       
   659 void TemplateTable::fast_icaload() {
       
   660   transition(vtos, itos);
       
   661 
       
   662   const Register Rload_addr = R3_ARG1,
       
   663                  Rarray     = R4_ARG2,
       
   664                  Rtemp      = R11_scratch1;
       
   665 
       
   666   locals_index(R17_tos);
       
   667   __ load_local_int(R17_tos, Rtemp, R17_tos);
       
   668   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
       
   669   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
       
   670 }
       
   671 
       
   672 void TemplateTable::saload() {
       
   673   transition(itos, itos);
       
   674 
       
   675   const Register Rload_addr = R11_scratch1,
       
   676                  Rarray     = R12_scratch2,
       
   677                  Rtemp      = R3_ARG1;
       
   678   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
       
   679   __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr);
       
   680 }
       
   681 
       
   682 void TemplateTable::iload(int n) {
       
   683   transition(vtos, itos);
       
   684 
       
   685   __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
       
   686 }
       
   687 
       
   688 void TemplateTable::lload(int n) {
       
   689   transition(vtos, ltos);
       
   690 
       
   691   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
       
   692 }
       
   693 
       
   694 void TemplateTable::fload(int n) {
       
   695   transition(vtos, ftos);
       
   696 
       
   697   __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
       
   698 }
       
   699 
       
   700 void TemplateTable::dload(int n) {
       
   701   transition(vtos, dtos);
       
   702 
       
   703   __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
       
   704 }
       
   705 
       
   706 void TemplateTable::aload(int n) {
       
   707   transition(vtos, atos);
       
   708 
       
   709   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
       
   710 }
       
   711 
       
   712 void TemplateTable::aload_0() {
       
   713   transition(vtos, atos);
       
   714   // According to bytecode histograms, the pairs:
       
   715   //
       
   716   // _aload_0, _fast_igetfield
       
   717   // _aload_0, _fast_agetfield
       
   718   // _aload_0, _fast_fgetfield
       
   719   //
       
   720   // occur frequently. If RewriteFrequentPairs is set, the (slow)
       
   721   // _aload_0 bytecode checks if the next bytecode is either
       
   722   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
       
   723   // rewrites the current bytecode into a pair bytecode; otherwise it
       
   724   // rewrites the current bytecode into _0 that doesn't do
       
   725   // the pair check anymore.
       
   726   //
       
   727   // Note: If the next bytecode is _getfield, the rewrite must be
       
   728   //       delayed, otherwise we may miss an opportunity for a pair.
       
   729   //
       
   730   // Also rewrite frequent pairs
       
   731   //   aload_0, aload_1
       
   732   //   aload_0, iload_1
       
   733   // These bytecodes with a small amount of code are most profitable
       
   734   // to rewrite.
       
   735 
       
   736   if (RewriteFrequentPairs) {
       
   737 
       
   738     Label Lrewrite, Ldont_rewrite;
       
   739     Register Rnext_byte  = R3_ARG1,
       
   740              Rrewrite_to = R6_ARG4,
       
   741              Rscratch    = R11_scratch1;
       
   742 
       
   743     // Get next byte.
       
   744     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp);
       
   745 
       
   746     // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair.
       
   747     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield);
       
   748     __ beq(CCR0, Ldont_rewrite);
       
   749 
       
   750     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield);
       
   751     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0);
       
   752     __ beq(CCR1, Lrewrite);
       
   753 
       
   754     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield);
       
   755     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0);
       
   756     __ beq(CCR0, Lrewrite);
       
   757 
       
   758     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield);
       
   759     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0);
       
   760     __ beq(CCR1, Lrewrite);
       
   761 
       
   762     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0);
       
   763 
       
   764     __ bind(Lrewrite);
       
   765     patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false);
       
   766     __ bind(Ldont_rewrite);
       
   767   }
       
   768 
       
   769   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
       
   770   aload(0);
       
   771 }
       
   772 
       
   773 void TemplateTable::istore() {
       
   774   transition(itos, vtos);
       
   775 
       
   776   const Register Rindex = R11_scratch1;
       
   777   locals_index(Rindex);
       
   778   __ store_local_int(R17_tos, Rindex);
       
   779 }
       
   780 
       
   781 void TemplateTable::lstore() {
       
   782   transition(ltos, vtos);
       
   783   const Register Rindex = R11_scratch1;
       
   784   locals_index(Rindex);
       
   785   __ store_local_long(R17_tos, Rindex);
       
   786 }
       
   787 
       
   788 void TemplateTable::fstore() {
       
   789   transition(ftos, vtos);
       
   790 
       
   791   const Register Rindex = R11_scratch1;
       
   792   locals_index(Rindex);
       
   793   __ store_local_float(F15_ftos, Rindex);
       
   794 }
       
   795 
       
   796 void TemplateTable::dstore() {
       
   797   transition(dtos, vtos);
       
   798 
       
   799   const Register Rindex = R11_scratch1;
       
   800   locals_index(Rindex);
       
   801   __ store_local_double(F15_ftos, Rindex);
       
   802 }
       
   803 
       
   804 void TemplateTable::astore() {
       
   805   transition(vtos, vtos);
       
   806 
       
   807   const Register Rindex = R11_scratch1;
       
   808   __ pop_ptr();
       
   809   __ verify_oop_or_return_address(R17_tos, Rindex);
       
   810   locals_index(Rindex);
       
   811   __ store_local_ptr(R17_tos, Rindex);
       
   812 }
       
   813 
       
   814 void TemplateTable::wide_istore() {
       
   815   transition(vtos, vtos);
       
   816 
       
   817   const Register Rindex = R11_scratch1;
       
   818   __ pop_i();
       
   819   locals_index_wide(Rindex);
       
   820   __ store_local_int(R17_tos, Rindex);
       
   821 }
       
   822 
       
   823 void TemplateTable::wide_lstore() {
       
   824   transition(vtos, vtos);
       
   825 
       
   826   const Register Rindex = R11_scratch1;
       
   827   __ pop_l();
       
   828   locals_index_wide(Rindex);
       
   829   __ store_local_long(R17_tos, Rindex);
       
   830 }
       
   831 
       
   832 void TemplateTable::wide_fstore() {
       
   833   transition(vtos, vtos);
       
   834 
       
   835   const Register Rindex = R11_scratch1;
       
   836   __ pop_f();
       
   837   locals_index_wide(Rindex);
       
   838   __ store_local_float(F15_ftos, Rindex);
       
   839 }
       
   840 
       
   841 void TemplateTable::wide_dstore() {
       
   842   transition(vtos, vtos);
       
   843 
       
   844   const Register Rindex = R11_scratch1;
       
   845   __ pop_d();
       
   846   locals_index_wide(Rindex);
       
   847   __ store_local_double(F15_ftos, Rindex);
       
   848 }
       
   849 
       
   850 void TemplateTable::wide_astore() {
       
   851   transition(vtos, vtos);
       
   852 
       
   853   const Register Rindex = R11_scratch1;
       
   854   __ pop_ptr();
       
   855   __ verify_oop_or_return_address(R17_tos, Rindex);
       
   856   locals_index_wide(Rindex);
       
   857   __ store_local_ptr(R17_tos, Rindex);
       
   858 }
       
   859 
       
   860 void TemplateTable::iastore() {
       
   861   transition(itos, vtos);
       
   862 
       
   863   const Register Rindex      = R3_ARG1,
       
   864                  Rstore_addr = R4_ARG2,
       
   865                  Rarray      = R5_ARG3,
       
   866                  Rtemp       = R6_ARG4;
       
   867   __ pop_i(Rindex);
       
   868   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
       
   869   __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr);
       
   870   }
       
   871 
       
   872 void TemplateTable::lastore() {
       
   873   transition(ltos, vtos);
       
   874 
       
   875   const Register Rindex      = R3_ARG1,
       
   876                  Rstore_addr = R4_ARG2,
       
   877                  Rarray      = R5_ARG3,
       
   878                  Rtemp       = R6_ARG4;
       
   879   __ pop_i(Rindex);
       
   880   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
       
   881   __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr);
       
   882   }
       
   883 
       
   884 void TemplateTable::fastore() {
       
   885   transition(ftos, vtos);
       
   886 
       
   887   const Register Rindex      = R3_ARG1,
       
   888                  Rstore_addr = R4_ARG2,
       
   889                  Rarray      = R5_ARG3,
       
   890                  Rtemp       = R6_ARG4;
       
   891   __ pop_i(Rindex);
       
   892   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
       
   893   __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr);
       
   894   }
       
   895 
       
   896 void TemplateTable::dastore() {
       
   897   transition(dtos, vtos);
       
   898 
       
   899   const Register Rindex      = R3_ARG1,
       
   900                  Rstore_addr = R4_ARG2,
       
   901                  Rarray      = R5_ARG3,
       
   902                  Rtemp       = R6_ARG4;
       
   903   __ pop_i(Rindex);
       
   904   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
       
   905   __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr);
       
   906   }
       
   907 
       
   908 // Pop 3 values from the stack and...
       
   909 void TemplateTable::aastore() {
       
   910   transition(vtos, vtos);
       
   911 
       
   912   Label Lstore_ok, Lis_null, Ldone;
       
   913   const Register Rindex    = R3_ARG1,
       
   914                  Rarray    = R4_ARG2,
       
   915                  Rscratch  = R11_scratch1,
       
   916                  Rscratch2 = R12_scratch2,
       
   917                  Rarray_klass = R5_ARG3,
       
   918                  Rarray_element_klass = Rarray_klass,
       
   919                  Rvalue_klass = R6_ARG4,
       
   920                  Rstore_addr = R31;    // Use register which survives VM call.
       
   921 
       
   922   __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store.
       
   923   __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index.
       
   924   __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp);  // Get array.
       
   925 
       
   926   __ verify_oop(R17_tos);
       
   927   __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr);
       
   928   // Rindex is dead!
       
   929   Register Rscratch3 = Rindex;
       
   930 
       
   931   // Do array store check - check for NULL value first.
       
   932   __ cmpdi(CCR0, R17_tos, 0);
       
   933   __ beq(CCR0, Lis_null);
       
   934 
       
   935   __ load_klass(Rarray_klass, Rarray);
       
   936   __ load_klass(Rvalue_klass, R17_tos);
       
   937 
       
   938   // Do fast instanceof cache test.
       
   939   __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass);
       
   940 
       
   941   // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure.
       
   942   __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok);
       
   943 
       
   944   // Fell through: subtype check failed => throw an exception.
       
   945   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry);
       
   946   __ mtctr(R11_scratch1);
       
   947   __ bctr();
       
   948 
       
   949   __ bind(Lis_null);
       
   950   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
       
   951                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
       
   952   __ profile_null_seen(Rscratch, Rscratch2);
       
   953   __ b(Ldone);
       
   954 
       
   955   // Store is OK.
       
   956   __ bind(Lstore_ok);
       
   957   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
       
   958                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
       
   959 
       
   960   __ bind(Ldone);
       
   961   // Adjust sp (pops array, index and value).
       
   962   __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize);
       
   963 }
       
   964 
       
   965 void TemplateTable::bastore() {
       
   966   transition(itos, vtos);
       
   967 
       
   968   const Register Rindex   = R11_scratch1,
       
   969                  Rarray   = R12_scratch2,
       
   970                  Rscratch = R3_ARG1;
       
   971   __ pop_i(Rindex);
       
   972   // tos: val
       
   973   // Rarray: array ptr (popped by index_check)
       
   974   __ index_check(Rarray, Rindex, 0, Rscratch, Rarray);
       
   975   __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray);
       
   976 }
       
   977 
       
   978 void TemplateTable::castore() {
       
   979   transition(itos, vtos);
       
   980 
       
   981   const Register Rindex   = R11_scratch1,
       
   982                  Rarray   = R12_scratch2,
       
   983                  Rscratch = R3_ARG1;
       
   984   __ pop_i(Rindex);
       
   985   // tos: val
       
   986   // Rarray: array ptr (popped by index_check)
       
   987   __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray);
       
   988   __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray);
       
   989 }
       
   990 
       
   991 void TemplateTable::sastore() {
       
   992   castore();
       
   993 }
       
   994 
       
   995 void TemplateTable::istore(int n) {
       
   996   transition(itos, vtos);
       
   997   __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
       
   998 }
       
   999 
       
  1000 void TemplateTable::lstore(int n) {
       
  1001   transition(ltos, vtos);
       
  1002   __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
       
  1003 }
       
  1004 
       
  1005 void TemplateTable::fstore(int n) {
       
  1006   transition(ftos, vtos);
       
  1007   __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
       
  1008 }
       
  1009 
       
  1010 void TemplateTable::dstore(int n) {
       
  1011   transition(dtos, vtos);
       
  1012   __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
       
  1013 }
       
  1014 
       
  1015 void TemplateTable::astore(int n) {
       
  1016   transition(vtos, vtos);
       
  1017 
       
  1018   __ pop_ptr();
       
  1019   __ verify_oop_or_return_address(R17_tos, R11_scratch1);
       
  1020   __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
       
  1021 }
       
  1022 
       
  1023 void TemplateTable::pop() {
       
  1024   transition(vtos, vtos);
       
  1025 
       
  1026   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize);
       
  1027 }
       
  1028 
       
  1029 void TemplateTable::pop2() {
       
  1030   transition(vtos, vtos);
       
  1031 
       
  1032   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2);
       
  1033 }
       
  1034 
       
  1035 void TemplateTable::dup() {
       
  1036   transition(vtos, vtos);
       
  1037 
       
  1038   __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp);
       
  1039   __ push_ptr(R11_scratch1);
       
  1040 }
       
  1041 
       
  1042 void TemplateTable::dup_x1() {
       
  1043   transition(vtos, vtos);
       
  1044 
       
  1045   Register Ra = R11_scratch1,
       
  1046            Rb = R12_scratch2;
       
  1047   // stack: ..., a, b
       
  1048   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
       
  1049   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
       
  1050   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
       
  1051   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
       
  1052   __ push_ptr(Rb);
       
  1053   // stack: ..., b, a, b
       
  1054 }
       
  1055 
       
  1056 void TemplateTable::dup_x2() {
       
  1057   transition(vtos, vtos);
       
  1058 
       
  1059   Register Ra = R11_scratch1,
       
  1060            Rb = R12_scratch2,
       
  1061            Rc = R3_ARG1;
       
  1062 
       
  1063   // stack: ..., a, b, c
       
  1064   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);  // load c
       
  1065   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);  // load a
       
  1066   __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a
       
  1067   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);  // load b
       
  1068   // stack: ..., c, b, c
       
  1069   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b
       
  1070   // stack: ..., c, a, c
       
  1071   __ std(Rb, Interpreter::stackElementSize,     R15_esp); // store b in c
       
  1072   __ push_ptr(Rc);                                        // push c
       
  1073   // stack: ..., c, a, b, c
       
  1074 }
       
  1075 
       
  1076 void TemplateTable::dup2() {
       
  1077   transition(vtos, vtos);
       
  1078 
       
  1079   Register Ra = R11_scratch1,
       
  1080            Rb = R12_scratch2;
       
  1081   // stack: ..., a, b
       
  1082   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
       
  1083   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
       
  1084   __ push_2ptrs(Ra, Rb);
       
  1085   // stack: ..., a, b, a, b
       
  1086 }
       
  1087 
       
  1088 void TemplateTable::dup2_x1() {
       
  1089   transition(vtos, vtos);
       
  1090 
       
  1091   Register Ra = R11_scratch1,
       
  1092            Rb = R12_scratch2,
       
  1093            Rc = R3_ARG1;
       
  1094   // stack: ..., a, b, c
       
  1095   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);
       
  1096   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);
       
  1097   __ std(Rc, Interpreter::stackElementSize * 2, R15_esp);
       
  1098   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);
       
  1099   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
       
  1100   __ std(Rb, Interpreter::stackElementSize * 3, R15_esp);
       
  1101   // stack: ..., b, c, a
       
  1102   __ push_2ptrs(Rb, Rc);
       
  1103   // stack: ..., b, c, a, b, c
       
  1104 }
       
  1105 
       
  1106 void TemplateTable::dup2_x2() {
       
  1107   transition(vtos, vtos);
       
  1108 
       
  1109   Register Ra = R11_scratch1,
       
  1110            Rb = R12_scratch2,
       
  1111            Rc = R3_ARG1,
       
  1112            Rd = R4_ARG2;
       
  1113   // stack: ..., a, b, c, d
       
  1114   __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp);
       
  1115   __ ld(Rd, Interpreter::stackElementSize,     R15_esp);
       
  1116   __ std(Rb, Interpreter::stackElementSize,     R15_esp);  // store b in d
       
  1117   __ std(Rd, Interpreter::stackElementSize * 3, R15_esp);  // store d in b
       
  1118   __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp);
       
  1119   __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp);
       
  1120   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp);  // store a in c
       
  1121   __ std(Rc, Interpreter::stackElementSize * 4, R15_esp);  // store c in a
       
  1122   // stack: ..., c, d, a, b
       
  1123   __ push_2ptrs(Rc, Rd);
       
  1124   // stack: ..., c, d, a, b, c, d
       
  1125 }
       
  1126 
       
  1127 void TemplateTable::swap() {
       
  1128   transition(vtos, vtos);
       
  1129   // stack: ..., a, b
       
  1130 
       
  1131   Register Ra = R11_scratch1,
       
  1132            Rb = R12_scratch2;
       
  1133   // stack: ..., a, b
       
  1134   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
       
  1135   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
       
  1136   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
       
  1137   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
       
  1138   // stack: ..., b, a
       
  1139 }
       
  1140 
       
  1141 void TemplateTable::iop2(Operation op) {
       
  1142   transition(itos, itos);
       
  1143 
       
  1144   Register Rscratch = R11_scratch1;
       
  1145 
       
  1146   __ pop_i(Rscratch);
       
  1147   // tos  = number of bits to shift
       
  1148   // Rscratch = value to shift
       
  1149   switch (op) {
       
  1150     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
       
  1151     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
       
  1152     case  mul:   __ mullw(R17_tos, Rscratch, R17_tos); break;
       
  1153     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
       
  1154     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
       
  1155     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
       
  1156     case  shl:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break;
       
  1157     case  shr:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break;
       
  1158     case  ushr:  __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break;
       
  1159     default:     ShouldNotReachHere();
       
  1160   }
       
  1161 }
       
  1162 
       
  1163 void TemplateTable::lop2(Operation op) {
       
  1164   transition(ltos, ltos);
       
  1165 
       
  1166   Register Rscratch = R11_scratch1;
       
  1167   __ pop_l(Rscratch);
       
  1168   switch (op) {
       
  1169     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
       
  1170     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
       
  1171     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
       
  1172     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
       
  1173     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
       
  1174     default:     ShouldNotReachHere();
       
  1175   }
       
  1176 }
       
  1177 
       
  1178 void TemplateTable::idiv() {
       
  1179   transition(itos, itos);
       
  1180 
       
  1181   Label Lnormal, Lexception, Ldone;
       
  1182   Register Rdividend = R11_scratch1; // Used by irem.
       
  1183 
       
  1184   __ addi(R0, R17_tos, 1);
       
  1185   __ cmplwi(CCR0, R0, 2);
       
  1186   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
       
  1187 
       
  1188   __ cmpwi(CCR1, R17_tos, 0);
       
  1189   __ beq(CCR1, Lexception); // divisor == 0
       
  1190 
       
  1191   __ pop_i(Rdividend);
       
  1192   __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1
       
  1193   __ b(Ldone);
       
  1194 
       
  1195   __ bind(Lexception);
       
  1196   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
       
  1197   __ mtctr(R11_scratch1);
       
  1198   __ bctr();
       
  1199 
       
  1200   __ align(32, 12);
       
  1201   __ bind(Lnormal);
       
  1202   __ pop_i(Rdividend);
       
  1203   __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
       
  1204   __ bind(Ldone);
       
  1205 }
       
  1206 
       
  1207 void TemplateTable::irem() {
       
  1208   transition(itos, itos);
       
  1209 
       
  1210   __ mr(R12_scratch2, R17_tos);
       
  1211   idiv();
       
  1212   __ mullw(R17_tos, R17_tos, R12_scratch2);
       
  1213   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv.
       
  1214 }
       
  1215 
       
  1216 void TemplateTable::lmul() {
       
  1217   transition(ltos, ltos);
       
  1218 
       
  1219   __ pop_l(R11_scratch1);
       
  1220   __ mulld(R17_tos, R11_scratch1, R17_tos);
       
  1221 }
       
  1222 
       
  1223 void TemplateTable::ldiv() {
       
  1224   transition(ltos, ltos);
       
  1225 
       
  1226   Label Lnormal, Lexception, Ldone;
       
  1227   Register Rdividend = R11_scratch1; // Used by lrem.
       
  1228 
       
  1229   __ addi(R0, R17_tos, 1);
       
  1230   __ cmpldi(CCR0, R0, 2);
       
  1231   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
       
  1232 
       
  1233   __ cmpdi(CCR1, R17_tos, 0);
       
  1234   __ beq(CCR1, Lexception); // divisor == 0
       
  1235 
       
  1236   __ pop_l(Rdividend);
       
  1237   __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1
       
  1238   __ b(Ldone);
       
  1239 
       
  1240   __ bind(Lexception);
       
  1241   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
       
  1242   __ mtctr(R11_scratch1);
       
  1243   __ bctr();
       
  1244 
       
  1245   __ align(32, 12);
       
  1246   __ bind(Lnormal);
       
  1247   __ pop_l(Rdividend);
       
  1248   __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
       
  1249   __ bind(Ldone);
       
  1250 }
       
  1251 
       
  1252 void TemplateTable::lrem() {
       
  1253   transition(ltos, ltos);
       
  1254 
       
  1255   __ mr(R12_scratch2, R17_tos);
       
  1256   ldiv();
       
  1257   __ mulld(R17_tos, R17_tos, R12_scratch2);
       
  1258   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv.
       
  1259 }
       
  1260 
       
  1261 void TemplateTable::lshl() {
       
  1262   transition(itos, ltos);
       
  1263 
       
  1264   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
       
  1265   __ pop_l(R11_scratch1);
       
  1266   __ sld(R17_tos, R11_scratch1, R17_tos);
       
  1267 }
       
  1268 
       
  1269 void TemplateTable::lshr() {
       
  1270   transition(itos, ltos);
       
  1271 
       
  1272   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
       
  1273   __ pop_l(R11_scratch1);
       
  1274   __ srad(R17_tos, R11_scratch1, R17_tos);
       
  1275 }
       
  1276 
       
  1277 void TemplateTable::lushr() {
       
  1278   transition(itos, ltos);
       
  1279 
       
  1280   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
       
  1281   __ pop_l(R11_scratch1);
       
  1282   __ srd(R17_tos, R11_scratch1, R17_tos);
       
  1283 }
       
  1284 
       
  1285 void TemplateTable::fop2(Operation op) {
       
  1286   transition(ftos, ftos);
       
  1287 
       
  1288   switch (op) {
       
  1289     case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break;
       
  1290     case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break;
       
  1291     case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break;
       
  1292     case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break;
       
  1293     case rem:
       
  1294       __ pop_f(F1_ARG1);
       
  1295       __ fmr(F2_ARG2, F15_ftos);
       
  1296       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
       
  1297       __ fmr(F15_ftos, F1_RET);
       
  1298       break;
       
  1299 
       
  1300     default: ShouldNotReachHere();
       
  1301   }
       
  1302 }
       
  1303 
       
  1304 void TemplateTable::dop2(Operation op) {
       
  1305   transition(dtos, dtos);
       
  1306 
       
  1307   switch (op) {
       
  1308     case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break;
       
  1309     case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break;
       
  1310     case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break;
       
  1311     case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break;
       
  1312     case rem:
       
  1313       __ pop_d(F1_ARG1);
       
  1314       __ fmr(F2_ARG2, F15_ftos);
       
  1315       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
       
  1316       __ fmr(F15_ftos, F1_RET);
       
  1317       break;
       
  1318 
       
  1319     default: ShouldNotReachHere();
       
  1320   }
       
  1321 }
       
  1322 
       
  1323 // Negate the value in the TOS cache.
       
  1324 void TemplateTable::ineg() {
       
  1325   transition(itos, itos);
       
  1326 
       
  1327   __ neg(R17_tos, R17_tos);
       
  1328 }
       
  1329 
       
  1330 // Negate the value in the TOS cache.
       
  1331 void TemplateTable::lneg() {
       
  1332   transition(ltos, ltos);
       
  1333 
       
  1334   __ neg(R17_tos, R17_tos);
       
  1335 }
       
  1336 
       
  1337 void TemplateTable::fneg() {
       
  1338   transition(ftos, ftos);
       
  1339 
       
  1340   __ fneg(F15_ftos, F15_ftos);
       
  1341 }
       
  1342 
       
  1343 void TemplateTable::dneg() {
       
  1344   transition(dtos, dtos);
       
  1345 
       
  1346   __ fneg(F15_ftos, F15_ftos);
       
  1347 }
       
  1348 
       
  1349 // Increments a local variable in place.
       
  1350 void TemplateTable::iinc() {
       
  1351   transition(vtos, vtos);
       
  1352 
       
  1353   const Register Rindex     = R11_scratch1,
       
  1354                  Rincrement = R0,
       
  1355                  Rvalue     = R12_scratch2;
       
  1356 
       
  1357   locals_index(Rindex);              // Load locals index from bytecode stream.
       
  1358   __ lbz(Rincrement, 2, R14_bcp);    // Load increment from the bytecode stream.
       
  1359   __ extsb(Rincrement, Rincrement);
       
  1360 
       
  1361   __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex.
       
  1362 
       
  1363   __ add(Rvalue, Rincrement, Rvalue);
       
  1364   __ stw(Rvalue, 0, Rindex);
       
  1365 }
       
  1366 
       
  1367 void TemplateTable::wide_iinc() {
       
  1368   transition(vtos, vtos);
       
  1369 
       
  1370   Register Rindex       = R11_scratch1,
       
  1371            Rlocals_addr = Rindex,
       
  1372            Rincr        = R12_scratch2;
       
  1373   locals_index_wide(Rindex);
       
  1374   __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed);
       
  1375   __ load_local_int(R17_tos, Rlocals_addr, Rindex);
       
  1376   __ add(R17_tos, Rincr, R17_tos);
       
  1377   __ stw(R17_tos, 0, Rlocals_addr);
       
  1378 }
       
  1379 
       
  1380 void TemplateTable::convert() {
       
  1381   // %%%%% Factor this first part accross platforms
       
  1382 #ifdef ASSERT
       
  1383   TosState tos_in  = ilgl;
       
  1384   TosState tos_out = ilgl;
       
  1385   switch (bytecode()) {
       
  1386     case Bytecodes::_i2l: // fall through
       
  1387     case Bytecodes::_i2f: // fall through
       
  1388     case Bytecodes::_i2d: // fall through
       
  1389     case Bytecodes::_i2b: // fall through
       
  1390     case Bytecodes::_i2c: // fall through
       
  1391     case Bytecodes::_i2s: tos_in = itos; break;
       
  1392     case Bytecodes::_l2i: // fall through
       
  1393     case Bytecodes::_l2f: // fall through
       
  1394     case Bytecodes::_l2d: tos_in = ltos; break;
       
  1395     case Bytecodes::_f2i: // fall through
       
  1396     case Bytecodes::_f2l: // fall through
       
  1397     case Bytecodes::_f2d: tos_in = ftos; break;
       
  1398     case Bytecodes::_d2i: // fall through
       
  1399     case Bytecodes::_d2l: // fall through
       
  1400     case Bytecodes::_d2f: tos_in = dtos; break;
       
  1401     default             : ShouldNotReachHere();
       
  1402   }
       
  1403   switch (bytecode()) {
       
  1404     case Bytecodes::_l2i: // fall through
       
  1405     case Bytecodes::_f2i: // fall through
       
  1406     case Bytecodes::_d2i: // fall through
       
  1407     case Bytecodes::_i2b: // fall through
       
  1408     case Bytecodes::_i2c: // fall through
       
  1409     case Bytecodes::_i2s: tos_out = itos; break;
       
  1410     case Bytecodes::_i2l: // fall through
       
  1411     case Bytecodes::_f2l: // fall through
       
  1412     case Bytecodes::_d2l: tos_out = ltos; break;
       
  1413     case Bytecodes::_i2f: // fall through
       
  1414     case Bytecodes::_l2f: // fall through
       
  1415     case Bytecodes::_d2f: tos_out = ftos; break;
       
  1416     case Bytecodes::_i2d: // fall through
       
  1417     case Bytecodes::_l2d: // fall through
       
  1418     case Bytecodes::_f2d: tos_out = dtos; break;
       
  1419     default             : ShouldNotReachHere();
       
  1420   }
       
  1421   transition(tos_in, tos_out);
       
  1422 #endif
       
  1423 
       
  1424   // Conversion
       
  1425   Label done;
       
  1426   switch (bytecode()) {
       
  1427     case Bytecodes::_i2l:
       
  1428       __ extsw(R17_tos, R17_tos);
       
  1429       break;
       
  1430 
       
  1431     case Bytecodes::_l2i:
       
  1432       // Nothing to do, we'll continue to work with the lower bits.
       
  1433       break;
       
  1434 
       
  1435     case Bytecodes::_i2b:
       
  1436       __ extsb(R17_tos, R17_tos);
       
  1437       break;
       
  1438 
       
  1439     case Bytecodes::_i2c:
       
  1440       __ rldicl(R17_tos, R17_tos, 0, 64-2*8);
       
  1441       break;
       
  1442 
       
  1443     case Bytecodes::_i2s:
       
  1444       __ extsh(R17_tos, R17_tos);
       
  1445       break;
       
  1446 
       
  1447     case Bytecodes::_i2d:
       
  1448       __ extsw(R17_tos, R17_tos);
       
  1449     case Bytecodes::_l2d:
       
  1450       __ push_l_pop_d();
       
  1451       __ fcfid(F15_ftos, F15_ftos);
       
  1452       break;
       
  1453 
       
  1454     case Bytecodes::_i2f:
       
  1455       __ extsw(R17_tos, R17_tos);
       
  1456       __ push_l_pop_d();
       
  1457       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
       
  1458         // Comment: alternatively, load with sign extend could be done by lfiwax.
       
  1459         __ fcfids(F15_ftos, F15_ftos);
       
  1460       } else {
       
  1461         __ fcfid(F15_ftos, F15_ftos);
       
  1462         __ frsp(F15_ftos, F15_ftos);
       
  1463       }
       
  1464       break;
       
  1465 
       
  1466     case Bytecodes::_l2f:
       
  1467       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
       
  1468         __ push_l_pop_d();
       
  1469         __ fcfids(F15_ftos, F15_ftos);
       
  1470       } else {
       
  1471         // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp.
       
  1472         __ mr(R3_ARG1, R17_tos);
       
  1473         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f));
       
  1474         __ fmr(F15_ftos, F1_RET);
       
  1475       }
       
  1476       break;
       
  1477 
       
  1478     case Bytecodes::_f2d:
       
  1479       // empty
       
  1480       break;
       
  1481 
       
  1482     case Bytecodes::_d2f:
       
  1483       __ frsp(F15_ftos, F15_ftos);
       
  1484       break;
       
  1485 
       
  1486     case Bytecodes::_d2i:
       
  1487     case Bytecodes::_f2i:
       
  1488       __ fcmpu(CCR0, F15_ftos, F15_ftos);
       
  1489       __ li(R17_tos, 0); // 0 in case of NAN
       
  1490       __ bso(CCR0, done);
       
  1491       __ fctiwz(F15_ftos, F15_ftos);
       
  1492       __ push_d_pop_l();
       
  1493       break;
       
  1494 
       
  1495     case Bytecodes::_d2l:
       
  1496     case Bytecodes::_f2l:
       
  1497       __ fcmpu(CCR0, F15_ftos, F15_ftos);
       
  1498       __ li(R17_tos, 0); // 0 in case of NAN
       
  1499       __ bso(CCR0, done);
       
  1500       __ fctidz(F15_ftos, F15_ftos);
       
  1501       __ push_d_pop_l();
       
  1502       break;
       
  1503 
       
  1504     default: ShouldNotReachHere();
       
  1505   }
       
  1506   __ bind(done);
       
  1507 }
       
  1508 
       
  1509 // Long compare
       
  1510 void TemplateTable::lcmp() {
       
  1511   transition(ltos, itos);
       
  1512 
       
  1513   const Register Rscratch = R11_scratch1;
       
  1514   __ pop_l(Rscratch); // first operand, deeper in stack
       
  1515 
       
  1516   __ cmpd(CCR0, Rscratch, R17_tos); // compare
       
  1517   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
       
  1518   __ srwi(Rscratch, R17_tos, 30);
       
  1519   __ srawi(R17_tos, R17_tos, 31);
       
  1520   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
       
  1521 }
       
  1522 
       
  1523 // fcmpl/fcmpg and dcmpl/dcmpg bytecodes
       
  1524 // unordered_result == -1 => fcmpl or dcmpl
       
  1525 // unordered_result ==  1 => fcmpg or dcmpg
       
  1526 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
       
  1527   const FloatRegister Rfirst  = F0_SCRATCH,
       
  1528                       Rsecond = F15_ftos;
       
  1529   const Register Rscratch = R11_scratch1;
       
  1530 
       
  1531   if (is_float) {
       
  1532     __ pop_f(Rfirst);
       
  1533   } else {
       
  1534     __ pop_d(Rfirst);
       
  1535   }
       
  1536 
       
  1537   Label Lunordered, Ldone;
       
  1538   __ fcmpu(CCR0, Rfirst, Rsecond); // compare
       
  1539   if (unordered_result) {
       
  1540     __ bso(CCR0, Lunordered);
       
  1541   }
       
  1542   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
       
  1543   __ srwi(Rscratch, R17_tos, 30);
       
  1544   __ srawi(R17_tos, R17_tos, 31);
       
  1545   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
       
  1546   if (unordered_result) {
       
  1547     __ b(Ldone);
       
  1548     __ bind(Lunordered);
       
  1549     __ load_const_optimized(R17_tos, unordered_result);
       
  1550   }
       
  1551   __ bind(Ldone);
       
  1552 }
       
  1553 
       
  1554 // Branch_conditional which takes TemplateTable::Condition.
       
  1555 void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) {
       
  1556   bool positive = false;
       
  1557   Assembler::Condition cond = Assembler::equal;
       
  1558   switch (cc) {
       
  1559     case TemplateTable::equal:         positive = true ; cond = Assembler::equal  ; break;
       
  1560     case TemplateTable::not_equal:     positive = false; cond = Assembler::equal  ; break;
       
  1561     case TemplateTable::less:          positive = true ; cond = Assembler::less   ; break;
       
  1562     case TemplateTable::less_equal:    positive = false; cond = Assembler::greater; break;
       
  1563     case TemplateTable::greater:       positive = true ; cond = Assembler::greater; break;
       
  1564     case TemplateTable::greater_equal: positive = false; cond = Assembler::less   ; break;
       
  1565     default: ShouldNotReachHere();
       
  1566   }
       
  1567   int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
       
  1568   int bi = Assembler::bi0(crx, cond);
       
  1569   __ bc(bo, bi, L);
       
  1570 }
       
  1571 
       
  1572 void TemplateTable::branch(bool is_jsr, bool is_wide) {
       
  1573 
       
  1574   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
       
  1575   __ verify_thread();
       
  1576 
       
  1577   const Register Rscratch1    = R11_scratch1,
       
  1578                  Rscratch2    = R12_scratch2,
       
  1579                  Rscratch3    = R3_ARG1,
       
  1580                  R4_counters  = R4_ARG2,
       
  1581                  bumped_count = R31,
       
  1582                  Rdisp        = R22_tmp2;
       
  1583 
       
  1584   __ profile_taken_branch(Rscratch1, bumped_count);
       
  1585 
       
  1586   // Get (wide) offset.
       
  1587   if (is_wide) {
       
  1588     __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
       
  1589   } else {
       
  1590     __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
       
  1591   }
       
  1592 
       
  1593   // --------------------------------------------------------------------------
       
  1594   // Handle all the JSR stuff here, then exit.
       
  1595   // It's much shorter and cleaner than intermingling with the
       
  1596   // non-JSR normal-branch stuff occurring below.
       
  1597   if (is_jsr) {
       
  1598     // Compute return address as bci in Otos_i.
       
  1599     __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
       
  1600     __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3));
       
  1601     __ subf(R17_tos, Rscratch1, Rscratch2);
       
  1602 
       
  1603     // Bump bcp to target of JSR.
       
  1604     __ add(R14_bcp, Rdisp, R14_bcp);
       
  1605     // Push returnAddress for "ret" on stack.
       
  1606     __ push_ptr(R17_tos);
       
  1607     // And away we go!
       
  1608     __ dispatch_next(vtos);
       
  1609     return;
       
  1610   }
       
  1611 
       
  1612   // --------------------------------------------------------------------------
       
  1613   // Normal (non-jsr) branch handling
       
  1614 
       
  1615   const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
       
  1616   if (increment_invocation_counter_for_backward_branches) {
       
  1617     //__ unimplemented("branch invocation counter");
       
  1618 
       
  1619     Label Lforward;
       
  1620     __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
       
  1621 
       
  1622     // Check branch direction.
       
  1623     __ cmpdi(CCR0, Rdisp, 0);
       
  1624     __ bgt(CCR0, Lforward);
       
  1625 
       
  1626     __ get_method_counters(R19_method, R4_counters, Lforward);
       
  1627 
       
  1628     if (TieredCompilation) {
       
  1629       Label Lno_mdo, Loverflow;
       
  1630       const int increment = InvocationCounter::count_increment;
       
  1631       const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
       
  1632       if (ProfileInterpreter) {
       
  1633         Register Rmdo = Rscratch1;
       
  1634 
       
  1635         // If no method data exists, go to profile_continue.
       
  1636         __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
       
  1637         __ cmpdi(CCR0, Rmdo, 0);
       
  1638         __ beq(CCR0, Lno_mdo);
       
  1639 
       
  1640         // Increment backedge counter in the MDO.
       
  1641         const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
       
  1642         __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
       
  1643         __ load_const_optimized(Rscratch3, mask, R0);
       
  1644         __ addi(Rscratch2, Rscratch2, increment);
       
  1645         __ stw(Rscratch2, mdo_bc_offs, Rmdo);
       
  1646         __ and_(Rscratch3, Rscratch2, Rscratch3);
       
  1647         __ bne(CCR0, Lforward);
       
  1648         __ b(Loverflow);
       
  1649       }
       
  1650 
       
  1651       // If there's no MDO, increment counter in method.
       
  1652       const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
       
  1653       __ bind(Lno_mdo);
       
  1654       __ lwz(Rscratch2, mo_bc_offs, R4_counters);
       
  1655       __ load_const_optimized(Rscratch3, mask, R0);
       
  1656       __ addi(Rscratch2, Rscratch2, increment);
       
  1657       __ stw(Rscratch2, mo_bc_offs, R19_method);
       
  1658       __ and_(Rscratch3, Rscratch2, Rscratch3);
       
  1659       __ bne(CCR0, Lforward);
       
  1660 
       
  1661       __ bind(Loverflow);
       
  1662 
       
  1663       // Notify point for loop, pass branch bytecode.
       
  1664       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true);
       
  1665 
       
  1666       // Was an OSR adapter generated?
       
  1667       // O0 = osr nmethod
       
  1668       __ cmpdi(CCR0, R3_RET, 0);
       
  1669       __ beq(CCR0, Lforward);
       
  1670 
       
  1671       // Has the nmethod been invalidated already?
       
  1672       __ lwz(R0, nmethod::entry_bci_offset(), R3_RET);
       
  1673       __ cmpwi(CCR0, R0, InvalidOSREntryBci);
       
  1674       __ beq(CCR0, Lforward);
       
  1675 
       
  1676       // Migrate the interpreter frame off of the stack.
       
  1677       // We can use all registers because we will not return to interpreter from this point.
       
  1678 
       
  1679       // Save nmethod.
       
  1680       const Register osr_nmethod = R31;
       
  1681       __ mr(osr_nmethod, R3_RET);
       
  1682       __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
       
  1683       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
       
  1684       __ reset_last_Java_frame();
       
  1685       // OSR buffer is in ARG1.
       
  1686 
       
  1687       // Remove the interpreter frame.
       
  1688       __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
       
  1689 
       
  1690       // Jump to the osr code.
       
  1691       __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
       
  1692       __ mtlr(R0);
       
  1693       __ mtctr(R11_scratch1);
       
  1694       __ bctr();
       
  1695 
       
  1696     } else {
       
  1697 
       
  1698       const Register invoke_ctr = Rscratch1;
       
  1699       // Update Backedge branch separately from invocations.
       
  1700       __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3);
       
  1701 
       
  1702       if (ProfileInterpreter) {
       
  1703         __ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward);
       
  1704         if (UseOnStackReplacement) {
       
  1705           __ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2);
       
  1706         }
       
  1707       } else {
       
  1708         if (UseOnStackReplacement) {
       
  1709           __ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2);
       
  1710         }
       
  1711       }
       
  1712     }
       
  1713 
       
  1714     __ bind(Lforward);
       
  1715 
       
  1716   } else {
       
  1717     // Bump bytecode pointer by displacement (take the branch).
       
  1718     __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
       
  1719   }
       
  1720   // Continue with bytecode @ target.
       
  1721   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
       
  1722   // %%%%% and changing dispatch_next to dispatch_only.
       
  1723   __ dispatch_next(vtos);
       
  1724 }
       
  1725 
       
  1726 // Helper function for if_cmp* methods below.
       
  1727 // Factored out common compare and branch code.
       
  1728 void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) {
       
  1729   Label Lnot_taken;
       
  1730   // Note: The condition code we get is the condition under which we
       
  1731   // *fall through*! So we have to inverse the CC here.
       
  1732 
       
  1733   if (is_jint) {
       
  1734     if (cmp0) {
       
  1735       __ cmpwi(CCR0, Rfirst, 0);
       
  1736     } else {
       
  1737       __ cmpw(CCR0, Rfirst, Rsecond);
       
  1738     }
       
  1739   } else {
       
  1740     if (cmp0) {
       
  1741       __ cmpdi(CCR0, Rfirst, 0);
       
  1742     } else {
       
  1743       __ cmpd(CCR0, Rfirst, Rsecond);
       
  1744     }
       
  1745   }
       
  1746   branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true);
       
  1747 
       
  1748   // Conition is false => Jump!
       
  1749   branch(false, false);
       
  1750 
       
  1751   // Condition is not true => Continue.
       
  1752   __ align(32, 12);
       
  1753   __ bind(Lnot_taken);
       
  1754   __ profile_not_taken_branch(Rscratch1, Rscratch2);
       
  1755 }
       
  1756 
       
  1757 // Compare integer values with zero and fall through if CC holds, branch away otherwise.
       
  1758 void TemplateTable::if_0cmp(Condition cc) {
       
  1759   transition(itos, vtos);
       
  1760 
       
  1761   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true);
       
  1762 }
       
  1763 
       
  1764 // Compare integer values and fall through if CC holds, branch away otherwise.
       
  1765 //
       
  1766 // Interface:
       
  1767 //  - Rfirst: First operand  (older stack value)
       
  1768 //  - tos:    Second operand (younger stack value)
       
  1769 void TemplateTable::if_icmp(Condition cc) {
       
  1770   transition(itos, vtos);
       
  1771 
       
  1772   const Register Rfirst  = R0,
       
  1773                  Rsecond = R17_tos;
       
  1774 
       
  1775   __ pop_i(Rfirst);
       
  1776   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false);
       
  1777 }
       
  1778 
       
  1779 void TemplateTable::if_nullcmp(Condition cc) {
       
  1780   transition(atos, vtos);
       
  1781 
       
  1782   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true);
       
  1783 }
       
  1784 
       
  1785 void TemplateTable::if_acmp(Condition cc) {
       
  1786   transition(atos, vtos);
       
  1787 
       
  1788   const Register Rfirst  = R0,
       
  1789                  Rsecond = R17_tos;
       
  1790 
       
  1791   __ pop_ptr(Rfirst);
       
  1792   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false);
       
  1793 }
       
  1794 
       
  1795 void TemplateTable::ret() {
       
  1796   locals_index(R11_scratch1);
       
  1797   __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1);
       
  1798 
       
  1799   __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2);
       
  1800 
       
  1801   __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
       
  1802   __ add(R11_scratch1, R17_tos, R11_scratch1);
       
  1803   __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
       
  1804   __ dispatch_next(vtos);
       
  1805 }
       
  1806 
       
  1807 void TemplateTable::wide_ret() {
       
  1808   transition(vtos, vtos);
       
  1809 
       
  1810   const Register Rindex = R3_ARG1,
       
  1811                  Rscratch1 = R11_scratch1,
       
  1812                  Rscratch2 = R12_scratch2;
       
  1813 
       
  1814   locals_index_wide(Rindex);
       
  1815   __ load_local_ptr(R17_tos, R17_tos, Rindex);
       
  1816   __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2);
       
  1817   // Tos now contains the bci, compute the bcp from that.
       
  1818   __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
       
  1819   __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset()));
       
  1820   __ add(R14_bcp, Rscratch1, Rscratch2);
       
  1821   __ dispatch_next(vtos);
       
  1822 }
       
  1823 
       
  1824 void TemplateTable::tableswitch() {
       
  1825   transition(itos, vtos);
       
  1826 
       
  1827   Label Ldispatch, Ldefault_case;
       
  1828   Register Rlow_byte         = R3_ARG1,
       
  1829            Rindex            = Rlow_byte,
       
  1830            Rhigh_byte        = R4_ARG2,
       
  1831            Rdef_offset_addr  = R5_ARG3, // is going to contain address of default offset
       
  1832            Rscratch1         = R11_scratch1,
       
  1833            Rscratch2         = R12_scratch2,
       
  1834            Roffset           = R6_ARG4;
       
  1835 
       
  1836   // Align bcp.
       
  1837   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
       
  1838   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
       
  1839 
       
  1840   // Load lo & hi.
       
  1841   __ lwz(Rlow_byte, BytesPerInt, Rdef_offset_addr);
       
  1842   __ lwz(Rhigh_byte, BytesPerInt * 2, Rdef_offset_addr);
       
  1843 
       
  1844   // Check for default case (=index outside [low,high]).
       
  1845   __ cmpw(CCR0, R17_tos, Rlow_byte);
       
  1846   __ cmpw(CCR1, R17_tos, Rhigh_byte);
       
  1847   __ blt(CCR0, Ldefault_case);
       
  1848   __ bgt(CCR1, Ldefault_case);
       
  1849 
       
  1850   // Lookup dispatch offset.
       
  1851   __ sub(Rindex, R17_tos, Rlow_byte);
       
  1852   __ extsw(Rindex, Rindex);
       
  1853   __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2);
       
  1854   __ sldi(Rindex, Rindex, LogBytesPerInt);
       
  1855   __ addi(Rindex, Rindex, 3 * BytesPerInt);
       
  1856   __ lwax(Roffset, Rdef_offset_addr, Rindex);
       
  1857   __ b(Ldispatch);
       
  1858 
       
  1859   __ bind(Ldefault_case);
       
  1860   __ profile_switch_default(Rhigh_byte, Rscratch1);
       
  1861   __ lwa(Roffset, 0, Rdef_offset_addr);
       
  1862 
       
  1863   __ bind(Ldispatch);
       
  1864 
       
  1865   __ add(R14_bcp, Roffset, R14_bcp);
       
  1866   __ dispatch_next(vtos);
       
  1867 }
       
  1868 
       
  1869 void TemplateTable::lookupswitch() {
       
  1870   transition(itos, itos);
       
  1871   __ stop("lookupswitch bytecode should have been rewritten");
       
  1872 }
       
  1873 
       
  1874 // Table switch using linear search through cases.
       
  1875 // Bytecode stream format:
       
  1876 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
       
  1877 // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
       
  1878 void TemplateTable::fast_linearswitch() {
       
  1879   transition(itos, vtos);
       
  1880 
       
  1881   Label Lloop_entry, Lsearch_loop, Lfound, Lcontinue_execution, Ldefault_case;
       
  1882 
       
  1883   Register Rcount           = R3_ARG1,
       
  1884            Rcurrent_pair    = R4_ARG2,
       
  1885            Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset.
       
  1886            Roffset          = R31,     // Might need to survive C call.
       
  1887            Rvalue           = R12_scratch2,
       
  1888            Rscratch         = R11_scratch1,
       
  1889            Rcmp_value       = R17_tos;
       
  1890 
       
  1891   // Align bcp.
       
  1892   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
       
  1893   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
       
  1894 
       
  1895   // Setup loop counter and limit.
       
  1896   __ lwz(Rcount, BytesPerInt, Rdef_offset_addr);    // Load count.
       
  1897   __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair.
       
  1898 
       
  1899   // Set up search loop.
       
  1900   __ cmpwi(CCR0, Rcount, 0);
       
  1901   __ beq(CCR0, Ldefault_case);
       
  1902 
       
  1903   __ mtctr(Rcount);
       
  1904 
       
  1905   // linear table search
       
  1906   __ bind(Lsearch_loop);
       
  1907 
       
  1908   __ lwz(Rvalue, 0, Rcurrent_pair);
       
  1909   __ lwa(Roffset, 1 * BytesPerInt, Rcurrent_pair);
       
  1910 
       
  1911   __ cmpw(CCR0, Rvalue, Rcmp_value);
       
  1912   __ beq(CCR0, Lfound);
       
  1913 
       
  1914   __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt);
       
  1915   __ bdnz(Lsearch_loop);
       
  1916 
       
  1917   // default case
       
  1918   __ bind(Ldefault_case);
       
  1919 
       
  1920   __ lwa(Roffset, 0, Rdef_offset_addr);
       
  1921   if (ProfileInterpreter) {
       
  1922     __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */);
       
  1923     __ b(Lcontinue_execution);
       
  1924   }
       
  1925 
       
  1926   // Entry found, skip Roffset bytecodes and continue.
       
  1927   __ bind(Lfound);
       
  1928   if (ProfileInterpreter) {
       
  1929     // Calc the num of the pair we hit. Careful, Rcurrent_pair points 2 ints
       
  1930     // beyond the actual current pair due to the auto update load above!
       
  1931     __ sub(Rcurrent_pair, Rcurrent_pair, Rdef_offset_addr);
       
  1932     __ addi(Rcurrent_pair, Rcurrent_pair, - 2 * BytesPerInt);
       
  1933     __ srdi(Rcurrent_pair, Rcurrent_pair, LogBytesPerInt + 1);
       
  1934     __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch);
       
  1935     __ bind(Lcontinue_execution);
       
  1936   }
       
  1937   __ add(R14_bcp, Roffset, R14_bcp);
       
  1938   __ dispatch_next(vtos);
       
  1939 }
       
  1940 
       
  1941 // Table switch using binary search (value/offset pairs are ordered).
       
  1942 // Bytecode stream format:
       
  1943 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
       
  1944 // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
       
  1945 void TemplateTable::fast_binaryswitch() {
       
  1946 
       
  1947   transition(itos, vtos);
       
  1948   // Implementation using the following core algorithm: (copied from Intel)
       
  1949   //
       
  1950   // int binary_search(int key, LookupswitchPair* array, int n) {
       
  1951   //   // Binary search according to "Methodik des Programmierens" by
       
  1952   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
       
  1953   //   int i = 0;
       
  1954   //   int j = n;
       
  1955   //   while (i+1 < j) {
       
  1956   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
       
  1957   //     // with      Q: for all i: 0 <= i < n: key < a[i]
       
  1958   //     // where a stands for the array and assuming that the (inexisting)
       
  1959   //     // element a[n] is infinitely big.
       
  1960   //     int h = (i + j) >> 1;
       
  1961   //     // i < h < j
       
  1962   //     if (key < array[h].fast_match()) {
       
  1963   //       j = h;
       
  1964   //     } else {
       
  1965   //       i = h;
       
  1966   //     }
       
  1967   //   }
       
  1968   //   // R: a[i] <= key < a[i+1] or Q
       
  1969   //   // (i.e., if key is within array, i is the correct index)
       
  1970   //   return i;
       
  1971   // }
       
  1972 
       
  1973   // register allocation
       
  1974   const Register Rkey     = R17_tos;          // already set (tosca)
       
  1975   const Register Rarray   = R3_ARG1;
       
  1976   const Register Ri       = R4_ARG2;
       
  1977   const Register Rj       = R5_ARG3;
       
  1978   const Register Rh       = R6_ARG4;
       
  1979   const Register Rscratch = R11_scratch1;
       
  1980 
       
  1981   const int log_entry_size = 3;
       
  1982   const int entry_size = 1 << log_entry_size;
       
  1983 
       
  1984   Label found;
       
  1985 
       
  1986   // Find Array start,
       
  1987   __ addi(Rarray, R14_bcp, 3 * BytesPerInt);
       
  1988   __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt));
       
  1989 
       
  1990   // initialize i & j
       
  1991   __ li(Ri,0);
       
  1992   __ lwz(Rj, -BytesPerInt, Rarray);
       
  1993 
       
  1994   // and start.
       
  1995   Label entry;
       
  1996   __ b(entry);
       
  1997 
       
  1998   // binary search loop
       
  1999   { Label loop;
       
  2000     __ bind(loop);
       
  2001     // int h = (i + j) >> 1;
       
  2002     __ srdi(Rh, Rh, 1);
       
  2003     // if (key < array[h].fast_match()) {
       
  2004     //   j = h;
       
  2005     // } else {
       
  2006     //   i = h;
       
  2007     // }
       
  2008     __ sldi(Rscratch, Rh, log_entry_size);
       
  2009     __ lwzx(Rscratch, Rscratch, Rarray);
       
  2010 
       
  2011     // if (key < current value)
       
  2012     //   Rh = Rj
       
  2013     // else
       
  2014     //   Rh = Ri
       
  2015     Label Lgreater;
       
  2016     __ cmpw(CCR0, Rkey, Rscratch);
       
  2017     __ bge(CCR0, Lgreater);
       
  2018     __ mr(Rj, Rh);
       
  2019     __ b(entry);
       
  2020     __ bind(Lgreater);
       
  2021     __ mr(Ri, Rh);
       
  2022 
       
  2023     // while (i+1 < j)
       
  2024     __ bind(entry);
       
  2025     __ addi(Rscratch, Ri, 1);
       
  2026     __ cmpw(CCR0, Rscratch, Rj);
       
  2027     __ add(Rh, Ri, Rj); // start h = i + j >> 1;
       
  2028 
       
  2029     __ blt(CCR0, loop);
       
  2030   }
       
  2031 
       
  2032   // End of binary search, result index is i (must check again!).
       
  2033   Label default_case;
       
  2034   Label continue_execution;
       
  2035   if (ProfileInterpreter) {
       
  2036     __ mr(Rh, Ri);              // Save index in i for profiling.
       
  2037   }
       
  2038   // Ri = value offset
       
  2039   __ sldi(Ri, Ri, log_entry_size);
       
  2040   __ add(Ri, Ri, Rarray);
       
  2041   __ lwz(Rscratch, 0, Ri);
       
  2042 
       
  2043   Label not_found;
       
  2044   // Ri = offset offset
       
  2045   __ cmpw(CCR0, Rkey, Rscratch);
       
  2046   __ beq(CCR0, not_found);
       
  2047   // entry not found -> j = default offset
       
  2048   __ lwz(Rj, -2 * BytesPerInt, Rarray);
       
  2049   __ b(default_case);
       
  2050 
       
  2051   __ bind(not_found);
       
  2052   // entry found -> j = offset
       
  2053   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
       
  2054   __ lwz(Rj, BytesPerInt, Ri);
       
  2055 
       
  2056   if (ProfileInterpreter) {
       
  2057     __ b(continue_execution);
       
  2058   }
       
  2059 
       
  2060   __ bind(default_case); // fall through (if not profiling)
       
  2061   __ profile_switch_default(Ri, Rscratch);
       
  2062 
       
  2063   __ bind(continue_execution);
       
  2064 
       
  2065   __ extsw(Rj, Rj);
       
  2066   __ add(R14_bcp, Rj, R14_bcp);
       
  2067   __ dispatch_next(vtos);
       
  2068 }
       
  2069 
       
  2070 void TemplateTable::_return(TosState state) {
       
  2071   transition(state, state);
       
  2072   assert(_desc->calls_vm(),
       
  2073          "inconsistent calls_vm information"); // call in remove_activation
       
  2074 
       
  2075   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
       
  2076 
       
  2077     Register Rscratch     = R11_scratch1,
       
  2078              Rklass       = R12_scratch2,
       
  2079              Rklass_flags = Rklass;
       
  2080     Label Lskip_register_finalizer;
       
  2081 
       
  2082     // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case.
       
  2083     assert(state == vtos, "only valid state");
       
  2084     __ ld(R17_tos, 0, R18_locals);
       
  2085 
       
  2086     // Load klass of this obj.
       
  2087     __ load_klass(Rklass, R17_tos);
       
  2088     __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass);
       
  2089     __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER));
       
  2090     __ bfalse(CCR0, Lskip_register_finalizer);
       
  2091 
       
  2092     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */);
       
  2093 
       
  2094     __ align(32, 12);
       
  2095     __ bind(Lskip_register_finalizer);
       
  2096   }
       
  2097 
       
  2098   // Move the result value into the correct register and remove memory stack frame.
       
  2099   __ remove_activation(state, /* throw_monitor_exception */ true);
       
  2100   // Restoration of lr done by remove_activation.
       
  2101   switch (state) {
       
  2102     case ltos:
       
  2103     case btos:
       
  2104     case ctos:
       
  2105     case stos:
       
  2106     case atos:
       
  2107     case itos: __ mr(R3_RET, R17_tos); break;
       
  2108     case ftos:
       
  2109     case dtos: __ fmr(F1_RET, F15_ftos); break;
       
  2110     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
       
  2111                // to get visible before the reference to the object gets stored anywhere.
       
  2112                __ membar(Assembler::StoreStore); break;
       
  2113     default  : ShouldNotReachHere();
       
  2114   }
       
  2115   __ blr();
       
  2116 }
       
  2117 
       
  2118 // ============================================================================
       
  2119 // Constant pool cache access
       
  2120 //
       
  2121 // Memory ordering:
       
  2122 //
       
  2123 // Like done in C++ interpreter, we load the fields
       
  2124 //   - _indices
       
  2125 //   - _f12_oop
       
  2126 // acquired, because these are asked if the cache is already resolved. We don't
       
  2127 // want to float loads above this check.
       
  2128 // See also comments in ConstantPoolCacheEntry::bytecode_1(),
       
  2129 // ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1();
       
  2130 
       
  2131 // Call into the VM if call site is not yet resolved
       
  2132 //
       
  2133 // Input regs:
       
  2134 //   - None, all passed regs are outputs.
       
  2135 //
       
  2136 // Returns:
       
  2137 //   - Rcache:  The const pool cache entry that contains the resolved result.
       
  2138 //   - Rresult: Either noreg or output for f1/f2.
       
  2139 //
       
  2140 // Kills:
       
  2141 //   - Rscratch
       
  2142 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) {
       
  2143 
       
  2144   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
       
  2145   Label Lresolved, Ldone;
       
  2146 
       
  2147   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
       
  2148   // We are resolved if the indices offset contains the current bytecode.
       
  2149   // Big Endian:
       
  2150   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache);
       
  2151   // Acquire by cmp-br-isync (see below).
       
  2152   __ cmpdi(CCR0, Rscratch, (int)bytecode());
       
  2153   __ beq(CCR0, Lresolved);
       
  2154 
       
  2155   address entry = NULL;
       
  2156   switch (bytecode()) {
       
  2157     case Bytecodes::_getstatic      : // fall through
       
  2158     case Bytecodes::_putstatic      : // fall through
       
  2159     case Bytecodes::_getfield       : // fall through
       
  2160     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
       
  2161     case Bytecodes::_invokevirtual  : // fall through
       
  2162     case Bytecodes::_invokespecial  : // fall through
       
  2163     case Bytecodes::_invokestatic   : // fall through
       
  2164     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
       
  2165     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
       
  2166     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
       
  2167     default                         : ShouldNotReachHere(); break;
       
  2168   }
       
  2169   __ li(R4_ARG2, (int)bytecode());
       
  2170   __ call_VM(noreg, entry, R4_ARG2, true);
       
  2171 
       
  2172   // Update registers with resolved info.
       
  2173   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
       
  2174   __ b(Ldone);
       
  2175 
       
  2176   __ bind(Lresolved);
       
  2177   __ isync(); // Order load wrt. succeeding loads.
       
  2178   __ bind(Ldone);
       
  2179 }
       
  2180 
       
  2181 // Load the constant pool cache entry at field accesses into registers.
       
  2182 // The Rcache and Rindex registers must be set before call.
       
  2183 // Input:
       
  2184 //   - Rcache, Rindex
       
  2185 // Output:
       
  2186 //   - Robj, Roffset, Rflags
       
  2187 void TemplateTable::load_field_cp_cache_entry(Register Robj,
       
  2188                                               Register Rcache,
       
  2189                                               Register Rindex /* unused on PPC64 */,
       
  2190                                               Register Roffset,
       
  2191                                               Register Rflags,
       
  2192                                               bool is_static = false) {
       
  2193   assert_different_registers(Rcache, Rflags, Roffset);
       
  2194   // assert(Rindex == noreg, "parameter not used on PPC64");
       
  2195 
       
  2196   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
       
  2197   __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache);
       
  2198   __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache);
       
  2199   if (is_static) {
       
  2200     __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache);
       
  2201     __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj);
       
  2202     // Acquire not needed here. Following access has an address dependency on this value.
       
  2203   }
       
  2204 }
       
  2205 
       
  2206 // Load the constant pool cache entry at invokes into registers.
       
  2207 // Resolve if necessary.
       
  2208 
       
  2209 // Input Registers:
       
  2210 //   - None, bcp is used, though
       
  2211 //
       
  2212 // Return registers:
       
  2213 //   - Rmethod       (f1 field or f2 if invokevirtual)
       
  2214 //   - Ritable_index (f2 field)
       
  2215 //   - Rflags        (flags field)
       
  2216 //
       
  2217 // Kills:
       
  2218 //   - R21
       
  2219 //
       
  2220 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
       
  2221                                                Register Rmethod,
       
  2222                                                Register Ritable_index,
       
  2223                                                Register Rflags,
       
  2224                                                bool is_invokevirtual,
       
  2225                                                bool is_invokevfinal,
       
  2226                                                bool is_invokedynamic) {
       
  2227 
       
  2228   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
       
  2229   // Determine constant pool cache field offsets.
       
  2230   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
       
  2231   const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset()));
       
  2232   const int flags_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset());
       
  2233   // Access constant pool cache fields.
       
  2234   const int index_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset());
       
  2235 
       
  2236   Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP.
       
  2237 
       
  2238   if (is_invokevfinal) {
       
  2239     assert(Ritable_index == noreg, "register not used");
       
  2240     // Already resolved.
       
  2241     __ get_cache_and_index_at_bcp(Rcache, 1);
       
  2242   } else {
       
  2243     resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2));
       
  2244   }
       
  2245 
       
  2246   __ ld(Rmethod, method_offset, Rcache);
       
  2247   __ ld(Rflags, flags_offset, Rcache);
       
  2248 
       
  2249   if (Ritable_index != noreg) {
       
  2250     __ ld(Ritable_index, index_offset, Rcache);
       
  2251   }
       
  2252 }
       
  2253 
       
  2254 // ============================================================================
       
  2255 // Field access
       
  2256 
       
  2257 // Volatile variables demand their effects be made known to all CPU's
       
  2258 // in order. Store buffers on most chips allow reads & writes to
       
  2259 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
       
  2260 // without some kind of memory barrier (i.e., it's not sufficient that
       
  2261 // the interpreter does not reorder volatile references, the hardware
       
  2262 // also must not reorder them).
       
  2263 //
       
  2264 // According to the new Java Memory Model (JMM):
       
  2265 // (1) All volatiles are serialized wrt to each other. ALSO reads &
       
  2266 //     writes act as aquire & release, so:
       
  2267 // (2) A read cannot let unrelated NON-volatile memory refs that
       
  2268 //     happen after the read float up to before the read. It's OK for
       
  2269 //     non-volatile memory refs that happen before the volatile read to
       
  2270 //     float down below it.
       
  2271 // (3) Similar a volatile write cannot let unrelated NON-volatile
       
  2272 //     memory refs that happen BEFORE the write float down to after the
       
  2273 //     write. It's OK for non-volatile memory refs that happen after the
       
  2274 //     volatile write to float up before it.
       
  2275 //
       
  2276 // We only put in barriers around volatile refs (they are expensive),
       
  2277 // not _between_ memory refs (that would require us to track the
       
  2278 // flavor of the previous memory refs). Requirements (2) and (3)
       
  2279 // require some barriers before volatile stores and after volatile
       
  2280 // loads. These nearly cover requirement (1) but miss the
       
  2281 // volatile-store-volatile-load case.  This final case is placed after
       
  2282 // volatile-stores although it could just as well go before
       
  2283 // volatile-loads.
       
  2284 
       
  2285 // The registers cache and index expected to be set before call.
       
  2286 // Correct values of the cache and index registers are preserved.
       
  2287 // Kills:
       
  2288 //   Rcache (if has_tos)
       
  2289 //   Rscratch
       
  2290 void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) {
       
  2291 
       
  2292   assert_different_registers(Rcache, Rscratch);
       
  2293 
       
  2294   if (JvmtiExport::can_post_field_access()) {
       
  2295     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
       
  2296     Label Lno_field_access_post;
       
  2297 
       
  2298     // Check if post field access in enabled.
       
  2299     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true);
       
  2300     __ lwz(Rscratch, offs, Rscratch);
       
  2301 
       
  2302     __ cmpwi(CCR0, Rscratch, 0);
       
  2303     __ beq(CCR0, Lno_field_access_post);
       
  2304 
       
  2305     // Post access enabled - do it!
       
  2306     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
       
  2307     if (is_static) {
       
  2308       __ li(R17_tos, 0);
       
  2309     } else {
       
  2310       if (has_tos) {
       
  2311         // The fast bytecode versions have obj ptr in register.
       
  2312         // Thus, save object pointer before call_VM() clobbers it
       
  2313         // put object on tos where GC wants it.
       
  2314         __ push_ptr(R17_tos);
       
  2315       } else {
       
  2316         // Load top of stack (do not pop the value off the stack).
       
  2317         __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp);
       
  2318       }
       
  2319       __ verify_oop(R17_tos);
       
  2320     }
       
  2321     // tos:   object pointer or NULL if static
       
  2322     // cache: cache entry pointer
       
  2323     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache);
       
  2324     if (!is_static && has_tos) {
       
  2325       // Restore object pointer.
       
  2326       __ pop_ptr(R17_tos);
       
  2327       __ verify_oop(R17_tos);
       
  2328     } else {
       
  2329       // Cache is still needed to get class or obj.
       
  2330       __ get_cache_and_index_at_bcp(Rcache, 1);
       
  2331     }
       
  2332 
       
  2333     __ align(32, 12);
       
  2334     __ bind(Lno_field_access_post);
       
  2335   }
       
  2336 }
       
  2337 
       
  2338 // kills R11_scratch1
       
  2339 void TemplateTable::pop_and_check_object(Register Roop) {
       
  2340   Register Rtmp = R11_scratch1;
       
  2341 
       
  2342   assert_different_registers(Rtmp, Roop);
       
  2343   __ pop_ptr(Roop);
       
  2344   // For field access must check obj.
       
  2345   __ null_check_throw(Roop, -1, Rtmp);
       
  2346   __ verify_oop(Roop);
       
  2347 }
       
  2348 
       
  2349 // PPC64: implement volatile loads as fence-store-acquire.
       
  2350 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
       
  2351   transition(vtos, vtos);
       
  2352 
       
  2353   Label Lacquire, Lisync;
       
  2354 
       
  2355   const Register Rcache        = R3_ARG1,
       
  2356                  Rclass_or_obj = R22_tmp2,
       
  2357                  Roffset       = R23_tmp3,
       
  2358                  Rflags        = R31,
       
  2359                  Rbtable       = R5_ARG3,
       
  2360                  Rbc           = R6_ARG4,
       
  2361                  Rscratch      = R12_scratch2;
       
  2362 
       
  2363   static address field_branch_table[number_of_states],
       
  2364                  static_branch_table[number_of_states];
       
  2365 
       
  2366   address* branch_table = is_static ? static_branch_table : field_branch_table;
       
  2367 
       
  2368   // Get field offset.
       
  2369   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
       
  2370 
       
  2371   // JVMTI support
       
  2372   jvmti_post_field_access(Rcache, Rscratch, is_static, false);
       
  2373 
       
  2374   // Load after possible GC.
       
  2375   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
       
  2376 
       
  2377   // Load pointer to branch table.
       
  2378   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
       
  2379 
       
  2380   // Get volatile flag.
       
  2381   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
       
  2382   // Note: sync is needed before volatile load on PPC64.
       
  2383 
       
  2384   // Check field type.
       
  2385   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
       
  2386 
       
  2387 #ifdef ASSERT
       
  2388   Label LFlagInvalid;
       
  2389   __ cmpldi(CCR0, Rflags, number_of_states);
       
  2390   __ bge(CCR0, LFlagInvalid);
       
  2391 #endif
       
  2392 
       
  2393   // Load from branch table and dispatch (volatile case: one instruction ahead).
       
  2394   __ sldi(Rflags, Rflags, LogBytesPerWord);
       
  2395   __ cmpwi(CCR6, Rscratch, 1); // Volatile?
       
  2396   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
  2397     __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0.
       
  2398   }
       
  2399   __ ldx(Rbtable, Rbtable, Rflags);
       
  2400 
       
  2401   // Get the obj from stack.
       
  2402   if (!is_static) {
       
  2403     pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
       
  2404   } else {
       
  2405     __ verify_oop(Rclass_or_obj);
       
  2406   }
       
  2407 
       
  2408   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
  2409     __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
       
  2410   }
       
  2411   __ mtctr(Rbtable);
       
  2412   __ bctr();
       
  2413 
       
  2414 #ifdef ASSERT
       
  2415   __ bind(LFlagInvalid);
       
  2416   __ stop("got invalid flag", 0x654);
       
  2417 
       
  2418   // __ bind(Lvtos);
       
  2419   address pc_before_fence = __ pc();
       
  2420   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2421   assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
       
  2422   assert(branch_table[vtos] == 0, "can't compute twice");
       
  2423   branch_table[vtos] = __ pc(); // non-volatile_entry point
       
  2424   __ stop("vtos unexpected", 0x655);
       
  2425 #endif
       
  2426 
       
  2427   __ align(32, 28, 28); // Align load.
       
  2428   // __ bind(Ldtos);
       
  2429   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2430   assert(branch_table[dtos] == 0, "can't compute twice");
       
  2431   branch_table[dtos] = __ pc(); // non-volatile_entry point
       
  2432   __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
       
  2433   __ push(dtos);
       
  2434   if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch);
       
  2435   {
       
  2436     Label acquire_double;
       
  2437     __ beq(CCR6, acquire_double); // Volatile?
       
  2438     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2439 
       
  2440     __ bind(acquire_double);
       
  2441     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
       
  2442     __ beq_predict_taken(CCR0, Lisync);
       
  2443     __ b(Lisync); // In case of NAN.
       
  2444   }
       
  2445 
       
  2446   __ align(32, 28, 28); // Align load.
       
  2447   // __ bind(Lftos);
       
  2448   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2449   assert(branch_table[ftos] == 0, "can't compute twice");
       
  2450   branch_table[ftos] = __ pc(); // non-volatile_entry point
       
  2451   __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
       
  2452   __ push(ftos);
       
  2453   if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); }
       
  2454   {
       
  2455     Label acquire_float;
       
  2456     __ beq(CCR6, acquire_float); // Volatile?
       
  2457     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2458 
       
  2459     __ bind(acquire_float);
       
  2460     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
       
  2461     __ beq_predict_taken(CCR0, Lisync);
       
  2462     __ b(Lisync); // In case of NAN.
       
  2463   }
       
  2464 
       
  2465   __ align(32, 28, 28); // Align load.
       
  2466   // __ bind(Litos);
       
  2467   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2468   assert(branch_table[itos] == 0, "can't compute twice");
       
  2469   branch_table[itos] = __ pc(); // non-volatile_entry point
       
  2470   __ lwax(R17_tos, Rclass_or_obj, Roffset);
       
  2471   __ push(itos);
       
  2472   if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch);
       
  2473   __ beq(CCR6, Lacquire); // Volatile?
       
  2474   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2475 
       
  2476   __ align(32, 28, 28); // Align load.
       
  2477   // __ bind(Lltos);
       
  2478   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2479   assert(branch_table[ltos] == 0, "can't compute twice");
       
  2480   branch_table[ltos] = __ pc(); // non-volatile_entry point
       
  2481   __ ldx(R17_tos, Rclass_or_obj, Roffset);
       
  2482   __ push(ltos);
       
  2483   if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch);
       
  2484   __ beq(CCR6, Lacquire); // Volatile?
       
  2485   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2486 
       
  2487   __ align(32, 28, 28); // Align load.
       
  2488   // __ bind(Lbtos);
       
  2489   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2490   assert(branch_table[btos] == 0, "can't compute twice");
       
  2491   branch_table[btos] = __ pc(); // non-volatile_entry point
       
  2492   __ lbzx(R17_tos, Rclass_or_obj, Roffset);
       
  2493   __ extsb(R17_tos, R17_tos);
       
  2494   __ push(btos);
       
  2495   if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
       
  2496   __ beq(CCR6, Lacquire); // Volatile?
       
  2497   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2498 
       
  2499   __ align(32, 28, 28); // Align load.
       
  2500   // __ bind(Lctos);
       
  2501   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2502   assert(branch_table[ctos] == 0, "can't compute twice");
       
  2503   branch_table[ctos] = __ pc(); // non-volatile_entry point
       
  2504   __ lhzx(R17_tos, Rclass_or_obj, Roffset);
       
  2505   __ push(ctos);
       
  2506   if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch);
       
  2507   __ beq(CCR6, Lacquire); // Volatile?
       
  2508   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2509 
       
  2510   __ align(32, 28, 28); // Align load.
       
  2511   // __ bind(Lstos);
       
  2512   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2513   assert(branch_table[stos] == 0, "can't compute twice");
       
  2514   branch_table[stos] = __ pc(); // non-volatile_entry point
       
  2515   __ lhax(R17_tos, Rclass_or_obj, Roffset);
       
  2516   __ push(stos);
       
  2517   if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch);
       
  2518   __ beq(CCR6, Lacquire); // Volatile?
       
  2519   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2520 
       
  2521   __ align(32, 28, 28); // Align load.
       
  2522   // __ bind(Latos);
       
  2523   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2524   assert(branch_table[atos] == 0, "can't compute twice");
       
  2525   branch_table[atos] = __ pc(); // non-volatile_entry point
       
  2526   __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
       
  2527   __ verify_oop(R17_tos);
       
  2528   __ push(atos);
       
  2529   //__ dcbt(R17_tos); // prefetch
       
  2530   if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch);
       
  2531   __ beq(CCR6, Lacquire); // Volatile?
       
  2532   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2533 
       
  2534   __ align(32, 12);
       
  2535   __ bind(Lacquire);
       
  2536   __ twi_0(R17_tos);
       
  2537   __ bind(Lisync);
       
  2538   __ isync(); // acquire
       
  2539 
       
  2540 #ifdef ASSERT
       
  2541   for (int i = 0; i<number_of_states; ++i) {
       
  2542     assert(branch_table[i], "get initialization");
       
  2543     //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
       
  2544     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
       
  2545   }
       
  2546 #endif
       
  2547 }
       
  2548 
       
  2549 void TemplateTable::getfield(int byte_no) {
       
  2550   getfield_or_static(byte_no, false);
       
  2551 }
       
  2552 
       
  2553 void TemplateTable::getstatic(int byte_no) {
       
  2554   getfield_or_static(byte_no, true);
       
  2555 }
       
  2556 
       
  2557 // The registers cache and index expected to be set before call.
       
  2558 // The function may destroy various registers, just not the cache and index registers.
       
  2559 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) {
       
  2560 
       
  2561   assert_different_registers(Rcache, Rscratch, R6_ARG4);
       
  2562 
       
  2563   if (JvmtiExport::can_post_field_modification()) {
       
  2564     Label Lno_field_mod_post;
       
  2565 
       
  2566     // Check if post field access in enabled.
       
  2567     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true);
       
  2568     __ lwz(Rscratch, offs, Rscratch);
       
  2569 
       
  2570     __ cmpwi(CCR0, Rscratch, 0);
       
  2571     __ beq(CCR0, Lno_field_mod_post);
       
  2572 
       
  2573     // Do the post
       
  2574     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
       
  2575     const Register Robj = Rscratch;
       
  2576 
       
  2577     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
       
  2578     if (is_static) {
       
  2579       // Life is simple. Null out the object pointer.
       
  2580       __ li(Robj, 0);
       
  2581     } else {
       
  2582       // In case of the fast versions, value lives in registers => put it back on tos.
       
  2583       int offs = Interpreter::expr_offset_in_bytes(0);
       
  2584       Register base = R15_esp;
       
  2585       switch(bytecode()) {
       
  2586         case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break;
       
  2587         case Bytecodes::_fast_iputfield: // Fall through
       
  2588         case Bytecodes::_fast_bputfield: // Fall through
       
  2589         case Bytecodes::_fast_cputfield: // Fall through
       
  2590         case Bytecodes::_fast_sputfield: __ push_i(); offs+=  Interpreter::stackElementSize; break;
       
  2591         case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break;
       
  2592         case Bytecodes::_fast_fputfield: __ push_f(); offs+=  Interpreter::stackElementSize; break;
       
  2593         case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break;
       
  2594         default: {
       
  2595           offs = 0;
       
  2596           base = Robj;
       
  2597           const Register Rflags = Robj;
       
  2598           Label is_one_slot;
       
  2599           // Life is harder. The stack holds the value on top, followed by the
       
  2600           // object. We don't know the size of the value, though; it could be
       
  2601           // one or two words depending on its type. As a result, we must find
       
  2602           // the type to determine where the object is.
       
  2603           __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian
       
  2604           __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
       
  2605 
       
  2606           __ cmpwi(CCR0, Rflags, ltos);
       
  2607           __ cmpwi(CCR1, Rflags, dtos);
       
  2608           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1));
       
  2609           __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
       
  2610           __ beq(CCR0, is_one_slot);
       
  2611           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2));
       
  2612           __ bind(is_one_slot);
       
  2613           break;
       
  2614         }
       
  2615       }
       
  2616       __ ld(Robj, offs, base);
       
  2617       __ verify_oop(Robj);
       
  2618     }
       
  2619 
       
  2620     __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0));
       
  2621     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4);
       
  2622     __ get_cache_and_index_at_bcp(Rcache, 1);
       
  2623 
       
  2624     // In case of the fast versions, value lives in registers => put it back on tos.
       
  2625     switch(bytecode()) {
       
  2626       case Bytecodes::_fast_aputfield: __ pop_ptr(); break;
       
  2627       case Bytecodes::_fast_iputfield: // Fall through
       
  2628       case Bytecodes::_fast_bputfield: // Fall through
       
  2629       case Bytecodes::_fast_cputfield: // Fall through
       
  2630       case Bytecodes::_fast_sputfield: __ pop_i(); break;
       
  2631       case Bytecodes::_fast_lputfield: __ pop_l(); break;
       
  2632       case Bytecodes::_fast_fputfield: __ pop_f(); break;
       
  2633       case Bytecodes::_fast_dputfield: __ pop_d(); break;
       
  2634       default: break; // Nothin' to do.
       
  2635     }
       
  2636 
       
  2637     __ align(32, 12);
       
  2638     __ bind(Lno_field_mod_post);
       
  2639   }
       
  2640 }
       
  2641 
       
  2642 // PPC64: implement volatile stores as release-store (return bytecode contains an additional release).
       
  2643 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
       
  2644   Label Lvolatile;
       
  2645 
       
  2646   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
       
  2647                  Rclass_or_obj = R31,      // Needs to survive C call.
       
  2648                  Roffset       = R22_tmp2, // Needs to survive C call.
       
  2649                  Rflags        = R3_ARG1,
       
  2650                  Rbtable       = R4_ARG2,
       
  2651                  Rscratch      = R11_scratch1,
       
  2652                  Rscratch2     = R12_scratch2,
       
  2653                  Rscratch3     = R6_ARG4,
       
  2654                  Rbc           = Rscratch3;
       
  2655   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
       
  2656 
       
  2657   static address field_branch_table[number_of_states],
       
  2658                  static_branch_table[number_of_states];
       
  2659 
       
  2660   address* branch_table = is_static ? static_branch_table : field_branch_table;
       
  2661 
       
  2662   // Stack (grows up):
       
  2663   //  value
       
  2664   //  obj
       
  2665 
       
  2666   // Load the field offset.
       
  2667   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
       
  2668   jvmti_post_field_mod(Rcache, Rscratch, is_static);
       
  2669   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
       
  2670 
       
  2671   // Load pointer to branch table.
       
  2672   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
       
  2673 
       
  2674   // Get volatile flag.
       
  2675   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
       
  2676 
       
  2677   // Check the field type.
       
  2678   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
       
  2679 
       
  2680 #ifdef ASSERT
       
  2681   Label LFlagInvalid;
       
  2682   __ cmpldi(CCR0, Rflags, number_of_states);
       
  2683   __ bge(CCR0, LFlagInvalid);
       
  2684 #endif
       
  2685 
       
  2686   // Load from branch table and dispatch (volatile case: one instruction ahead).
       
  2687   __ sldi(Rflags, Rflags, LogBytesPerWord);
       
  2688   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile?
       
  2689   __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0.
       
  2690   __ ldx(Rbtable, Rbtable, Rflags);
       
  2691 
       
  2692   __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
       
  2693   __ mtctr(Rbtable);
       
  2694   __ bctr();
       
  2695 
       
  2696 #ifdef ASSERT
       
  2697   __ bind(LFlagInvalid);
       
  2698   __ stop("got invalid flag", 0x656);
       
  2699 
       
  2700   // __ bind(Lvtos);
       
  2701   address pc_before_release = __ pc();
       
  2702   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2703   assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
       
  2704   assert(branch_table[vtos] == 0, "can't compute twice");
       
  2705   branch_table[vtos] = __ pc(); // non-volatile_entry point
       
  2706   __ stop("vtos unexpected", 0x657);
       
  2707 #endif
       
  2708 
       
  2709   __ align(32, 28, 28); // Align pop.
       
  2710   // __ bind(Ldtos);
       
  2711   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2712   assert(branch_table[dtos] == 0, "can't compute twice");
       
  2713   branch_table[dtos] = __ pc(); // non-volatile_entry point
       
  2714   __ pop(dtos);
       
  2715   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
       
  2716   __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
       
  2717   if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); }
       
  2718   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
  2719     __ beq(CR_is_vol, Lvolatile); // Volatile?
       
  2720   }
       
  2721   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2722 
       
  2723   __ align(32, 28, 28); // Align pop.
       
  2724   // __ bind(Lftos);
       
  2725   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2726   assert(branch_table[ftos] == 0, "can't compute twice");
       
  2727   branch_table[ftos] = __ pc(); // non-volatile_entry point
       
  2728   __ pop(ftos);
       
  2729   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
       
  2730   __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
       
  2731   if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); }
       
  2732   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
  2733     __ beq(CR_is_vol, Lvolatile); // Volatile?
       
  2734   }
       
  2735   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2736 
       
  2737   __ align(32, 28, 28); // Align pop.
       
  2738   // __ bind(Litos);
       
  2739   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2740   assert(branch_table[itos] == 0, "can't compute twice");
       
  2741   branch_table[itos] = __ pc(); // non-volatile_entry point
       
  2742   __ pop(itos);
       
  2743   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
       
  2744   __ stwx(R17_tos, Rclass_or_obj, Roffset);
       
  2745   if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); }
       
  2746   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
  2747     __ beq(CR_is_vol, Lvolatile); // Volatile?
       
  2748   }
       
  2749   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2750 
       
  2751   __ align(32, 28, 28); // Align pop.
       
  2752   // __ bind(Lltos);
       
  2753   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2754   assert(branch_table[ltos] == 0, "can't compute twice");
       
  2755   branch_table[ltos] = __ pc(); // non-volatile_entry point
       
  2756   __ pop(ltos);
       
  2757   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
       
  2758   __ stdx(R17_tos, Rclass_or_obj, Roffset);
       
  2759   if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); }
       
  2760   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
  2761     __ beq(CR_is_vol, Lvolatile); // Volatile?
       
  2762   }
       
  2763   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2764 
       
  2765   __ align(32, 28, 28); // Align pop.
       
  2766   // __ bind(Lbtos);
       
  2767   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2768   assert(branch_table[btos] == 0, "can't compute twice");
       
  2769   branch_table[btos] = __ pc(); // non-volatile_entry point
       
  2770   __ pop(btos);
       
  2771   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
       
  2772   __ stbx(R17_tos, Rclass_or_obj, Roffset);
       
  2773   if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); }
       
  2774   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
  2775     __ beq(CR_is_vol, Lvolatile); // Volatile?
       
  2776   }
       
  2777   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2778 
       
  2779   __ align(32, 28, 28); // Align pop.
       
  2780   // __ bind(Lctos);
       
  2781   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2782   assert(branch_table[ctos] == 0, "can't compute twice");
       
  2783   branch_table[ctos] = __ pc(); // non-volatile_entry point
       
  2784   __ pop(ctos);
       
  2785   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1..
       
  2786   __ sthx(R17_tos, Rclass_or_obj, Roffset);
       
  2787   if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); }
       
  2788   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
  2789     __ beq(CR_is_vol, Lvolatile); // Volatile?
       
  2790   }
       
  2791   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2792 
       
  2793   __ align(32, 28, 28); // Align pop.
       
  2794   // __ bind(Lstos);
       
  2795   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2796   assert(branch_table[stos] == 0, "can't compute twice");
       
  2797   branch_table[stos] = __ pc(); // non-volatile_entry point
       
  2798   __ pop(stos);
       
  2799   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
       
  2800   __ sthx(R17_tos, Rclass_or_obj, Roffset);
       
  2801   if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); }
       
  2802   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
  2803     __ beq(CR_is_vol, Lvolatile); // Volatile?
       
  2804   }
       
  2805   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2806 
       
  2807   __ align(32, 28, 28); // Align pop.
       
  2808   // __ bind(Latos);
       
  2809   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
       
  2810   assert(branch_table[atos] == 0, "can't compute twice");
       
  2811   branch_table[atos] = __ pc(); // non-volatile_entry point
       
  2812   __ pop(atos);
       
  2813   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
       
  2814   do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
       
  2815   if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); }
       
  2816   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
  2817     __ beq(CR_is_vol, Lvolatile); // Volatile?
       
  2818     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2819 
       
  2820     __ align(32, 12);
       
  2821     __ bind(Lvolatile);
       
  2822     __ fence();
       
  2823   }
       
  2824   // fallthru: __ b(Lexit);
       
  2825 
       
  2826 #ifdef ASSERT
       
  2827   for (int i = 0; i<number_of_states; ++i) {
       
  2828     assert(branch_table[i], "put initialization");
       
  2829     //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
       
  2830     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
       
  2831   }
       
  2832 #endif
       
  2833 }
       
  2834 
       
  2835 void TemplateTable::putfield(int byte_no) {
       
  2836   putfield_or_static(byte_no, false);
       
  2837 }
       
  2838 
       
  2839 void TemplateTable::putstatic(int byte_no) {
       
  2840   putfield_or_static(byte_no, true);
       
  2841 }
       
  2842 
       
  2843 // See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job.
       
  2844 void TemplateTable::jvmti_post_fast_field_mod() {
       
  2845   __ should_not_reach_here();
       
  2846 }
       
  2847 
       
  2848 void TemplateTable::fast_storefield(TosState state) {
       
  2849   transition(state, vtos);
       
  2850 
       
  2851   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
       
  2852                  Rclass_or_obj = R31,      // Needs to survive C call.
       
  2853                  Roffset       = R22_tmp2, // Needs to survive C call.
       
  2854                  Rflags        = R3_ARG1,
       
  2855                  Rscratch      = R11_scratch1,
       
  2856                  Rscratch2     = R12_scratch2,
       
  2857                  Rscratch3     = R4_ARG2;
       
  2858   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
       
  2859 
       
  2860   // Constant pool already resolved => Load flags and offset of field.
       
  2861   __ get_cache_and_index_at_bcp(Rcache, 1);
       
  2862   jvmti_post_field_mod(Rcache, Rscratch, false /* not static */);
       
  2863   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
       
  2864 
       
  2865   // Get the obj and the final store addr.
       
  2866   pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
       
  2867 
       
  2868   // Get volatile flag.
       
  2869   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
       
  2870   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); }
       
  2871   {
       
  2872     Label LnotVolatile;
       
  2873     __ beq(CCR0, LnotVolatile);
       
  2874     __ release();
       
  2875     __ align(32, 12);
       
  2876     __ bind(LnotVolatile);
       
  2877   }
       
  2878 
       
  2879   // Do the store and fencing.
       
  2880   switch(bytecode()) {
       
  2881     case Bytecodes::_fast_aputfield:
       
  2882       // Store into the field.
       
  2883       do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
       
  2884       break;
       
  2885 
       
  2886     case Bytecodes::_fast_iputfield:
       
  2887       __ stwx(R17_tos, Rclass_or_obj, Roffset);
       
  2888       break;
       
  2889 
       
  2890     case Bytecodes::_fast_lputfield:
       
  2891       __ stdx(R17_tos, Rclass_or_obj, Roffset);
       
  2892       break;
       
  2893 
       
  2894     case Bytecodes::_fast_bputfield:
       
  2895       __ stbx(R17_tos, Rclass_or_obj, Roffset);
       
  2896       break;
       
  2897 
       
  2898     case Bytecodes::_fast_cputfield:
       
  2899     case Bytecodes::_fast_sputfield:
       
  2900       __ sthx(R17_tos, Rclass_or_obj, Roffset);
       
  2901       break;
       
  2902 
       
  2903     case Bytecodes::_fast_fputfield:
       
  2904       __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
       
  2905       break;
       
  2906 
       
  2907     case Bytecodes::_fast_dputfield:
       
  2908       __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
       
  2909       break;
       
  2910 
       
  2911     default: ShouldNotReachHere();
       
  2912   }
       
  2913 
       
  2914   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
  2915     Label LVolatile;
       
  2916     __ beq(CR_is_vol, LVolatile);
       
  2917     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
       
  2918 
       
  2919     __ align(32, 12);
       
  2920     __ bind(LVolatile);
       
  2921     __ fence();
       
  2922   }
       
  2923 }
       
  2924 
       
  2925 void TemplateTable::fast_accessfield(TosState state) {
       
  2926   transition(atos, state);
       
  2927 
       
  2928   Label LisVolatile;
       
  2929   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
       
  2930 
       
  2931   const Register Rcache        = R3_ARG1,
       
  2932                  Rclass_or_obj = R17_tos,
       
  2933                  Roffset       = R22_tmp2,
       
  2934                  Rflags        = R23_tmp3,
       
  2935                  Rscratch      = R12_scratch2;
       
  2936 
       
  2937   // Constant pool already resolved. Get the field offset.
       
  2938   __ get_cache_and_index_at_bcp(Rcache, 1);
       
  2939   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
       
  2940 
       
  2941   // JVMTI support
       
  2942   jvmti_post_field_access(Rcache, Rscratch, false, true);
       
  2943 
       
  2944   // Get the load address.
       
  2945   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
       
  2946 
       
  2947   // Get volatile flag.
       
  2948   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
       
  2949   __ bne(CCR0, LisVolatile);
       
  2950 
       
  2951   switch(bytecode()) {
       
  2952     case Bytecodes::_fast_agetfield:
       
  2953     {
       
  2954       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
       
  2955       __ verify_oop(R17_tos);
       
  2956       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
       
  2957 
       
  2958       __ bind(LisVolatile);
       
  2959       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
       
  2960       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
       
  2961       __ verify_oop(R17_tos);
       
  2962       __ twi_0(R17_tos);
       
  2963       __ isync();
       
  2964       break;
       
  2965     }
       
  2966     case Bytecodes::_fast_igetfield:
       
  2967     {
       
  2968       __ lwax(R17_tos, Rclass_or_obj, Roffset);
       
  2969       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
       
  2970 
       
  2971       __ bind(LisVolatile);
       
  2972       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
       
  2973       __ lwax(R17_tos, Rclass_or_obj, Roffset);
       
  2974       __ twi_0(R17_tos);
       
  2975       __ isync();
       
  2976       break;
       
  2977     }
       
  2978     case Bytecodes::_fast_lgetfield:
       
  2979     {
       
  2980       __ ldx(R17_tos, Rclass_or_obj, Roffset);
       
  2981       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
       
  2982 
       
  2983       __ bind(LisVolatile);
       
  2984       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
       
  2985       __ ldx(R17_tos, Rclass_or_obj, Roffset);
       
  2986       __ twi_0(R17_tos);
       
  2987       __ isync();
       
  2988       break;
       
  2989     }
       
  2990     case Bytecodes::_fast_bgetfield:
       
  2991     {
       
  2992       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
       
  2993       __ extsb(R17_tos, R17_tos);
       
  2994       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
       
  2995 
       
  2996       __ bind(LisVolatile);
       
  2997       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
       
  2998       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
       
  2999       __ twi_0(R17_tos);
       
  3000       __ extsb(R17_tos, R17_tos);
       
  3001       __ isync();
       
  3002       break;
       
  3003     }
       
  3004     case Bytecodes::_fast_cgetfield:
       
  3005     {
       
  3006       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
       
  3007       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
       
  3008 
       
  3009       __ bind(LisVolatile);
       
  3010       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
       
  3011       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
       
  3012       __ twi_0(R17_tos);
       
  3013       __ isync();
       
  3014       break;
       
  3015     }
       
  3016     case Bytecodes::_fast_sgetfield:
       
  3017     {
       
  3018       __ lhax(R17_tos, Rclass_or_obj, Roffset);
       
  3019       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
       
  3020 
       
  3021       __ bind(LisVolatile);
       
  3022       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
       
  3023       __ lhax(R17_tos, Rclass_or_obj, Roffset);
       
  3024       __ twi_0(R17_tos);
       
  3025       __ isync();
       
  3026       break;
       
  3027     }
       
  3028     case Bytecodes::_fast_fgetfield:
       
  3029     {
       
  3030       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
       
  3031       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
       
  3032 
       
  3033       __ bind(LisVolatile);
       
  3034       Label Ldummy;
       
  3035       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
       
  3036       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
       
  3037       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
       
  3038       __ bne_predict_not_taken(CCR0, Ldummy);
       
  3039       __ bind(Ldummy);
       
  3040       __ isync();
       
  3041       break;
       
  3042     }
       
  3043     case Bytecodes::_fast_dgetfield:
       
  3044     {
       
  3045       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
       
  3046       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
       
  3047 
       
  3048       __ bind(LisVolatile);
       
  3049       Label Ldummy;
       
  3050       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
       
  3051       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
       
  3052       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
       
  3053       __ bne_predict_not_taken(CCR0, Ldummy);
       
  3054       __ bind(Ldummy);
       
  3055       __ isync();
       
  3056       break;
       
  3057     }
       
  3058     default: ShouldNotReachHere();
       
  3059   }
       
  3060 }
       
  3061 
       
  3062 void TemplateTable::fast_xaccess(TosState state) {
       
  3063   transition(vtos, state);
       
  3064 
       
  3065   Label LisVolatile;
       
  3066   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
       
  3067   const Register Rcache        = R3_ARG1,
       
  3068                  Rclass_or_obj = R17_tos,
       
  3069                  Roffset       = R22_tmp2,
       
  3070                  Rflags        = R23_tmp3,
       
  3071                  Rscratch      = R12_scratch2;
       
  3072 
       
  3073   __ ld(Rclass_or_obj, 0, R18_locals);
       
  3074 
       
  3075   // Constant pool already resolved. Get the field offset.
       
  3076   __ get_cache_and_index_at_bcp(Rcache, 2);
       
  3077   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
       
  3078 
       
  3079   // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches.
       
  3080 
       
  3081   // Needed to report exception at the correct bcp.
       
  3082   __ addi(R14_bcp, R14_bcp, 1);
       
  3083 
       
  3084   // Get the load address.
       
  3085   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
       
  3086 
       
  3087   // Get volatile flag.
       
  3088   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
       
  3089   __ bne(CCR0, LisVolatile);
       
  3090 
       
  3091   switch(state) {
       
  3092   case atos:
       
  3093     {
       
  3094       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
       
  3095       __ verify_oop(R17_tos);
       
  3096       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
       
  3097 
       
  3098       __ bind(LisVolatile);
       
  3099       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
       
  3100       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
       
  3101       __ verify_oop(R17_tos);
       
  3102       __ twi_0(R17_tos);
       
  3103       __ isync();
       
  3104       break;
       
  3105     }
       
  3106   case itos:
       
  3107     {
       
  3108       __ lwax(R17_tos, Rclass_or_obj, Roffset);
       
  3109       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
       
  3110 
       
  3111       __ bind(LisVolatile);
       
  3112       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
       
  3113       __ lwax(R17_tos, Rclass_or_obj, Roffset);
       
  3114       __ twi_0(R17_tos);
       
  3115       __ isync();
       
  3116       break;
       
  3117     }
       
  3118   case ftos:
       
  3119     {
       
  3120       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
       
  3121       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
       
  3122 
       
  3123       __ bind(LisVolatile);
       
  3124       Label Ldummy;
       
  3125       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
       
  3126       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
       
  3127       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
       
  3128       __ bne_predict_not_taken(CCR0, Ldummy);
       
  3129       __ bind(Ldummy);
       
  3130       __ isync();
       
  3131       break;
       
  3132     }
       
  3133   default: ShouldNotReachHere();
       
  3134   }
       
  3135   __ addi(R14_bcp, R14_bcp, -1);
       
  3136 }
       
  3137 
       
  3138 // ============================================================================
       
  3139 // Calls
       
  3140 
       
  3141 // Common code for invoke
       
  3142 //
       
  3143 // Input:
       
  3144 //   - byte_no
       
  3145 //
       
  3146 // Output:
       
  3147 //   - Rmethod:        The method to invoke next.
       
  3148 //   - Rret_addr:      The return address to return to.
       
  3149 //   - Rindex:         MethodType (invokehandle) or CallSite obj (invokedynamic)
       
  3150 //   - Rrecv:          Cache for "this" pointer, might be noreg if static call.
       
  3151 //   - Rflags:         Method flags from const pool cache.
       
  3152 //
       
  3153 //  Kills:
       
  3154 //   - Rscratch1
       
  3155 //
       
  3156 void TemplateTable::prepare_invoke(int byte_no,
       
  3157                                    Register Rmethod,  // linked method (or i-klass)
       
  3158                                    Register Rret_addr,// return address
       
  3159                                    Register Rindex,   // itable index, MethodType, etc.
       
  3160                                    Register Rrecv,    // If caller wants to see it.
       
  3161                                    Register Rflags,   // If caller wants to test it.
       
  3162                                    Register Rscratch
       
  3163                                    ) {
       
  3164   // Determine flags.
       
  3165   const Bytecodes::Code code = bytecode();
       
  3166   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
       
  3167   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
       
  3168   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
       
  3169   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
       
  3170   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
       
  3171   const bool load_receiver       = (Rrecv != noreg);
       
  3172   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
       
  3173 
       
  3174   assert_different_registers(Rmethod, Rindex, Rflags, Rscratch);
       
  3175   assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch);
       
  3176   assert_different_registers(Rret_addr, Rscratch);
       
  3177 
       
  3178   load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic);
       
  3179 
       
  3180   // Saving of SP done in call_from_interpreter.
       
  3181 
       
  3182   // Maybe push "appendix" to arguments.
       
  3183   if (is_invokedynamic || is_invokehandle) {
       
  3184     Label Ldone;
       
  3185     __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63);
       
  3186     __ beq(CCR0, Ldone);
       
  3187     // Push "appendix" (MethodType, CallSite, etc.).
       
  3188     // This must be done before we get the receiver,
       
  3189     // since the parameter_size includes it.
       
  3190     __ load_resolved_reference_at_index(Rscratch, Rindex);
       
  3191     __ verify_oop(Rscratch);
       
  3192     __ push_ptr(Rscratch);
       
  3193     __ bind(Ldone);
       
  3194   }
       
  3195 
       
  3196   // Load receiver if needed (after appendix is pushed so parameter size is correct).
       
  3197   if (load_receiver) {
       
  3198     const Register Rparam_count = Rscratch;
       
  3199     __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask);
       
  3200     __ load_receiver(Rparam_count, Rrecv);
       
  3201     __ verify_oop(Rrecv);
       
  3202   }
       
  3203 
       
  3204   // Get return address.
       
  3205   {
       
  3206     Register Rtable_addr = Rscratch;
       
  3207     Register Rret_type = Rret_addr;
       
  3208     address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
       
  3209 
       
  3210     // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
       
  3211     __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
       
  3212     __ load_dispatch_table(Rtable_addr, (address*)table_addr);
       
  3213     __ sldi(Rret_type, Rret_type, LogBytesPerWord);
       
  3214     // Get return address.
       
  3215     __ ldx(Rret_addr, Rtable_addr, Rret_type);
       
  3216   }
       
  3217 }
       
  3218 
       
  3219 // Helper for virtual calls. Load target out of vtable and jump off!
       
  3220 // Kills all passed registers.
       
  3221 void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) {
       
  3222 
       
  3223   assert_different_registers(Rrecv_klass, Rtemp, Rret);
       
  3224   const Register Rtarget_method = Rindex;
       
  3225 
       
  3226   // Get target method & entry point.
       
  3227   const int base = InstanceKlass::vtable_start_offset() * wordSize;
       
  3228   // Calc vtable addr scale the vtable index by 8.
       
  3229   __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize));
       
  3230   // Load target.
       
  3231   __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes());
       
  3232   __ ldx(Rtarget_method, Rindex, Rrecv_klass);
       
  3233   __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */);
       
  3234 }
       
  3235 
       
  3236 // Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time.
       
  3237 void TemplateTable::invokevirtual(int byte_no) {
       
  3238   transition(vtos, vtos);
       
  3239 
       
  3240   Register Rtable_addr = R11_scratch1,
       
  3241            Rret_type = R12_scratch2,
       
  3242            Rret_addr = R5_ARG3,
       
  3243            Rflags = R22_tmp2, // Should survive C call.
       
  3244            Rrecv = R3_ARG1,
       
  3245            Rrecv_klass = Rrecv,
       
  3246            Rvtableindex_or_method = R31, // Should survive C call.
       
  3247            Rnum_params = R4_ARG2,
       
  3248            Rnew_bc = R6_ARG4;
       
  3249 
       
  3250   Label LnotFinal;
       
  3251 
       
  3252   load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false);
       
  3253 
       
  3254   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
       
  3255   __ bfalse(CCR0, LnotFinal);
       
  3256 
       
  3257   patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2);
       
  3258   invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2);
       
  3259 
       
  3260   __ align(32, 12);
       
  3261   __ bind(LnotFinal);
       
  3262   // Load "this" pointer (receiver).
       
  3263   __ rldicl(Rnum_params, Rflags, 64, 48);
       
  3264   __ load_receiver(Rnum_params, Rrecv);
       
  3265   __ verify_oop(Rrecv);
       
  3266 
       
  3267   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
       
  3268   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
       
  3269   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
       
  3270   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
       
  3271   __ ldx(Rret_addr, Rret_type, Rtable_addr);
       
  3272   __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1);
       
  3273   __ load_klass(Rrecv_klass, Rrecv);
       
  3274   __ verify_klass_ptr(Rrecv_klass);
       
  3275   __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false);
       
  3276 
       
  3277   generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1);
       
  3278 }
       
  3279 
       
  3280 void TemplateTable::fast_invokevfinal(int byte_no) {
       
  3281   transition(vtos, vtos);
       
  3282 
       
  3283   assert(byte_no == f2_byte, "use this argument");
       
  3284   Register Rflags  = R22_tmp2,
       
  3285            Rmethod = R31;
       
  3286   load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false);
       
  3287   invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2);
       
  3288 }
       
  3289 
       
  3290 void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) {
       
  3291 
       
  3292   assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2);
       
  3293 
       
  3294   // Load receiver from stack slot.
       
  3295   Register Rrecv = Rscratch2;
       
  3296   Register Rnum_params = Rrecv;
       
  3297 
       
  3298   __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod);
       
  3299   __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params);
       
  3300 
       
  3301   // Get return address.
       
  3302   Register Rtable_addr = Rscratch1,
       
  3303            Rret_addr   = Rflags,
       
  3304            Rret_type   = Rret_addr;
       
  3305   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
       
  3306   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
       
  3307   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
       
  3308   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
       
  3309   __ ldx(Rret_addr, Rret_type, Rtable_addr);
       
  3310 
       
  3311   // Load receiver and receiver NULL check.
       
  3312   __ load_receiver(Rnum_params, Rrecv);
       
  3313   __ null_check_throw(Rrecv, -1, Rscratch1);
       
  3314 
       
  3315   __ profile_final_call(Rrecv, Rscratch1);
       
  3316 
       
  3317   // Do the call.
       
  3318   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2);
       
  3319 }
       
  3320 
       
  3321 void TemplateTable::invokespecial(int byte_no) {
       
  3322   assert(byte_no == f1_byte, "use this argument");
       
  3323   transition(vtos, vtos);
       
  3324 
       
  3325   Register Rtable_addr = R3_ARG1,
       
  3326            Rret_addr   = R4_ARG2,
       
  3327            Rflags      = R5_ARG3,
       
  3328            Rreceiver   = R6_ARG4,
       
  3329            Rmethod     = R31;
       
  3330 
       
  3331   prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1);
       
  3332 
       
  3333   // Receiver NULL check.
       
  3334   __ null_check_throw(Rreceiver, -1, R11_scratch1);
       
  3335 
       
  3336   __ profile_call(R11_scratch1, R12_scratch2);
       
  3337   __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2);
       
  3338 }
       
  3339 
       
  3340 void TemplateTable::invokestatic(int byte_no) {
       
  3341   assert(byte_no == f1_byte, "use this argument");
       
  3342   transition(vtos, vtos);
       
  3343 
       
  3344   Register Rtable_addr = R3_ARG1,
       
  3345            Rret_addr   = R4_ARG2,
       
  3346            Rflags      = R5_ARG3;
       
  3347 
       
  3348   prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1);
       
  3349 
       
  3350   __ profile_call(R11_scratch1, R12_scratch2);
       
  3351   __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2);
       
  3352 }
       
  3353 
       
  3354 void TemplateTable::invokeinterface_object_method(Register Rrecv_klass,
       
  3355                                                   Register Rret,
       
  3356                                                   Register Rflags,
       
  3357                                                   Register Rindex,
       
  3358                                                   Register Rtemp1,
       
  3359                                                   Register Rtemp2) {
       
  3360 
       
  3361   assert_different_registers(Rindex, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2);
       
  3362   Label LnotFinal;
       
  3363 
       
  3364   // Check for vfinal.
       
  3365   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
       
  3366   __ bfalse(CCR0, LnotFinal);
       
  3367 
       
  3368   Register Rscratch = Rflags; // Rflags is dead now.
       
  3369 
       
  3370   // Final call case.
       
  3371   __ profile_final_call(Rtemp1, Rscratch);
       
  3372   // Do the final call - the index (f2) contains the method.
       
  3373   __ call_from_interpreter(Rindex, Rret, Rscratch, Rrecv_klass /* scratch */);
       
  3374 
       
  3375   // Non-final callc case.
       
  3376   __ bind(LnotFinal);
       
  3377   __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false);
       
  3378   generate_vtable_call(Rrecv_klass, Rindex, Rret, Rscratch);
       
  3379 }
       
  3380 
       
  3381 void TemplateTable::invokeinterface(int byte_no) {
       
  3382   assert(byte_no == f1_byte, "use this argument");
       
  3383   transition(vtos, vtos);
       
  3384 
       
  3385   const Register Rscratch1        = R11_scratch1,
       
  3386                  Rscratch2        = R12_scratch2,
       
  3387                  Rscratch3        = R9_ARG7,
       
  3388                  Rscratch4        = R10_ARG8,
       
  3389                  Rtable_addr      = Rscratch2,
       
  3390                  Rinterface_klass = R5_ARG3,
       
  3391                  Rret_type        = R8_ARG6,
       
  3392                  Rret_addr        = Rret_type,
       
  3393                  Rindex           = R6_ARG4,
       
  3394                  Rreceiver        = R4_ARG2,
       
  3395                  Rrecv_klass      = Rreceiver,
       
  3396                  Rflags           = R7_ARG5;
       
  3397 
       
  3398   prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rindex, Rreceiver, Rflags, Rscratch1);
       
  3399 
       
  3400   // Get receiver klass.
       
  3401   __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch3);
       
  3402   __ load_klass(Rrecv_klass, Rreceiver);
       
  3403 
       
  3404   // Check corner case object method.
       
  3405   Label LobjectMethod;
       
  3406 
       
  3407   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift);
       
  3408   __ btrue(CCR0, LobjectMethod);
       
  3409 
       
  3410   // Fallthrough: The normal invokeinterface case.
       
  3411   __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false);
       
  3412 
       
  3413   // Find entry point to call.
       
  3414   Label Lthrow_icc, Lthrow_ame;
       
  3415   // Result will be returned in Rindex.
       
  3416   __ mr(Rscratch4, Rrecv_klass);
       
  3417   __ mr(Rscratch3, Rindex);
       
  3418   __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rindex, Rscratch1, Rscratch2, Lthrow_icc);
       
  3419 
       
  3420   __ cmpdi(CCR0, Rindex, 0);
       
  3421   __ beq(CCR0, Lthrow_ame);
       
  3422   // Found entry. Jump off!
       
  3423   __ call_from_interpreter(Rindex, Rret_addr, Rscratch1, Rscratch2);
       
  3424 
       
  3425   // Vtable entry was NULL => Throw abstract method error.
       
  3426   __ bind(Lthrow_ame);
       
  3427   __ mr(Rrecv_klass, Rscratch4);
       
  3428   __ mr(Rindex, Rscratch3);
       
  3429   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
       
  3430 
       
  3431   // Interface was not found => Throw incompatible class change error.
       
  3432   __ bind(Lthrow_icc);
       
  3433   __ mr(Rrecv_klass, Rscratch4);
       
  3434   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
       
  3435 
       
  3436   __ should_not_reach_here();
       
  3437 
       
  3438   // Special case of invokeinterface called for virtual method of
       
  3439   // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details:
       
  3440   // The invokeinterface was rewritten to a invokevirtual, hence we have
       
  3441   // to handle this corner case. This code isn't produced by javac, but could
       
  3442   // be produced by another compliant java compiler.
       
  3443   __ bind(LobjectMethod);
       
  3444   invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rindex, Rscratch1, Rscratch2);
       
  3445 }
       
  3446 
       
  3447 void TemplateTable::invokedynamic(int byte_no) {
       
  3448   transition(vtos, vtos);
       
  3449 
       
  3450   const Register Rret_addr = R3_ARG1,
       
  3451                  Rflags    = R4_ARG2,
       
  3452                  Rmethod   = R22_tmp2,
       
  3453                  Rscratch1 = R11_scratch1,
       
  3454                  Rscratch2 = R12_scratch2;
       
  3455 
       
  3456   if (!EnableInvokeDynamic) {
       
  3457     // We should not encounter this bytecode if !EnableInvokeDynamic.
       
  3458     // The verifier will stop it. However, if we get past the verifier,
       
  3459     // this will stop the thread in a reasonable way, without crashing the JVM.
       
  3460     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
       
  3461     // The call_VM checks for exception, so we should never return here.
       
  3462     __ should_not_reach_here();
       
  3463     return;
       
  3464   }
       
  3465 
       
  3466   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2);
       
  3467 
       
  3468   // Profile this call.
       
  3469   __ profile_call(Rscratch1, Rscratch2);
       
  3470 
       
  3471   // Off we go. With the new method handles, we don't jump to a method handle
       
  3472   // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens
       
  3473   // to be the callsite object the bootstrap method returned. This is passed to a
       
  3474   // "link" method which does the dispatch (Most likely just grabs the MH stored
       
  3475   // inside the callsite and does an invokehandle).
       
  3476   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
       
  3477 }
       
  3478 
       
  3479 void TemplateTable::invokehandle(int byte_no) {
       
  3480   transition(vtos, vtos);
       
  3481 
       
  3482   const Register Rret_addr = R3_ARG1,
       
  3483                  Rflags    = R4_ARG2,
       
  3484                  Rrecv     = R5_ARG3,
       
  3485                  Rmethod   = R22_tmp2,
       
  3486                  Rscratch1 = R11_scratch1,
       
  3487                  Rscratch2 = R12_scratch2;
       
  3488 
       
  3489   if (!EnableInvokeDynamic) {
       
  3490     // Rewriter does not generate this bytecode.
       
  3491     __ should_not_reach_here();
       
  3492     return;
       
  3493   }
       
  3494 
       
  3495   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2);
       
  3496   __ verify_method_ptr(Rmethod);
       
  3497   __ null_check_throw(Rrecv, -1, Rscratch2);
       
  3498 
       
  3499   __ profile_final_call(Rrecv, Rscratch1);
       
  3500 
       
  3501   // Still no call from handle => We call the method handle interpreter here.
       
  3502   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
       
  3503 }
       
  3504 
       
  3505 // =============================================================================
       
  3506 // Allocation
       
  3507 
       
  3508 // Puts allocated obj ref onto the expression stack.
       
  3509 void TemplateTable::_new() {
       
  3510   transition(vtos, atos);
       
  3511 
       
  3512   Label Lslow_case,
       
  3513         Ldone,
       
  3514         Linitialize_header,
       
  3515         Lallocate_shared,
       
  3516         Linitialize_object;  // Including clearing the fields.
       
  3517 
       
  3518   const Register RallocatedObject = R17_tos,
       
  3519                  RinstanceKlass   = R9_ARG7,
       
  3520                  Rscratch         = R11_scratch1,
       
  3521                  Roffset          = R8_ARG6,
       
  3522                  Rinstance_size   = Roffset,
       
  3523                  Rcpool           = R4_ARG2,
       
  3524                  Rtags            = R3_ARG1,
       
  3525                  Rindex           = R5_ARG3;
       
  3526 
       
  3527   const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
       
  3528 
       
  3529   // --------------------------------------------------------------------------
       
  3530   // Check if fast case is possible.
       
  3531 
       
  3532   // Load pointers to const pool and const pool's tags array.
       
  3533   __ get_cpool_and_tags(Rcpool, Rtags);
       
  3534   // Load index of constant pool entry.
       
  3535   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
       
  3536 
       
  3537   if (UseTLAB) {
       
  3538     // Make sure the class we're about to instantiate has been resolved
       
  3539     // This is done before loading instanceKlass to be consistent with the order
       
  3540     // how Constant Pool is updated (see ConstantPoolCache::klass_at_put).
       
  3541     __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
       
  3542     __ lbzx(Rtags, Rindex, Rtags);
       
  3543 
       
  3544     __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
       
  3545     __ bne(CCR0, Lslow_case);
       
  3546 
       
  3547     // Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord).
       
  3548     __ sldi(Roffset, Rindex, LogBytesPerWord);
       
  3549     __ addi(Rscratch, Rcpool, sizeof(ConstantPool));
       
  3550     __ isync(); // Order load of instance Klass wrt. tags.
       
  3551     __ ldx(RinstanceKlass, Roffset, Rscratch);
       
  3552 
       
  3553     // Make sure klass is fully initialized and get instance_size.
       
  3554     __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass);
       
  3555     __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass);
       
  3556 
       
  3557     __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized);
       
  3558     // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class.
       
  3559     __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0?
       
  3560 
       
  3561     __ crnand(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // slow path bit set or not fully initialized?
       
  3562     __ beq(CCR0, Lslow_case);
       
  3563 
       
  3564     // --------------------------------------------------------------------------
       
  3565     // Fast case:
       
  3566     // Allocate the instance.
       
  3567     // 1) Try to allocate in the TLAB.
       
  3568     // 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden.
       
  3569     // 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.).
       
  3570 
       
  3571     Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits.
       
  3572     Register RnewTopValue = R6_ARG4;
       
  3573     Register RendValue    = R7_ARG5;
       
  3574 
       
  3575     // Check if we can allocate in the TLAB.
       
  3576     __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
       
  3577     __ ld(RendValue,    in_bytes(JavaThread::tlab_end_offset()), R16_thread);
       
  3578 
       
  3579     __ add(RnewTopValue, Rinstance_size, RoldTopValue);
       
  3580 
       
  3581     // If there is enough space, we do not CAS and do not clear.
       
  3582     __ cmpld(CCR0, RnewTopValue, RendValue);
       
  3583     __ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case);
       
  3584 
       
  3585     __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
       
  3586 
       
  3587     if (ZeroTLAB) {
       
  3588       // The fields have already been cleared.
       
  3589       __ b(Linitialize_header);
       
  3590     } else {
       
  3591       // Initialize both the header and fields.
       
  3592       __ b(Linitialize_object);
       
  3593     }
       
  3594 
       
  3595     // Fall through: TLAB was too small.
       
  3596     if (allow_shared_alloc) {
       
  3597       Register RtlabWasteLimitValue = R10_ARG8;
       
  3598       Register RfreeValue = RnewTopValue;
       
  3599 
       
  3600       __ bind(Lallocate_shared);
       
  3601       // Check if tlab should be discarded (refill_waste_limit >= free).
       
  3602       __ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
       
  3603       __ subf(RfreeValue, RoldTopValue, RendValue);
       
  3604       __ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords
       
  3605       __ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue);
       
  3606       __ bge(CCR0, Lslow_case);
       
  3607 
       
  3608       // Increment waste limit to prevent getting stuck on this slow path.
       
  3609       __ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment());
       
  3610       __ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
       
  3611     }
       
  3612     // else: No allocation in the shared eden. // fallthru: __ b(Lslow_case);
       
  3613   }
       
  3614   // else: Always go the slow path.
       
  3615 
       
  3616   // --------------------------------------------------------------------------
       
  3617   // slow case
       
  3618   __ bind(Lslow_case);
       
  3619   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
       
  3620 
       
  3621   if (UseTLAB) {
       
  3622     __ b(Ldone);
       
  3623     // --------------------------------------------------------------------------
       
  3624     // Init1: Zero out newly allocated memory.
       
  3625 
       
  3626     if (!ZeroTLAB || allow_shared_alloc) {
       
  3627       // Clear object fields.
       
  3628       __ bind(Linitialize_object);
       
  3629 
       
  3630       // Initialize remaining object fields.
       
  3631       Register Rbase = Rtags;
       
  3632       __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc));
       
  3633       __ addi(Rbase, RallocatedObject, sizeof(oopDesc));
       
  3634       __ srdi(Rinstance_size, Rinstance_size, 3);
       
  3635 
       
  3636       // Clear out object skipping header. Takes also care of the zero length case.
       
  3637       __ clear_memory_doubleword(Rbase, Rinstance_size);
       
  3638       // fallthru: __ b(Linitialize_header);
       
  3639     }
       
  3640 
       
  3641     // --------------------------------------------------------------------------
       
  3642     // Init2: Initialize the header: mark, klass
       
  3643     __ bind(Linitialize_header);
       
  3644 
       
  3645     // Init mark.
       
  3646     if (UseBiasedLocking) {
       
  3647       __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass);
       
  3648     } else {
       
  3649       __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0);
       
  3650     }
       
  3651     __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject);
       
  3652 
       
  3653     // Init klass.
       
  3654     __ store_klass_gap(RallocatedObject);
       
  3655     __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms)
       
  3656 
       
  3657     // Check and trigger dtrace event.
       
  3658     {
       
  3659       SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes);
       
  3660       __ push(atos);
       
  3661       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc));
       
  3662       __ pop(atos);
       
  3663     }
       
  3664   }
       
  3665 
       
  3666   // continue
       
  3667   __ bind(Ldone);
       
  3668 
       
  3669   // Must prevent reordering of stores for object initialization with stores that publish the new object.
       
  3670   __ membar(Assembler::StoreStore);
       
  3671 }
       
  3672 
       
  3673 void TemplateTable::newarray() {
       
  3674   transition(itos, atos);
       
  3675 
       
  3676   __ lbz(R4, 1, R14_bcp);
       
  3677   __ extsw(R5, R17_tos);
       
  3678   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */);
       
  3679 
       
  3680   // Must prevent reordering of stores for object initialization with stores that publish the new object.
       
  3681   __ membar(Assembler::StoreStore);
       
  3682 }
       
  3683 
       
  3684 void TemplateTable::anewarray() {
       
  3685   transition(itos, atos);
       
  3686 
       
  3687   __ get_constant_pool(R4);
       
  3688   __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned);
       
  3689   __ extsw(R6, R17_tos); // size
       
  3690   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */);
       
  3691 
       
  3692   // Must prevent reordering of stores for object initialization with stores that publish the new object.
       
  3693   __ membar(Assembler::StoreStore);
       
  3694 }
       
  3695 
       
  3696 // Allocate a multi dimensional array
       
  3697 void TemplateTable::multianewarray() {
       
  3698   transition(vtos, atos);
       
  3699 
       
  3700   Register Rptr = R31; // Needs to survive C call.
       
  3701 
       
  3702   // Put ndims * wordSize into frame temp slot
       
  3703   __ lbz(Rptr, 3, R14_bcp);
       
  3704   __ sldi(Rptr, Rptr, Interpreter::logStackElementSize);
       
  3705   // Esp points past last_dim, so set to R4 to first_dim address.
       
  3706   __ add(R4, Rptr, R15_esp);
       
  3707   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */);
       
  3708   // Pop all dimensions off the stack.
       
  3709   __ add(R15_esp, Rptr, R15_esp);
       
  3710 
       
  3711   // Must prevent reordering of stores for object initialization with stores that publish the new object.
       
  3712   __ membar(Assembler::StoreStore);
       
  3713 }
       
  3714 
       
  3715 void TemplateTable::arraylength() {
       
  3716   transition(atos, itos);
       
  3717 
       
  3718   Label LnoException;
       
  3719   __ verify_oop(R17_tos);
       
  3720   __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1);
       
  3721   __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos);
       
  3722 }
       
  3723 
       
  3724 // ============================================================================
       
  3725 // Typechecks
       
  3726 
       
  3727 void TemplateTable::checkcast() {
       
  3728   transition(atos, atos);
       
  3729 
       
  3730   Label Ldone, Lis_null, Lquicked, Lresolved;
       
  3731   Register Roffset         = R5_ARG3,
       
  3732            RobjKlass       = R4_ARG2,
       
  3733            RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect this register.
       
  3734            Rcpool          = R11_scratch1,
       
  3735            Rtags           = R12_scratch2;
       
  3736 
       
  3737   // Null does not pass.
       
  3738   __ cmpdi(CCR0, R17_tos, 0);
       
  3739   __ beq(CCR0, Lis_null);
       
  3740 
       
  3741   // Get constant pool tag to find out if the bytecode has already been "quickened".
       
  3742   __ get_cpool_and_tags(Rcpool, Rtags);
       
  3743 
       
  3744   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
       
  3745 
       
  3746   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
       
  3747   __ lbzx(Rtags, Rtags, Roffset);
       
  3748 
       
  3749   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
       
  3750   __ beq(CCR0, Lquicked);
       
  3751 
       
  3752   // Call into the VM to "quicken" instanceof.
       
  3753   __ push_ptr();  // for GC
       
  3754   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
       
  3755   __ get_vm_result_2(RspecifiedKlass);
       
  3756   __ pop_ptr();   // Restore receiver.
       
  3757   __ b(Lresolved);
       
  3758 
       
  3759   // Extract target class from constant pool.
       
  3760   __ bind(Lquicked);
       
  3761   __ sldi(Roffset, Roffset, LogBytesPerWord);
       
  3762   __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
       
  3763   __ isync(); // Order load of specified Klass wrt. tags.
       
  3764   __ ldx(RspecifiedKlass, Rcpool, Roffset);
       
  3765 
       
  3766   // Do the checkcast.
       
  3767   __ bind(Lresolved);
       
  3768   // Get value klass in RobjKlass.
       
  3769   __ load_klass(RobjKlass, R17_tos);
       
  3770   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
       
  3771   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
       
  3772 
       
  3773   // Not a subtype; so must throw exception
       
  3774   // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention.
       
  3775   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry);
       
  3776   __ mtctr(R11_scratch1);
       
  3777   __ bctr();
       
  3778 
       
  3779   // Profile the null case.
       
  3780   __ align(32, 12);
       
  3781   __ bind(Lis_null);
       
  3782   __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch.
       
  3783 
       
  3784   __ align(32, 12);
       
  3785   __ bind(Ldone);
       
  3786 }
       
  3787 
       
  3788 // Output:
       
  3789 //   - tos == 0: Obj was null or not an instance of class.
       
  3790 //   - tos == 1: Obj was an instance of class.
       
  3791 void TemplateTable::instanceof() {
       
  3792   transition(atos, itos);
       
  3793 
       
  3794   Label Ldone, Lis_null, Lquicked, Lresolved;
       
  3795   Register Roffset         = R5_ARG3,
       
  3796            RobjKlass       = R4_ARG2,
       
  3797            RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect the value in this register.
       
  3798            Rcpool          = R11_scratch1,
       
  3799            Rtags           = R12_scratch2;
       
  3800 
       
  3801   // Null does not pass.
       
  3802   __ cmpdi(CCR0, R17_tos, 0);
       
  3803   __ beq(CCR0, Lis_null);
       
  3804 
       
  3805   // Get constant pool tag to find out if the bytecode has already been "quickened".
       
  3806   __ get_cpool_and_tags(Rcpool, Rtags);
       
  3807 
       
  3808   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
       
  3809 
       
  3810   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
       
  3811   __ lbzx(Rtags, Rtags, Roffset);
       
  3812 
       
  3813   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
       
  3814   __ beq(CCR0, Lquicked);
       
  3815 
       
  3816   // Call into the VM to "quicken" instanceof.
       
  3817   __ push_ptr();  // for GC
       
  3818   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
       
  3819   __ get_vm_result_2(RspecifiedKlass);
       
  3820   __ pop_ptr();   // Restore receiver.
       
  3821   __ b(Lresolved);
       
  3822 
       
  3823   // Extract target class from constant pool.
       
  3824   __ bind(Lquicked);
       
  3825   __ sldi(Roffset, Roffset, LogBytesPerWord);
       
  3826   __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
       
  3827   __ isync(); // Order load of specified Klass wrt. tags.
       
  3828   __ ldx(RspecifiedKlass, Rcpool, Roffset);
       
  3829 
       
  3830   // Do the checkcast.
       
  3831   __ bind(Lresolved);
       
  3832   // Get value klass in RobjKlass.
       
  3833   __ load_klass(RobjKlass, R17_tos);
       
  3834   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
       
  3835   __ li(R17_tos, 1);
       
  3836   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
       
  3837   __ li(R17_tos, 0);
       
  3838 
       
  3839   if (ProfileInterpreter) {
       
  3840     __ b(Ldone);
       
  3841   }
       
  3842 
       
  3843   // Profile the null case.
       
  3844   __ align(32, 12);
       
  3845   __ bind(Lis_null);
       
  3846   __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch.
       
  3847 
       
  3848   __ align(32, 12);
       
  3849   __ bind(Ldone);
       
  3850 }
       
  3851 
       
  3852 // =============================================================================
       
  3853 // Breakpoints
       
  3854 
       
  3855 void TemplateTable::_breakpoint() {
       
  3856   transition(vtos, vtos);
       
  3857 
       
  3858   // Get the unpatched byte code.
       
  3859   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp);
       
  3860   __ mr(R31, R3_RET);
       
  3861 
       
  3862   // Post the breakpoint event.
       
  3863   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp);
       
  3864 
       
  3865   // Complete the execution of original bytecode.
       
  3866   __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos));
       
  3867 }
       
  3868 
       
  3869 // =============================================================================
       
  3870 // Exceptions
       
  3871 
       
  3872 void TemplateTable::athrow() {
       
  3873   transition(atos, vtos);
       
  3874 
       
  3875   // Exception oop is in tos
       
  3876   __ verify_oop(R17_tos);
       
  3877 
       
  3878   __ null_check_throw(R17_tos, -1, R11_scratch1);
       
  3879 
       
  3880   // Throw exception interpreter entry expects exception oop to be in R3.
       
  3881   __ mr(R3_RET, R17_tos);
       
  3882   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry());
       
  3883   __ mtctr(R11_scratch1);
       
  3884   __ bctr();
       
  3885 }
       
  3886 
       
  3887 // =============================================================================
       
  3888 // Synchronization
       
  3889 // Searches the basic object lock list on the stack for a free slot
       
  3890 // and uses it to lock the obect in tos.
       
  3891 //
       
  3892 // Recursive locking is enabled by exiting the search if the same
       
  3893 // object is already found in the list. Thus, a new basic lock obj lock
       
  3894 // is allocated "higher up" in the stack and thus is found first
       
  3895 // at next monitor exit.
       
  3896 void TemplateTable::monitorenter() {
       
  3897   transition(atos, vtos);
       
  3898 
       
  3899   __ verify_oop(R17_tos);
       
  3900 
       
  3901   Register Rcurrent_monitor  = R11_scratch1,
       
  3902            Rcurrent_obj      = R12_scratch2,
       
  3903            Robj_to_lock      = R17_tos,
       
  3904            Rscratch1         = R3_ARG1,
       
  3905            Rscratch2         = R4_ARG2,
       
  3906            Rscratch3         = R5_ARG3,
       
  3907            Rcurrent_obj_addr = R6_ARG4;
       
  3908 
       
  3909   // ------------------------------------------------------------------------------
       
  3910   // Null pointer exception.
       
  3911   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
       
  3912 
       
  3913   // Try to acquire a lock on the object.
       
  3914   // Repeat until succeeded (i.e., until monitorenter returns true).
       
  3915 
       
  3916   // ------------------------------------------------------------------------------
       
  3917   // Find a free slot in the monitor block.
       
  3918   Label Lfound, Lexit, Lallocate_new;
       
  3919   ConditionRegister found_free_slot = CCR0,
       
  3920                     found_same_obj  = CCR1,
       
  3921                     reached_limit   = CCR6;
       
  3922   {
       
  3923     Label Lloop, Lentry;
       
  3924     Register Rlimit = Rcurrent_monitor;
       
  3925 
       
  3926     // Set up search loop - start with topmost monitor.
       
  3927     __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
       
  3928 
       
  3929     __ ld(Rlimit, 0, R1_SP);
       
  3930     __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base
       
  3931 
       
  3932     // Check if any slot is present => short cut to allocation if not.
       
  3933     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
       
  3934     __ bgt(reached_limit, Lallocate_new);
       
  3935 
       
  3936     // Pre-load topmost slot.
       
  3937     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
       
  3938     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
       
  3939     // The search loop.
       
  3940     __ bind(Lloop);
       
  3941     // Found free slot?
       
  3942     __ cmpdi(found_free_slot, Rcurrent_obj, 0);
       
  3943     // Is this entry for same obj? If so, stop the search and take the found
       
  3944     // free slot or allocate a new one to enable recursive locking.
       
  3945     __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock);
       
  3946     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
       
  3947     __ beq(found_free_slot, Lexit);
       
  3948     __ beq(found_same_obj, Lallocate_new);
       
  3949     __ bgt(reached_limit, Lallocate_new);
       
  3950     // Check if last allocated BasicLockObj reached.
       
  3951     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
       
  3952     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
       
  3953     // Next iteration if unchecked BasicObjectLocks exist on the stack.
       
  3954     __ b(Lloop);
       
  3955   }
       
  3956 
       
  3957   // ------------------------------------------------------------------------------
       
  3958   // Check if we found a free slot.
       
  3959   __ bind(Lexit);
       
  3960 
       
  3961   __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
       
  3962   __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize);
       
  3963   __ b(Lfound);
       
  3964 
       
  3965   // We didn't find a free BasicObjLock => allocate one.
       
  3966   __ align(32, 12);
       
  3967   __ bind(Lallocate_new);
       
  3968   __ add_monitor_to_stack(false, Rscratch1, Rscratch2);
       
  3969   __ mr(Rcurrent_monitor, R26_monitor);
       
  3970   __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
       
  3971 
       
  3972   // ------------------------------------------------------------------------------
       
  3973   // We now have a slot to lock.
       
  3974   __ bind(Lfound);
       
  3975 
       
  3976   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
       
  3977   // The object has already been poped from the stack, so the expression stack looks correct.
       
  3978   __ addi(R14_bcp, R14_bcp, 1);
       
  3979 
       
  3980   __ std(Robj_to_lock, 0, Rcurrent_obj_addr);
       
  3981   __ lock_object(Rcurrent_monitor, Robj_to_lock);
       
  3982 
       
  3983   // Check if there's enough space on the stack for the monitors after locking.
       
  3984   Label Lskip_stack_check;
       
  3985   // Optimization: If the monitors stack section is less then a std page size (4K) don't run
       
  3986   // the stack check. There should be enough shadow pages to fit that in.
       
  3987   __ ld(Rscratch3, 0, R1_SP);
       
  3988   __ sub(Rscratch3, Rscratch3, R26_monitor);
       
  3989   __ cmpdi(CCR0, Rscratch3, 4*K);
       
  3990   __ blt(CCR0, Lskip_stack_check);
       
  3991 
       
  3992   DEBUG_ONLY(__ untested("stack overflow check during monitor enter");)
       
  3993   __ li(Rscratch1, 0);
       
  3994   __ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2);
       
  3995 
       
  3996   __ align(32, 12);
       
  3997   __ bind(Lskip_stack_check);
       
  3998 
       
  3999   // The bcp has already been incremented. Just need to dispatch to next instruction.
       
  4000   __ dispatch_next(vtos);
       
  4001 }
       
  4002 
       
  4003 void TemplateTable::monitorexit() {
       
  4004   transition(atos, vtos);
       
  4005   __ verify_oop(R17_tos);
       
  4006 
       
  4007   Register Rcurrent_monitor  = R11_scratch1,
       
  4008            Rcurrent_obj      = R12_scratch2,
       
  4009            Robj_to_lock      = R17_tos,
       
  4010            Rcurrent_obj_addr = R3_ARG1,
       
  4011            Rlimit            = R4_ARG2;
       
  4012   Label Lfound, Lillegal_monitor_state;
       
  4013 
       
  4014   // Check corner case: unbalanced monitorEnter / Exit.
       
  4015   __ ld(Rlimit, 0, R1_SP);
       
  4016   __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
       
  4017 
       
  4018   // Null pointer check.
       
  4019   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
       
  4020 
       
  4021   __ cmpld(CCR0, R26_monitor, Rlimit);
       
  4022   __ bgt(CCR0, Lillegal_monitor_state);
       
  4023 
       
  4024   // Find the corresponding slot in the monitors stack section.
       
  4025   {
       
  4026     Label Lloop;
       
  4027 
       
  4028     // Start with topmost monitor.
       
  4029     __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
       
  4030     __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes());
       
  4031     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
       
  4032     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
       
  4033 
       
  4034     __ bind(Lloop);
       
  4035     // Is this entry for same obj?
       
  4036     __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock);
       
  4037     __ beq(CCR0, Lfound);
       
  4038 
       
  4039     // Check if last allocated BasicLockObj reached.
       
  4040 
       
  4041     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
       
  4042     __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit);
       
  4043     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
       
  4044 
       
  4045     // Next iteration if unchecked BasicObjectLocks exist on the stack.
       
  4046     __ ble(CCR0, Lloop);
       
  4047   }
       
  4048 
       
  4049   // Fell through without finding the basic obj lock => throw up!
       
  4050   __ bind(Lillegal_monitor_state);
       
  4051   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
       
  4052   __ should_not_reach_here();
       
  4053 
       
  4054   __ align(32, 12);
       
  4055   __ bind(Lfound);
       
  4056   __ addi(Rcurrent_monitor, Rcurrent_obj_addr,
       
  4057           -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
       
  4058   __ unlock_object(Rcurrent_monitor);
       
  4059 }
       
  4060 
       
  4061 // ============================================================================
       
  4062 // Wide bytecodes
       
  4063 
       
  4064 // Wide instructions. Simply redirects to the wide entry point for that instruction.
       
  4065 void TemplateTable::wide() {
       
  4066   transition(vtos, vtos);
       
  4067 
       
  4068   const Register Rtable = R11_scratch1,
       
  4069                  Rindex = R12_scratch2,
       
  4070                  Rtmp   = R0;
       
  4071 
       
  4072   __ lbz(Rindex, 1, R14_bcp);
       
  4073 
       
  4074   __ load_dispatch_table(Rtable, Interpreter::_wentry_point);
       
  4075 
       
  4076   __ slwi(Rindex, Rindex, LogBytesPerWord);
       
  4077   __ ldx(Rtmp, Rtable, Rindex);
       
  4078   __ mtctr(Rtmp);
       
  4079   __ bctr();
       
  4080   // Note: the bcp increment step is part of the individual wide bytecode implementations.
       
  4081 }
       
  4082 #endif // !CC_INTERP