src/java.base/share/classes/sun/security/provider/KeyProtector.java
changeset 47216 71c04702a3d5
parent 46097 22316369c9b0
child 51293 53c3b460503c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/java.base/share/classes/sun/security/provider/KeyProtector.java	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,335 @@
+/*
+ * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package sun.security.provider;
+
+import java.io.IOException;
+import java.io.UnsupportedEncodingException;
+import java.security.Key;
+import java.security.KeyStoreException;
+import java.security.MessageDigest;
+import java.security.NoSuchAlgorithmException;
+import java.security.SecureRandom;
+import java.security.UnrecoverableKeyException;
+import java.util.*;
+
+import jdk.internal.ref.CleanerFactory;
+import sun.security.pkcs.PKCS8Key;
+import sun.security.pkcs.EncryptedPrivateKeyInfo;
+import sun.security.x509.AlgorithmId;
+import sun.security.util.ObjectIdentifier;
+import sun.security.util.DerValue;
+
+/**
+ * This is an implementation of a Sun proprietary, exportable algorithm
+ * intended for use when protecting (or recovering the cleartext version of)
+ * sensitive keys.
+ * This algorithm is not intended as a general purpose cipher.
+ *
+ * This is how the algorithm works for key protection:
+ *
+ * p - user password
+ * s - random salt
+ * X - xor key
+ * P - to-be-protected key
+ * Y - protected key
+ * R - what gets stored in the keystore
+ *
+ * Step 1:
+ * Take the user's password, append a random salt (of fixed size) to it,
+ * and hash it: d1 = digest(p, s)
+ * Store d1 in X.
+ *
+ * Step 2:
+ * Take the user's password, append the digest result from the previous step,
+ * and hash it: dn = digest(p, dn-1).
+ * Store dn in X (append it to the previously stored digests).
+ * Repeat this step until the length of X matches the length of the private key
+ * P.
+ *
+ * Step 3:
+ * XOR X and P, and store the result in Y: Y = X XOR P.
+ *
+ * Step 4:
+ * Store s, Y, and digest(p, P) in the result buffer R:
+ * R = s + Y + digest(p, P), where "+" denotes concatenation.
+ * (NOTE: digest(p, P) is stored in the result buffer, so that when the key is
+ * recovered, we can check if the recovered key indeed matches the original
+ * key.) R is stored in the keystore.
+ *
+ * The protected key is recovered as follows:
+ *
+ * Step1 and Step2 are the same as above, except that the salt is not randomly
+ * generated, but taken from the result R of step 4 (the first length(s)
+ * bytes).
+ *
+ * Step 3 (XOR operation) yields the plaintext key.
+ *
+ * Then concatenate the password with the recovered key, and compare with the
+ * last length(digest(p, P)) bytes of R. If they match, the recovered key is
+ * indeed the same key as the original key.
+ *
+ * @author Jan Luehe
+ *
+ *
+ * @see java.security.KeyStore
+ * @see JavaKeyStore
+ * @see KeyTool
+ *
+ * @since 1.2
+ */
+
+final class KeyProtector {
+
+    private static final int SALT_LEN = 20; // the salt length
+    private static final String DIGEST_ALG = "SHA";
+    private static final int DIGEST_LEN = 20;
+
+    // defined by JavaSoft
+    private static final String KEY_PROTECTOR_OID = "1.3.6.1.4.1.42.2.17.1.1";
+
+    // The password used for protecting/recovering keys passed through this
+    // key protector. We store it as a byte array, so that we can digest it.
+    private byte[] passwdBytes;
+
+    private MessageDigest md;
+
+
+    /**
+     * Creates an instance of this class, and initializes it with the given
+     * password.
+     *
+     * <p>The password is expected to be in printable ASCII.
+     * Normal rules for good password selection apply: at least
+     * seven characters, mixed case, with punctuation encouraged.
+     * Phrases or words which are easily guessed, for example by
+     * being found in dictionaries, are bad.
+     */
+    public KeyProtector(char[] password)
+        throws NoSuchAlgorithmException
+    {
+        int i, j;
+
+        if (password == null) {
+           throw new IllegalArgumentException("password can't be null");
+        }
+        md = MessageDigest.getInstance(DIGEST_ALG);
+        // Convert password to byte array, so that it can be digested
+        passwdBytes = new byte[password.length * 2];
+        for (i=0, j=0; i<password.length; i++) {
+            passwdBytes[j++] = (byte)(password[i] >> 8);
+            passwdBytes[j++] = (byte)password[i];
+        }
+        // Use the cleaner to zero the password when no longer referenced
+        final byte[] k = this.passwdBytes;
+        CleanerFactory.cleaner().register(this,
+                () -> java.util.Arrays.fill(k, (byte)0x00));
+    }
+
+    /*
+     * Protects the given plaintext key, using the password provided at
+     * construction time.
+     */
+    public byte[] protect(Key key) throws KeyStoreException
+    {
+        int i;
+        int numRounds;
+        byte[] digest;
+        int xorOffset; // offset in xorKey where next digest will be stored
+        int encrKeyOffset = 0;
+
+        if (key == null) {
+            throw new IllegalArgumentException("plaintext key can't be null");
+        }
+
+        if (!"PKCS#8".equalsIgnoreCase(key.getFormat())) {
+            throw new KeyStoreException(
+                "Cannot get key bytes, not PKCS#8 encoded");
+        }
+
+        byte[] plainKey = key.getEncoded();
+        if (plainKey == null) {
+            throw new KeyStoreException(
+                "Cannot get key bytes, encoding not supported");
+        }
+
+        // Determine the number of digest rounds
+        numRounds = plainKey.length / DIGEST_LEN;
+        if ((plainKey.length % DIGEST_LEN) != 0)
+            numRounds++;
+
+        // Create a random salt
+        byte[] salt = new byte[SALT_LEN];
+        SecureRandom random = new SecureRandom();
+        random.nextBytes(salt);
+
+        // Set up the byte array which will be XORed with "plainKey"
+        byte[] xorKey = new byte[plainKey.length];
+
+        // Compute the digests, and store them in "xorKey"
+        for (i = 0, xorOffset = 0, digest = salt;
+             i < numRounds;
+             i++, xorOffset += DIGEST_LEN) {
+            md.update(passwdBytes);
+            md.update(digest);
+            digest = md.digest();
+            md.reset();
+            // Copy the digest into "xorKey"
+            if (i < numRounds - 1) {
+                System.arraycopy(digest, 0, xorKey, xorOffset,
+                                 digest.length);
+            } else {
+                System.arraycopy(digest, 0, xorKey, xorOffset,
+                                 xorKey.length - xorOffset);
+            }
+        }
+
+        // XOR "plainKey" with "xorKey", and store the result in "tmpKey"
+        byte[] tmpKey = new byte[plainKey.length];
+        for (i = 0; i < tmpKey.length; i++) {
+            tmpKey[i] = (byte)(plainKey[i] ^ xorKey[i]);
+        }
+
+        // Store salt and "tmpKey" in "encrKey"
+        byte[] encrKey = new byte[salt.length + tmpKey.length + DIGEST_LEN];
+        System.arraycopy(salt, 0, encrKey, encrKeyOffset, salt.length);
+        encrKeyOffset += salt.length;
+        System.arraycopy(tmpKey, 0, encrKey, encrKeyOffset, tmpKey.length);
+        encrKeyOffset += tmpKey.length;
+
+        // Append digest(password, plainKey) as an integrity check to "encrKey"
+        md.update(passwdBytes);
+        Arrays.fill(passwdBytes, (byte)0x00);
+        passwdBytes = null;
+        md.update(plainKey);
+        digest = md.digest();
+        md.reset();
+        System.arraycopy(digest, 0, encrKey, encrKeyOffset, digest.length);
+
+        // wrap the protected private key in a PKCS#8-style
+        // EncryptedPrivateKeyInfo, and returns its encoding
+        AlgorithmId encrAlg;
+        try {
+            encrAlg = new AlgorithmId(new ObjectIdentifier(KEY_PROTECTOR_OID));
+            return new EncryptedPrivateKeyInfo(encrAlg,encrKey).getEncoded();
+        } catch (IOException ioe) {
+            throw new KeyStoreException(ioe.getMessage());
+        }
+    }
+
+    /*
+     * Recovers the plaintext version of the given key (in protected format),
+     * using the password provided at construction time.
+     */
+    public Key recover(EncryptedPrivateKeyInfo encrInfo)
+        throws UnrecoverableKeyException
+    {
+        int i;
+        byte[] digest;
+        int numRounds;
+        int xorOffset; // offset in xorKey where next digest will be stored
+        int encrKeyLen; // the length of the encrpyted key
+
+        // do we support the algorithm?
+        AlgorithmId encrAlg = encrInfo.getAlgorithm();
+        if (!(encrAlg.getOID().toString().equals(KEY_PROTECTOR_OID))) {
+            throw new UnrecoverableKeyException("Unsupported key protection "
+                                                + "algorithm");
+        }
+
+        byte[] protectedKey = encrInfo.getEncryptedData();
+
+        /*
+         * Get the salt associated with this key (the first SALT_LEN bytes of
+         * <code>protectedKey</code>)
+         */
+        byte[] salt = new byte[SALT_LEN];
+        System.arraycopy(protectedKey, 0, salt, 0, SALT_LEN);
+
+        // Determine the number of digest rounds
+        encrKeyLen = protectedKey.length - SALT_LEN - DIGEST_LEN;
+        numRounds = encrKeyLen / DIGEST_LEN;
+        if ((encrKeyLen % DIGEST_LEN) != 0) numRounds++;
+
+        // Get the encrypted key portion and store it in "encrKey"
+        byte[] encrKey = new byte[encrKeyLen];
+        System.arraycopy(protectedKey, SALT_LEN, encrKey, 0, encrKeyLen);
+
+        // Set up the byte array which will be XORed with "encrKey"
+        byte[] xorKey = new byte[encrKey.length];
+
+        // Compute the digests, and store them in "xorKey"
+        for (i = 0, xorOffset = 0, digest = salt;
+             i < numRounds;
+             i++, xorOffset += DIGEST_LEN) {
+            md.update(passwdBytes);
+            md.update(digest);
+            digest = md.digest();
+            md.reset();
+            // Copy the digest into "xorKey"
+            if (i < numRounds - 1) {
+                System.arraycopy(digest, 0, xorKey, xorOffset,
+                                 digest.length);
+            } else {
+                System.arraycopy(digest, 0, xorKey, xorOffset,
+                                 xorKey.length - xorOffset);
+            }
+        }
+
+        // XOR "encrKey" with "xorKey", and store the result in "plainKey"
+        byte[] plainKey = new byte[encrKey.length];
+        for (i = 0; i < plainKey.length; i++) {
+            plainKey[i] = (byte)(encrKey[i] ^ xorKey[i]);
+        }
+
+        /*
+         * Check the integrity of the recovered key by concatenating it with
+         * the password, digesting the concatenation, and comparing the
+         * result of the digest operation with the digest provided at the end
+         * of <code>protectedKey</code>. If the two digest values are
+         * different, throw an exception.
+         */
+        md.update(passwdBytes);
+        Arrays.fill(passwdBytes, (byte)0x00);
+        passwdBytes = null;
+        md.update(plainKey);
+        digest = md.digest();
+        md.reset();
+        for (i = 0; i < digest.length; i++) {
+            if (digest[i] != protectedKey[SALT_LEN + encrKeyLen + i]) {
+                throw new UnrecoverableKeyException("Cannot recover key");
+            }
+        }
+
+        // The parseKey() method of PKCS8Key parses the key
+        // algorithm and instantiates the appropriate key factory,
+        // which in turn parses the key material.
+        try {
+            return PKCS8Key.parseKey(new DerValue(plainKey));
+        } catch (IOException ioe) {
+            throw new UnrecoverableKeyException(ioe.getMessage());
+        }
+    }
+}