diff -r 4ebc2e2fb97c -r 71c04702a3d5 src/java.base/share/classes/sun/security/provider/KeyProtector.java --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/java.base/share/classes/sun/security/provider/KeyProtector.java Tue Sep 12 19:03:39 2017 +0200 @@ -0,0 +1,335 @@ +/* + * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package sun.security.provider; + +import java.io.IOException; +import java.io.UnsupportedEncodingException; +import java.security.Key; +import java.security.KeyStoreException; +import java.security.MessageDigest; +import java.security.NoSuchAlgorithmException; +import java.security.SecureRandom; +import java.security.UnrecoverableKeyException; +import java.util.*; + +import jdk.internal.ref.CleanerFactory; +import sun.security.pkcs.PKCS8Key; +import sun.security.pkcs.EncryptedPrivateKeyInfo; +import sun.security.x509.AlgorithmId; +import sun.security.util.ObjectIdentifier; +import sun.security.util.DerValue; + +/** + * This is an implementation of a Sun proprietary, exportable algorithm + * intended for use when protecting (or recovering the cleartext version of) + * sensitive keys. + * This algorithm is not intended as a general purpose cipher. + * + * This is how the algorithm works for key protection: + * + * p - user password + * s - random salt + * X - xor key + * P - to-be-protected key + * Y - protected key + * R - what gets stored in the keystore + * + * Step 1: + * Take the user's password, append a random salt (of fixed size) to it, + * and hash it: d1 = digest(p, s) + * Store d1 in X. + * + * Step 2: + * Take the user's password, append the digest result from the previous step, + * and hash it: dn = digest(p, dn-1). + * Store dn in X (append it to the previously stored digests). + * Repeat this step until the length of X matches the length of the private key + * P. + * + * Step 3: + * XOR X and P, and store the result in Y: Y = X XOR P. + * + * Step 4: + * Store s, Y, and digest(p, P) in the result buffer R: + * R = s + Y + digest(p, P), where "+" denotes concatenation. + * (NOTE: digest(p, P) is stored in the result buffer, so that when the key is + * recovered, we can check if the recovered key indeed matches the original + * key.) R is stored in the keystore. + * + * The protected key is recovered as follows: + * + * Step1 and Step2 are the same as above, except that the salt is not randomly + * generated, but taken from the result R of step 4 (the first length(s) + * bytes). + * + * Step 3 (XOR operation) yields the plaintext key. + * + * Then concatenate the password with the recovered key, and compare with the + * last length(digest(p, P)) bytes of R. If they match, the recovered key is + * indeed the same key as the original key. + * + * @author Jan Luehe + * + * + * @see java.security.KeyStore + * @see JavaKeyStore + * @see KeyTool + * + * @since 1.2 + */ + +final class KeyProtector { + + private static final int SALT_LEN = 20; // the salt length + private static final String DIGEST_ALG = "SHA"; + private static final int DIGEST_LEN = 20; + + // defined by JavaSoft + private static final String KEY_PROTECTOR_OID = "1.3.6.1.4.1.42.2.17.1.1"; + + // The password used for protecting/recovering keys passed through this + // key protector. We store it as a byte array, so that we can digest it. + private byte[] passwdBytes; + + private MessageDigest md; + + + /** + * Creates an instance of this class, and initializes it with the given + * password. + * + *
The password is expected to be in printable ASCII.
+ * Normal rules for good password selection apply: at least
+ * seven characters, mixed case, with punctuation encouraged.
+ * Phrases or words which are easily guessed, for example by
+ * being found in dictionaries, are bad.
+ */
+ public KeyProtector(char[] password)
+ throws NoSuchAlgorithmException
+ {
+ int i, j;
+
+ if (password == null) {
+ throw new IllegalArgumentException("password can't be null");
+ }
+ md = MessageDigest.getInstance(DIGEST_ALG);
+ // Convert password to byte array, so that it can be digested
+ passwdBytes = new byte[password.length * 2];
+ for (i=0, j=0; iprotectedKey
)
+ */
+ byte[] salt = new byte[SALT_LEN];
+ System.arraycopy(protectedKey, 0, salt, 0, SALT_LEN);
+
+ // Determine the number of digest rounds
+ encrKeyLen = protectedKey.length - SALT_LEN - DIGEST_LEN;
+ numRounds = encrKeyLen / DIGEST_LEN;
+ if ((encrKeyLen % DIGEST_LEN) != 0) numRounds++;
+
+ // Get the encrypted key portion and store it in "encrKey"
+ byte[] encrKey = new byte[encrKeyLen];
+ System.arraycopy(protectedKey, SALT_LEN, encrKey, 0, encrKeyLen);
+
+ // Set up the byte array which will be XORed with "encrKey"
+ byte[] xorKey = new byte[encrKey.length];
+
+ // Compute the digests, and store them in "xorKey"
+ for (i = 0, xorOffset = 0, digest = salt;
+ i < numRounds;
+ i++, xorOffset += DIGEST_LEN) {
+ md.update(passwdBytes);
+ md.update(digest);
+ digest = md.digest();
+ md.reset();
+ // Copy the digest into "xorKey"
+ if (i < numRounds - 1) {
+ System.arraycopy(digest, 0, xorKey, xorOffset,
+ digest.length);
+ } else {
+ System.arraycopy(digest, 0, xorKey, xorOffset,
+ xorKey.length - xorOffset);
+ }
+ }
+
+ // XOR "encrKey" with "xorKey", and store the result in "plainKey"
+ byte[] plainKey = new byte[encrKey.length];
+ for (i = 0; i < plainKey.length; i++) {
+ plainKey[i] = (byte)(encrKey[i] ^ xorKey[i]);
+ }
+
+ /*
+ * Check the integrity of the recovered key by concatenating it with
+ * the password, digesting the concatenation, and comparing the
+ * result of the digest operation with the digest provided at the end
+ * of protectedKey
. If the two digest values are
+ * different, throw an exception.
+ */
+ md.update(passwdBytes);
+ Arrays.fill(passwdBytes, (byte)0x00);
+ passwdBytes = null;
+ md.update(plainKey);
+ digest = md.digest();
+ md.reset();
+ for (i = 0; i < digest.length; i++) {
+ if (digest[i] != protectedKey[SALT_LEN + encrKeyLen + i]) {
+ throw new UnrecoverableKeyException("Cannot recover key");
+ }
+ }
+
+ // The parseKey() method of PKCS8Key parses the key
+ // algorithm and instantiates the appropriate key factory,
+ // which in turn parses the key material.
+ try {
+ return PKCS8Key.parseKey(new DerValue(plainKey));
+ } catch (IOException ioe) {
+ throw new UnrecoverableKeyException(ioe.getMessage());
+ }
+ }
+}