src/java.base/share/classes/java/text/DigitList.java
changeset 47216 71c04702a3d5
parent 34781 479b1724ab80
child 58242 94bb65cb37d3
child 58678 9cf78a70fa4f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/java.base/share/classes/java/text/DigitList.java	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,823 @@
+/*
+ * Copyright (c) 1996, 2014, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+/*
+ * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
+ * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
+ *
+ *   The original version of this source code and documentation is copyrighted
+ * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
+ * materials are provided under terms of a License Agreement between Taligent
+ * and Sun. This technology is protected by multiple US and International
+ * patents. This notice and attribution to Taligent may not be removed.
+ *   Taligent is a registered trademark of Taligent, Inc.
+ *
+ */
+
+package java.text;
+
+import java.math.BigDecimal;
+import java.math.BigInteger;
+import java.math.RoundingMode;
+import jdk.internal.math.FloatingDecimal;
+
+/**
+ * Digit List. Private to DecimalFormat.
+ * Handles the transcoding
+ * between numeric values and strings of characters.  Only handles
+ * non-negative numbers.  The division of labor between DigitList and
+ * DecimalFormat is that DigitList handles the radix 10 representation
+ * issues; DecimalFormat handles the locale-specific issues such as
+ * positive/negative, grouping, decimal point, currency, and so on.
+ *
+ * A DigitList is really a representation of a floating point value.
+ * It may be an integer value; we assume that a double has sufficient
+ * precision to represent all digits of a long.
+ *
+ * The DigitList representation consists of a string of characters,
+ * which are the digits radix 10, from '0' to '9'.  It also has a radix
+ * 10 exponent associated with it.  The value represented by a DigitList
+ * object can be computed by mulitplying the fraction f, where 0 <= f < 1,
+ * derived by placing all the digits of the list to the right of the
+ * decimal point, by 10^exponent.
+ *
+ * @see  Locale
+ * @see  Format
+ * @see  NumberFormat
+ * @see  DecimalFormat
+ * @see  ChoiceFormat
+ * @see  MessageFormat
+ * @author       Mark Davis, Alan Liu
+ */
+final class DigitList implements Cloneable {
+    /**
+     * The maximum number of significant digits in an IEEE 754 double, that
+     * is, in a Java double.  This must not be increased, or garbage digits
+     * will be generated, and should not be decreased, or accuracy will be lost.
+     */
+    public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
+
+    /**
+     * These data members are intentionally public and can be set directly.
+     *
+     * The value represented is given by placing the decimal point before
+     * digits[decimalAt].  If decimalAt is < 0, then leading zeros between
+     * the decimal point and the first nonzero digit are implied.  If decimalAt
+     * is > count, then trailing zeros between the digits[count-1] and the
+     * decimal point are implied.
+     *
+     * Equivalently, the represented value is given by f * 10^decimalAt.  Here
+     * f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
+     * the right of the decimal.
+     *
+     * DigitList is normalized, so if it is non-zero, figits[0] is non-zero.  We
+     * don't allow denormalized numbers because our exponent is effectively of
+     * unlimited magnitude.  The count value contains the number of significant
+     * digits present in digits[].
+     *
+     * Zero is represented by any DigitList with count == 0 or with each digits[i]
+     * for all i <= count == '0'.
+     */
+    public int decimalAt = 0;
+    public int count = 0;
+    public char[] digits = new char[MAX_COUNT];
+
+    private char[] data;
+    private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
+    private boolean isNegative = false;
+
+    /**
+     * Return true if the represented number is zero.
+     */
+    boolean isZero() {
+        for (int i=0; i < count; ++i) {
+            if (digits[i] != '0') {
+                return false;
+            }
+        }
+        return true;
+    }
+
+    /**
+     * Set the rounding mode
+     */
+    void setRoundingMode(RoundingMode r) {
+        roundingMode = r;
+    }
+
+    /**
+     * Clears out the digits.
+     * Use before appending them.
+     * Typically, you set a series of digits with append, then at the point
+     * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
+     * then go on appending digits.
+     */
+    public void clear () {
+        decimalAt = 0;
+        count = 0;
+    }
+
+    /**
+     * Appends a digit to the list, extending the list when necessary.
+     */
+    public void append(char digit) {
+        if (count == digits.length) {
+            char[] data = new char[count + 100];
+            System.arraycopy(digits, 0, data, 0, count);
+            digits = data;
+        }
+        digits[count++] = digit;
+    }
+
+    /**
+     * Utility routine to get the value of the digit list
+     * If (count == 0) this throws a NumberFormatException, which
+     * mimics Long.parseLong().
+     */
+    public final double getDouble() {
+        if (count == 0) {
+            return 0.0;
+        }
+
+        StringBuffer temp = getStringBuffer();
+        temp.append('.');
+        temp.append(digits, 0, count);
+        temp.append('E');
+        temp.append(decimalAt);
+        return Double.parseDouble(temp.toString());
+    }
+
+    /**
+     * Utility routine to get the value of the digit list.
+     * If (count == 0) this returns 0, unlike Long.parseLong().
+     */
+    public final long getLong() {
+        // for now, simple implementation; later, do proper IEEE native stuff
+
+        if (count == 0) {
+            return 0;
+        }
+
+        // We have to check for this, because this is the one NEGATIVE value
+        // we represent.  If we tried to just pass the digits off to parseLong,
+        // we'd get a parse failure.
+        if (isLongMIN_VALUE()) {
+            return Long.MIN_VALUE;
+        }
+
+        StringBuffer temp = getStringBuffer();
+        temp.append(digits, 0, count);
+        for (int i = count; i < decimalAt; ++i) {
+            temp.append('0');
+        }
+        return Long.parseLong(temp.toString());
+    }
+
+    public final BigDecimal getBigDecimal() {
+        if (count == 0) {
+            if (decimalAt == 0) {
+                return BigDecimal.ZERO;
+            } else {
+                return new BigDecimal("0E" + decimalAt);
+            }
+        }
+
+       if (decimalAt == count) {
+           return new BigDecimal(digits, 0, count);
+       } else {
+           return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
+       }
+    }
+
+    /**
+     * Return true if the number represented by this object can fit into
+     * a long.
+     * @param isPositive true if this number should be regarded as positive
+     * @param ignoreNegativeZero true if -0 should be regarded as identical to
+     * +0; otherwise they are considered distinct
+     * @return true if this number fits into a Java long
+     */
+    boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) {
+        // Figure out if the result will fit in a long.  We have to
+        // first look for nonzero digits after the decimal point;
+        // then check the size.  If the digit count is 18 or less, then
+        // the value can definitely be represented as a long.  If it is 19
+        // then it may be too large.
+
+        // Trim trailing zeros.  This does not change the represented value.
+        while (count > 0 && digits[count - 1] == '0') {
+            --count;
+        }
+
+        if (count == 0) {
+            // Positive zero fits into a long, but negative zero can only
+            // be represented as a double. - bug 4162852
+            return isPositive || ignoreNegativeZero;
+        }
+
+        if (decimalAt < count || decimalAt > MAX_COUNT) {
+            return false;
+        }
+
+        if (decimalAt < MAX_COUNT) return true;
+
+        // At this point we have decimalAt == count, and count == MAX_COUNT.
+        // The number will overflow if it is larger than 9223372036854775807
+        // or smaller than -9223372036854775808.
+        for (int i=0; i<count; ++i) {
+            char dig = digits[i], max = LONG_MIN_REP[i];
+            if (dig > max) return false;
+            if (dig < max) return true;
+        }
+
+        // At this point the first count digits match.  If decimalAt is less
+        // than count, then the remaining digits are zero, and we return true.
+        if (count < decimalAt) return true;
+
+        // Now we have a representation of Long.MIN_VALUE, without the leading
+        // negative sign.  If this represents a positive value, then it does
+        // not fit; otherwise it fits.
+        return !isPositive;
+    }
+
+    /**
+     * Set the digit list to a representation of the given double value.
+     * This method supports fixed-point notation.
+     * @param isNegative Boolean value indicating whether the number is negative.
+     * @param source Value to be converted; must not be Inf, -Inf, Nan,
+     * or a value <= 0.
+     * @param maximumFractionDigits The most fractional digits which should
+     * be converted.
+     */
+    final void set(boolean isNegative, double source, int maximumFractionDigits) {
+        set(isNegative, source, maximumFractionDigits, true);
+    }
+
+    /**
+     * Set the digit list to a representation of the given double value.
+     * This method supports both fixed-point and exponential notation.
+     * @param isNegative Boolean value indicating whether the number is negative.
+     * @param source Value to be converted; must not be Inf, -Inf, Nan,
+     * or a value <= 0.
+     * @param maximumDigits The most fractional or total digits which should
+     * be converted.
+     * @param fixedPoint If true, then maximumDigits is the maximum
+     * fractional digits to be converted.  If false, total digits.
+     */
+    final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) {
+
+        FloatingDecimal.BinaryToASCIIConverter fdConverter  = FloatingDecimal.getBinaryToASCIIConverter(source);
+        boolean hasBeenRoundedUp = fdConverter.digitsRoundedUp();
+        boolean valueExactAsDecimal = fdConverter.decimalDigitsExact();
+        assert !fdConverter.isExceptional();
+        String digitsString = fdConverter.toJavaFormatString();
+
+        set(isNegative, digitsString,
+            hasBeenRoundedUp, valueExactAsDecimal,
+            maximumDigits, fixedPoint);
+    }
+
+    /**
+     * Generate a representation of the form DDDDD, DDDDD.DDDDD, or
+     * DDDDDE+/-DDDDD.
+     * @param roundedUp whether or not rounding up has already happened.
+     * @param valueExactAsDecimal whether or not collected digits provide
+     * an exact decimal representation of the value.
+     */
+    private void set(boolean isNegative, String s,
+                     boolean roundedUp, boolean valueExactAsDecimal,
+                     int maximumDigits, boolean fixedPoint) {
+
+        this.isNegative = isNegative;
+        int len = s.length();
+        char[] source = getDataChars(len);
+        s.getChars(0, len, source, 0);
+
+        decimalAt = -1;
+        count = 0;
+        int exponent = 0;
+        // Number of zeros between decimal point and first non-zero digit after
+        // decimal point, for numbers < 1.
+        int leadingZerosAfterDecimal = 0;
+        boolean nonZeroDigitSeen = false;
+
+        for (int i = 0; i < len; ) {
+            char c = source[i++];
+            if (c == '.') {
+                decimalAt = count;
+            } else if (c == 'e' || c == 'E') {
+                exponent = parseInt(source, i, len);
+                break;
+            } else {
+                if (!nonZeroDigitSeen) {
+                    nonZeroDigitSeen = (c != '0');
+                    if (!nonZeroDigitSeen && decimalAt != -1)
+                        ++leadingZerosAfterDecimal;
+                }
+                if (nonZeroDigitSeen) {
+                    digits[count++] = c;
+                }
+            }
+        }
+        if (decimalAt == -1) {
+            decimalAt = count;
+        }
+        if (nonZeroDigitSeen) {
+            decimalAt += exponent - leadingZerosAfterDecimal;
+        }
+
+        if (fixedPoint) {
+            // The negative of the exponent represents the number of leading
+            // zeros between the decimal and the first non-zero digit, for
+            // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2).  If this
+            // is more than the maximum fraction digits, then we have an underflow
+            // for the printed representation.
+            if (-decimalAt > maximumDigits) {
+                // Handle an underflow to zero when we round something like
+                // 0.0009 to 2 fractional digits.
+                count = 0;
+                return;
+            } else if (-decimalAt == maximumDigits) {
+                // If we round 0.0009 to 3 fractional digits, then we have to
+                // create a new one digit in the least significant location.
+                if (shouldRoundUp(0, roundedUp, valueExactAsDecimal)) {
+                    count = 1;
+                    ++decimalAt;
+                    digits[0] = '1';
+                } else {
+                    count = 0;
+                }
+                return;
+            }
+            // else fall through
+        }
+
+        // Eliminate trailing zeros.
+        while (count > 1 && digits[count - 1] == '0') {
+            --count;
+        }
+
+        // Eliminate digits beyond maximum digits to be displayed.
+        // Round up if appropriate.
+        round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits,
+              roundedUp, valueExactAsDecimal);
+
+     }
+
+    /**
+     * Round the representation to the given number of digits.
+     * @param maximumDigits The maximum number of digits to be shown.
+     * @param alreadyRounded whether or not rounding up has already happened.
+     * @param valueExactAsDecimal whether or not collected digits provide
+     * an exact decimal representation of the value.
+     *
+     * Upon return, count will be less than or equal to maximumDigits.
+     */
+    private final void round(int maximumDigits,
+                             boolean alreadyRounded,
+                             boolean valueExactAsDecimal) {
+        // Eliminate digits beyond maximum digits to be displayed.
+        // Round up if appropriate.
+        if (maximumDigits >= 0 && maximumDigits < count) {
+            if (shouldRoundUp(maximumDigits, alreadyRounded, valueExactAsDecimal)) {
+                // Rounding up involved incrementing digits from LSD to MSD.
+                // In most cases this is simple, but in a worst case situation
+                // (9999..99) we have to adjust the decimalAt value.
+                for (;;) {
+                    --maximumDigits;
+                    if (maximumDigits < 0) {
+                        // We have all 9's, so we increment to a single digit
+                        // of one and adjust the exponent.
+                        digits[0] = '1';
+                        ++decimalAt;
+                        maximumDigits = 0; // Adjust the count
+                        break;
+                    }
+
+                    ++digits[maximumDigits];
+                    if (digits[maximumDigits] <= '9') break;
+                    // digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
+                }
+                ++maximumDigits; // Increment for use as count
+            }
+            count = maximumDigits;
+
+            // Eliminate trailing zeros.
+            while (count > 1 && digits[count-1] == '0') {
+                --count;
+            }
+        }
+    }
+
+
+    /**
+     * Return true if truncating the representation to the given number
+     * of digits will result in an increment to the last digit.  This
+     * method implements the rounding modes defined in the
+     * java.math.RoundingMode class.
+     * [bnf]
+     * @param maximumDigits the number of digits to keep, from 0 to
+     * <code>count-1</code>.  If 0, then all digits are rounded away, and
+     * this method returns true if a one should be generated (e.g., formatting
+     * 0.09 with "#.#").
+     * @param alreadyRounded whether or not rounding up has already happened.
+     * @param valueExactAsDecimal whether or not collected digits provide
+     * an exact decimal representation of the value.
+     * @exception ArithmeticException if rounding is needed with rounding
+     *            mode being set to RoundingMode.UNNECESSARY
+     * @return true if digit <code>maximumDigits-1</code> should be
+     * incremented
+     */
+    private boolean shouldRoundUp(int maximumDigits,
+                                  boolean alreadyRounded,
+                                  boolean valueExactAsDecimal) {
+        if (maximumDigits < count) {
+            /*
+             * To avoid erroneous double-rounding or truncation when converting
+             * a binary double value to text, information about the exactness
+             * of the conversion result in FloatingDecimal, as well as any
+             * rounding done, is needed in this class.
+             *
+             * - For the  HALF_DOWN, HALF_EVEN, HALF_UP rounding rules below:
+             *   In the case of formating float or double, We must take into
+             *   account what FloatingDecimal has done in the binary to decimal
+             *   conversion.
+             *
+             *   Considering the tie cases, FloatingDecimal may round up the
+             *   value (returning decimal digits equal to tie when it is below),
+             *   or "truncate" the value to the tie while value is above it,
+             *   or provide the exact decimal digits when the binary value can be
+             *   converted exactly to its decimal representation given formating
+             *   rules of FloatingDecimal ( we have thus an exact decimal
+             *   representation of the binary value).
+             *
+             *   - If the double binary value was converted exactly as a decimal
+             *     value, then DigitList code must apply the expected rounding
+             *     rule.
+             *
+             *   - If FloatingDecimal already rounded up the decimal value,
+             *     DigitList should neither round up the value again in any of
+             *     the three rounding modes above.
+             *
+             *   - If FloatingDecimal has truncated the decimal value to
+             *     an ending '5' digit, DigitList should round up the value in
+             *     all of the three rounding modes above.
+             *
+             *
+             *   This has to be considered only if digit at maximumDigits index
+             *   is exactly the last one in the set of digits, otherwise there are
+             *   remaining digits after that position and we don't have to consider
+             *   what FloatingDecimal did.
+             *
+             * - Other rounding modes are not impacted by these tie cases.
+             *
+             * - For other numbers that are always converted to exact digits
+             *   (like BigInteger, Long, ...), the passed alreadyRounded boolean
+             *   have to be  set to false, and valueExactAsDecimal has to be set to
+             *   true in the upper DigitList call stack, providing the right state
+             *   for those situations..
+             */
+
+            switch(roundingMode) {
+            case UP:
+                for (int i=maximumDigits; i<count; ++i) {
+                    if (digits[i] != '0') {
+                        return true;
+                    }
+                }
+                break;
+            case DOWN:
+                break;
+            case CEILING:
+                for (int i=maximumDigits; i<count; ++i) {
+                    if (digits[i] != '0') {
+                        return !isNegative;
+                    }
+                }
+                break;
+            case FLOOR:
+                for (int i=maximumDigits; i<count; ++i) {
+                    if (digits[i] != '0') {
+                        return isNegative;
+                    }
+                }
+                break;
+            case HALF_UP:
+            case HALF_DOWN:
+                if (digits[maximumDigits] > '5') {
+                    // Value is above tie ==> must round up
+                    return true;
+                } else if (digits[maximumDigits] == '5') {
+                    // Digit at rounding position is a '5'. Tie cases.
+                    if (maximumDigits != (count - 1)) {
+                        // There are remaining digits. Above tie => must round up
+                        return true;
+                    } else {
+                        // Digit at rounding position is the last one !
+                        if (valueExactAsDecimal) {
+                            // Exact binary representation. On the tie.
+                            // Apply rounding given by roundingMode.
+                            return roundingMode == RoundingMode.HALF_UP;
+                        } else {
+                            // Not an exact binary representation.
+                            // Digit sequence either rounded up or truncated.
+                            // Round up only if it was truncated.
+                            return !alreadyRounded;
+                        }
+                    }
+                }
+                // Digit at rounding position is < '5' ==> no round up.
+                // Just let do the default, which is no round up (thus break).
+                break;
+            case HALF_EVEN:
+                // Implement IEEE half-even rounding
+                if (digits[maximumDigits] > '5') {
+                    return true;
+                } else if (digits[maximumDigits] == '5' ) {
+                    if (maximumDigits == (count - 1)) {
+                        // the rounding position is exactly the last index :
+                        if (alreadyRounded)
+                            // If FloatingDecimal rounded up (value was below tie),
+                            // then we should not round up again.
+                            return false;
+
+                        if (!valueExactAsDecimal)
+                            // Otherwise if the digits don't represent exact value,
+                            // value was above tie and FloatingDecimal truncated
+                            // digits to tie. We must round up.
+                            return true;
+                        else {
+                            // This is an exact tie value, and FloatingDecimal
+                            // provided all of the exact digits. We thus apply
+                            // HALF_EVEN rounding rule.
+                            return ((maximumDigits > 0) &&
+                                    (digits[maximumDigits-1] % 2 != 0));
+                        }
+                    } else {
+                        // Rounds up if it gives a non null digit after '5'
+                        for (int i=maximumDigits+1; i<count; ++i) {
+                            if (digits[i] != '0')
+                                return true;
+                        }
+                    }
+                }
+                break;
+            case UNNECESSARY:
+                for (int i=maximumDigits; i<count; ++i) {
+                    if (digits[i] != '0') {
+                        throw new ArithmeticException(
+                            "Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
+                    }
+                }
+                break;
+            default:
+                assert false;
+            }
+        }
+        return false;
+    }
+
+    /**
+     * Utility routine to set the value of the digit list from a long
+     */
+    final void set(boolean isNegative, long source) {
+        set(isNegative, source, 0);
+    }
+
+    /**
+     * Set the digit list to a representation of the given long value.
+     * @param isNegative Boolean value indicating whether the number is negative.
+     * @param source Value to be converted; must be >= 0 or ==
+     * Long.MIN_VALUE.
+     * @param maximumDigits The most digits which should be converted.
+     * If maximumDigits is lower than the number of significant digits
+     * in source, the representation will be rounded.  Ignored if <= 0.
+     */
+    final void set(boolean isNegative, long source, int maximumDigits) {
+        this.isNegative = isNegative;
+
+        // This method does not expect a negative number. However,
+        // "source" can be a Long.MIN_VALUE (-9223372036854775808),
+        // if the number being formatted is a Long.MIN_VALUE.  In that
+        // case, it will be formatted as -Long.MIN_VALUE, a number
+        // which is outside the legal range of a long, but which can
+        // be represented by DigitList.
+        if (source <= 0) {
+            if (source == Long.MIN_VALUE) {
+                decimalAt = count = MAX_COUNT;
+                System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
+            } else {
+                decimalAt = count = 0; // Values <= 0 format as zero
+            }
+        } else {
+            // Rewritten to improve performance.  I used to call
+            // Long.toString(), which was about 4x slower than this code.
+            int left = MAX_COUNT;
+            int right;
+            while (source > 0) {
+                digits[--left] = (char)('0' + (source % 10));
+                source /= 10;
+            }
+            decimalAt = MAX_COUNT - left;
+            // Don't copy trailing zeros.  We are guaranteed that there is at
+            // least one non-zero digit, so we don't have to check lower bounds.
+            for (right = MAX_COUNT - 1; digits[right] == '0'; --right)
+                ;
+            count = right - left + 1;
+            System.arraycopy(digits, left, digits, 0, count);
+        }
+        if (maximumDigits > 0) round(maximumDigits, false, true);
+    }
+
+    /**
+     * Set the digit list to a representation of the given BigDecimal value.
+     * This method supports both fixed-point and exponential notation.
+     * @param isNegative Boolean value indicating whether the number is negative.
+     * @param source Value to be converted; must not be a value <= 0.
+     * @param maximumDigits The most fractional or total digits which should
+     * be converted.
+     * @param fixedPoint If true, then maximumDigits is the maximum
+     * fractional digits to be converted.  If false, total digits.
+     */
+    final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) {
+        String s = source.toString();
+        extendDigits(s.length());
+
+        set(isNegative, s,
+            false, true,
+            maximumDigits, fixedPoint);
+    }
+
+    /**
+     * Set the digit list to a representation of the given BigInteger value.
+     * @param isNegative Boolean value indicating whether the number is negative.
+     * @param source Value to be converted; must be >= 0.
+     * @param maximumDigits The most digits which should be converted.
+     * If maximumDigits is lower than the number of significant digits
+     * in source, the representation will be rounded.  Ignored if <= 0.
+     */
+    final void set(boolean isNegative, BigInteger source, int maximumDigits) {
+        this.isNegative = isNegative;
+        String s = source.toString();
+        int len = s.length();
+        extendDigits(len);
+        s.getChars(0, len, digits, 0);
+
+        decimalAt = len;
+        int right;
+        for (right = len - 1; right >= 0 && digits[right] == '0'; --right)
+            ;
+        count = right + 1;
+
+        if (maximumDigits > 0) {
+            round(maximumDigits, false, true);
+        }
+    }
+
+    /**
+     * equality test between two digit lists.
+     */
+    public boolean equals(Object obj) {
+        if (this == obj)                      // quick check
+            return true;
+        if (!(obj instanceof DigitList))         // (1) same object?
+            return false;
+        DigitList other = (DigitList) obj;
+        if (count != other.count ||
+        decimalAt != other.decimalAt)
+            return false;
+        for (int i = 0; i < count; i++)
+            if (digits[i] != other.digits[i])
+                return false;
+        return true;
+    }
+
+    /**
+     * Generates the hash code for the digit list.
+     */
+    public int hashCode() {
+        int hashcode = decimalAt;
+
+        for (int i = 0; i < count; i++) {
+            hashcode = hashcode * 37 + digits[i];
+        }
+
+        return hashcode;
+    }
+
+    /**
+     * Creates a copy of this object.
+     * @return a clone of this instance.
+     */
+    public Object clone() {
+        try {
+            DigitList other = (DigitList) super.clone();
+            char[] newDigits = new char[digits.length];
+            System.arraycopy(digits, 0, newDigits, 0, digits.length);
+            other.digits = newDigits;
+            other.tempBuffer = null;
+            return other;
+        } catch (CloneNotSupportedException e) {
+            throw new InternalError(e);
+        }
+    }
+
+    /**
+     * Returns true if this DigitList represents Long.MIN_VALUE;
+     * false, otherwise.  This is required so that getLong() works.
+     */
+    private boolean isLongMIN_VALUE() {
+        if (decimalAt != count || count != MAX_COUNT) {
+            return false;
+        }
+
+        for (int i = 0; i < count; ++i) {
+            if (digits[i] != LONG_MIN_REP[i]) return false;
+        }
+
+        return true;
+    }
+
+    private static final int parseInt(char[] str, int offset, int strLen) {
+        char c;
+        boolean positive = true;
+        if ((c = str[offset]) == '-') {
+            positive = false;
+            offset++;
+        } else if (c == '+') {
+            offset++;
+        }
+
+        int value = 0;
+        while (offset < strLen) {
+            c = str[offset++];
+            if (c >= '0' && c <= '9') {
+                value = value * 10 + (c - '0');
+            } else {
+                break;
+            }
+        }
+        return positive ? value : -value;
+    }
+
+    // The digit part of -9223372036854775808L
+    private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray();
+
+    public String toString() {
+        if (isZero()) {
+            return "0";
+        }
+        StringBuffer buf = getStringBuffer();
+        buf.append("0.");
+        buf.append(digits, 0, count);
+        buf.append("x10^");
+        buf.append(decimalAt);
+        return buf.toString();
+    }
+
+    private StringBuffer tempBuffer;
+
+    private StringBuffer getStringBuffer() {
+        if (tempBuffer == null) {
+            tempBuffer = new StringBuffer(MAX_COUNT);
+        } else {
+            tempBuffer.setLength(0);
+        }
+        return tempBuffer;
+    }
+
+    private void extendDigits(int len) {
+        if (len > digits.length) {
+            digits = new char[len];
+        }
+    }
+
+    private final char[] getDataChars(int length) {
+        if (data == null || data.length < length) {
+            data = new char[length];
+        }
+        return data;
+    }
+}