src/java.base/share/classes/java/text/DigitList.java
changeset 47216 71c04702a3d5
parent 34781 479b1724ab80
child 58242 94bb65cb37d3
child 58678 9cf78a70fa4f
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 1996, 2014, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.  Oracle designates this
       
     8  * particular file as subject to the "Classpath" exception as provided
       
     9  * by Oracle in the LICENSE file that accompanied this code.
       
    10  *
       
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    14  * version 2 for more details (a copy is included in the LICENSE file that
       
    15  * accompanied this code).
       
    16  *
       
    17  * You should have received a copy of the GNU General Public License version
       
    18  * 2 along with this work; if not, write to the Free Software Foundation,
       
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    20  *
       
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    22  * or visit www.oracle.com if you need additional information or have any
       
    23  * questions.
       
    24  */
       
    25 
       
    26 /*
       
    27  * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
       
    28  * (C) Copyright IBM Corp. 1996 - 1998 - All Rights Reserved
       
    29  *
       
    30  *   The original version of this source code and documentation is copyrighted
       
    31  * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
       
    32  * materials are provided under terms of a License Agreement between Taligent
       
    33  * and Sun. This technology is protected by multiple US and International
       
    34  * patents. This notice and attribution to Taligent may not be removed.
       
    35  *   Taligent is a registered trademark of Taligent, Inc.
       
    36  *
       
    37  */
       
    38 
       
    39 package java.text;
       
    40 
       
    41 import java.math.BigDecimal;
       
    42 import java.math.BigInteger;
       
    43 import java.math.RoundingMode;
       
    44 import jdk.internal.math.FloatingDecimal;
       
    45 
       
    46 /**
       
    47  * Digit List. Private to DecimalFormat.
       
    48  * Handles the transcoding
       
    49  * between numeric values and strings of characters.  Only handles
       
    50  * non-negative numbers.  The division of labor between DigitList and
       
    51  * DecimalFormat is that DigitList handles the radix 10 representation
       
    52  * issues; DecimalFormat handles the locale-specific issues such as
       
    53  * positive/negative, grouping, decimal point, currency, and so on.
       
    54  *
       
    55  * A DigitList is really a representation of a floating point value.
       
    56  * It may be an integer value; we assume that a double has sufficient
       
    57  * precision to represent all digits of a long.
       
    58  *
       
    59  * The DigitList representation consists of a string of characters,
       
    60  * which are the digits radix 10, from '0' to '9'.  It also has a radix
       
    61  * 10 exponent associated with it.  The value represented by a DigitList
       
    62  * object can be computed by mulitplying the fraction f, where 0 <= f < 1,
       
    63  * derived by placing all the digits of the list to the right of the
       
    64  * decimal point, by 10^exponent.
       
    65  *
       
    66  * @see  Locale
       
    67  * @see  Format
       
    68  * @see  NumberFormat
       
    69  * @see  DecimalFormat
       
    70  * @see  ChoiceFormat
       
    71  * @see  MessageFormat
       
    72  * @author       Mark Davis, Alan Liu
       
    73  */
       
    74 final class DigitList implements Cloneable {
       
    75     /**
       
    76      * The maximum number of significant digits in an IEEE 754 double, that
       
    77      * is, in a Java double.  This must not be increased, or garbage digits
       
    78      * will be generated, and should not be decreased, or accuracy will be lost.
       
    79      */
       
    80     public static final int MAX_COUNT = 19; // == Long.toString(Long.MAX_VALUE).length()
       
    81 
       
    82     /**
       
    83      * These data members are intentionally public and can be set directly.
       
    84      *
       
    85      * The value represented is given by placing the decimal point before
       
    86      * digits[decimalAt].  If decimalAt is < 0, then leading zeros between
       
    87      * the decimal point and the first nonzero digit are implied.  If decimalAt
       
    88      * is > count, then trailing zeros between the digits[count-1] and the
       
    89      * decimal point are implied.
       
    90      *
       
    91      * Equivalently, the represented value is given by f * 10^decimalAt.  Here
       
    92      * f is a value 0.1 <= f < 1 arrived at by placing the digits in Digits to
       
    93      * the right of the decimal.
       
    94      *
       
    95      * DigitList is normalized, so if it is non-zero, figits[0] is non-zero.  We
       
    96      * don't allow denormalized numbers because our exponent is effectively of
       
    97      * unlimited magnitude.  The count value contains the number of significant
       
    98      * digits present in digits[].
       
    99      *
       
   100      * Zero is represented by any DigitList with count == 0 or with each digits[i]
       
   101      * for all i <= count == '0'.
       
   102      */
       
   103     public int decimalAt = 0;
       
   104     public int count = 0;
       
   105     public char[] digits = new char[MAX_COUNT];
       
   106 
       
   107     private char[] data;
       
   108     private RoundingMode roundingMode = RoundingMode.HALF_EVEN;
       
   109     private boolean isNegative = false;
       
   110 
       
   111     /**
       
   112      * Return true if the represented number is zero.
       
   113      */
       
   114     boolean isZero() {
       
   115         for (int i=0; i < count; ++i) {
       
   116             if (digits[i] != '0') {
       
   117                 return false;
       
   118             }
       
   119         }
       
   120         return true;
       
   121     }
       
   122 
       
   123     /**
       
   124      * Set the rounding mode
       
   125      */
       
   126     void setRoundingMode(RoundingMode r) {
       
   127         roundingMode = r;
       
   128     }
       
   129 
       
   130     /**
       
   131      * Clears out the digits.
       
   132      * Use before appending them.
       
   133      * Typically, you set a series of digits with append, then at the point
       
   134      * you hit the decimal point, you set myDigitList.decimalAt = myDigitList.count;
       
   135      * then go on appending digits.
       
   136      */
       
   137     public void clear () {
       
   138         decimalAt = 0;
       
   139         count = 0;
       
   140     }
       
   141 
       
   142     /**
       
   143      * Appends a digit to the list, extending the list when necessary.
       
   144      */
       
   145     public void append(char digit) {
       
   146         if (count == digits.length) {
       
   147             char[] data = new char[count + 100];
       
   148             System.arraycopy(digits, 0, data, 0, count);
       
   149             digits = data;
       
   150         }
       
   151         digits[count++] = digit;
       
   152     }
       
   153 
       
   154     /**
       
   155      * Utility routine to get the value of the digit list
       
   156      * If (count == 0) this throws a NumberFormatException, which
       
   157      * mimics Long.parseLong().
       
   158      */
       
   159     public final double getDouble() {
       
   160         if (count == 0) {
       
   161             return 0.0;
       
   162         }
       
   163 
       
   164         StringBuffer temp = getStringBuffer();
       
   165         temp.append('.');
       
   166         temp.append(digits, 0, count);
       
   167         temp.append('E');
       
   168         temp.append(decimalAt);
       
   169         return Double.parseDouble(temp.toString());
       
   170     }
       
   171 
       
   172     /**
       
   173      * Utility routine to get the value of the digit list.
       
   174      * If (count == 0) this returns 0, unlike Long.parseLong().
       
   175      */
       
   176     public final long getLong() {
       
   177         // for now, simple implementation; later, do proper IEEE native stuff
       
   178 
       
   179         if (count == 0) {
       
   180             return 0;
       
   181         }
       
   182 
       
   183         // We have to check for this, because this is the one NEGATIVE value
       
   184         // we represent.  If we tried to just pass the digits off to parseLong,
       
   185         // we'd get a parse failure.
       
   186         if (isLongMIN_VALUE()) {
       
   187             return Long.MIN_VALUE;
       
   188         }
       
   189 
       
   190         StringBuffer temp = getStringBuffer();
       
   191         temp.append(digits, 0, count);
       
   192         for (int i = count; i < decimalAt; ++i) {
       
   193             temp.append('0');
       
   194         }
       
   195         return Long.parseLong(temp.toString());
       
   196     }
       
   197 
       
   198     public final BigDecimal getBigDecimal() {
       
   199         if (count == 0) {
       
   200             if (decimalAt == 0) {
       
   201                 return BigDecimal.ZERO;
       
   202             } else {
       
   203                 return new BigDecimal("0E" + decimalAt);
       
   204             }
       
   205         }
       
   206 
       
   207        if (decimalAt == count) {
       
   208            return new BigDecimal(digits, 0, count);
       
   209        } else {
       
   210            return new BigDecimal(digits, 0, count).scaleByPowerOfTen(decimalAt - count);
       
   211        }
       
   212     }
       
   213 
       
   214     /**
       
   215      * Return true if the number represented by this object can fit into
       
   216      * a long.
       
   217      * @param isPositive true if this number should be regarded as positive
       
   218      * @param ignoreNegativeZero true if -0 should be regarded as identical to
       
   219      * +0; otherwise they are considered distinct
       
   220      * @return true if this number fits into a Java long
       
   221      */
       
   222     boolean fitsIntoLong(boolean isPositive, boolean ignoreNegativeZero) {
       
   223         // Figure out if the result will fit in a long.  We have to
       
   224         // first look for nonzero digits after the decimal point;
       
   225         // then check the size.  If the digit count is 18 or less, then
       
   226         // the value can definitely be represented as a long.  If it is 19
       
   227         // then it may be too large.
       
   228 
       
   229         // Trim trailing zeros.  This does not change the represented value.
       
   230         while (count > 0 && digits[count - 1] == '0') {
       
   231             --count;
       
   232         }
       
   233 
       
   234         if (count == 0) {
       
   235             // Positive zero fits into a long, but negative zero can only
       
   236             // be represented as a double. - bug 4162852
       
   237             return isPositive || ignoreNegativeZero;
       
   238         }
       
   239 
       
   240         if (decimalAt < count || decimalAt > MAX_COUNT) {
       
   241             return false;
       
   242         }
       
   243 
       
   244         if (decimalAt < MAX_COUNT) return true;
       
   245 
       
   246         // At this point we have decimalAt == count, and count == MAX_COUNT.
       
   247         // The number will overflow if it is larger than 9223372036854775807
       
   248         // or smaller than -9223372036854775808.
       
   249         for (int i=0; i<count; ++i) {
       
   250             char dig = digits[i], max = LONG_MIN_REP[i];
       
   251             if (dig > max) return false;
       
   252             if (dig < max) return true;
       
   253         }
       
   254 
       
   255         // At this point the first count digits match.  If decimalAt is less
       
   256         // than count, then the remaining digits are zero, and we return true.
       
   257         if (count < decimalAt) return true;
       
   258 
       
   259         // Now we have a representation of Long.MIN_VALUE, without the leading
       
   260         // negative sign.  If this represents a positive value, then it does
       
   261         // not fit; otherwise it fits.
       
   262         return !isPositive;
       
   263     }
       
   264 
       
   265     /**
       
   266      * Set the digit list to a representation of the given double value.
       
   267      * This method supports fixed-point notation.
       
   268      * @param isNegative Boolean value indicating whether the number is negative.
       
   269      * @param source Value to be converted; must not be Inf, -Inf, Nan,
       
   270      * or a value <= 0.
       
   271      * @param maximumFractionDigits The most fractional digits which should
       
   272      * be converted.
       
   273      */
       
   274     final void set(boolean isNegative, double source, int maximumFractionDigits) {
       
   275         set(isNegative, source, maximumFractionDigits, true);
       
   276     }
       
   277 
       
   278     /**
       
   279      * Set the digit list to a representation of the given double value.
       
   280      * This method supports both fixed-point and exponential notation.
       
   281      * @param isNegative Boolean value indicating whether the number is negative.
       
   282      * @param source Value to be converted; must not be Inf, -Inf, Nan,
       
   283      * or a value <= 0.
       
   284      * @param maximumDigits The most fractional or total digits which should
       
   285      * be converted.
       
   286      * @param fixedPoint If true, then maximumDigits is the maximum
       
   287      * fractional digits to be converted.  If false, total digits.
       
   288      */
       
   289     final void set(boolean isNegative, double source, int maximumDigits, boolean fixedPoint) {
       
   290 
       
   291         FloatingDecimal.BinaryToASCIIConverter fdConverter  = FloatingDecimal.getBinaryToASCIIConverter(source);
       
   292         boolean hasBeenRoundedUp = fdConverter.digitsRoundedUp();
       
   293         boolean valueExactAsDecimal = fdConverter.decimalDigitsExact();
       
   294         assert !fdConverter.isExceptional();
       
   295         String digitsString = fdConverter.toJavaFormatString();
       
   296 
       
   297         set(isNegative, digitsString,
       
   298             hasBeenRoundedUp, valueExactAsDecimal,
       
   299             maximumDigits, fixedPoint);
       
   300     }
       
   301 
       
   302     /**
       
   303      * Generate a representation of the form DDDDD, DDDDD.DDDDD, or
       
   304      * DDDDDE+/-DDDDD.
       
   305      * @param roundedUp whether or not rounding up has already happened.
       
   306      * @param valueExactAsDecimal whether or not collected digits provide
       
   307      * an exact decimal representation of the value.
       
   308      */
       
   309     private void set(boolean isNegative, String s,
       
   310                      boolean roundedUp, boolean valueExactAsDecimal,
       
   311                      int maximumDigits, boolean fixedPoint) {
       
   312 
       
   313         this.isNegative = isNegative;
       
   314         int len = s.length();
       
   315         char[] source = getDataChars(len);
       
   316         s.getChars(0, len, source, 0);
       
   317 
       
   318         decimalAt = -1;
       
   319         count = 0;
       
   320         int exponent = 0;
       
   321         // Number of zeros between decimal point and first non-zero digit after
       
   322         // decimal point, for numbers < 1.
       
   323         int leadingZerosAfterDecimal = 0;
       
   324         boolean nonZeroDigitSeen = false;
       
   325 
       
   326         for (int i = 0; i < len; ) {
       
   327             char c = source[i++];
       
   328             if (c == '.') {
       
   329                 decimalAt = count;
       
   330             } else if (c == 'e' || c == 'E') {
       
   331                 exponent = parseInt(source, i, len);
       
   332                 break;
       
   333             } else {
       
   334                 if (!nonZeroDigitSeen) {
       
   335                     nonZeroDigitSeen = (c != '0');
       
   336                     if (!nonZeroDigitSeen && decimalAt != -1)
       
   337                         ++leadingZerosAfterDecimal;
       
   338                 }
       
   339                 if (nonZeroDigitSeen) {
       
   340                     digits[count++] = c;
       
   341                 }
       
   342             }
       
   343         }
       
   344         if (decimalAt == -1) {
       
   345             decimalAt = count;
       
   346         }
       
   347         if (nonZeroDigitSeen) {
       
   348             decimalAt += exponent - leadingZerosAfterDecimal;
       
   349         }
       
   350 
       
   351         if (fixedPoint) {
       
   352             // The negative of the exponent represents the number of leading
       
   353             // zeros between the decimal and the first non-zero digit, for
       
   354             // a value < 0.1 (e.g., for 0.00123, -decimalAt == 2).  If this
       
   355             // is more than the maximum fraction digits, then we have an underflow
       
   356             // for the printed representation.
       
   357             if (-decimalAt > maximumDigits) {
       
   358                 // Handle an underflow to zero when we round something like
       
   359                 // 0.0009 to 2 fractional digits.
       
   360                 count = 0;
       
   361                 return;
       
   362             } else if (-decimalAt == maximumDigits) {
       
   363                 // If we round 0.0009 to 3 fractional digits, then we have to
       
   364                 // create a new one digit in the least significant location.
       
   365                 if (shouldRoundUp(0, roundedUp, valueExactAsDecimal)) {
       
   366                     count = 1;
       
   367                     ++decimalAt;
       
   368                     digits[0] = '1';
       
   369                 } else {
       
   370                     count = 0;
       
   371                 }
       
   372                 return;
       
   373             }
       
   374             // else fall through
       
   375         }
       
   376 
       
   377         // Eliminate trailing zeros.
       
   378         while (count > 1 && digits[count - 1] == '0') {
       
   379             --count;
       
   380         }
       
   381 
       
   382         // Eliminate digits beyond maximum digits to be displayed.
       
   383         // Round up if appropriate.
       
   384         round(fixedPoint ? (maximumDigits + decimalAt) : maximumDigits,
       
   385               roundedUp, valueExactAsDecimal);
       
   386 
       
   387      }
       
   388 
       
   389     /**
       
   390      * Round the representation to the given number of digits.
       
   391      * @param maximumDigits The maximum number of digits to be shown.
       
   392      * @param alreadyRounded whether or not rounding up has already happened.
       
   393      * @param valueExactAsDecimal whether or not collected digits provide
       
   394      * an exact decimal representation of the value.
       
   395      *
       
   396      * Upon return, count will be less than or equal to maximumDigits.
       
   397      */
       
   398     private final void round(int maximumDigits,
       
   399                              boolean alreadyRounded,
       
   400                              boolean valueExactAsDecimal) {
       
   401         // Eliminate digits beyond maximum digits to be displayed.
       
   402         // Round up if appropriate.
       
   403         if (maximumDigits >= 0 && maximumDigits < count) {
       
   404             if (shouldRoundUp(maximumDigits, alreadyRounded, valueExactAsDecimal)) {
       
   405                 // Rounding up involved incrementing digits from LSD to MSD.
       
   406                 // In most cases this is simple, but in a worst case situation
       
   407                 // (9999..99) we have to adjust the decimalAt value.
       
   408                 for (;;) {
       
   409                     --maximumDigits;
       
   410                     if (maximumDigits < 0) {
       
   411                         // We have all 9's, so we increment to a single digit
       
   412                         // of one and adjust the exponent.
       
   413                         digits[0] = '1';
       
   414                         ++decimalAt;
       
   415                         maximumDigits = 0; // Adjust the count
       
   416                         break;
       
   417                     }
       
   418 
       
   419                     ++digits[maximumDigits];
       
   420                     if (digits[maximumDigits] <= '9') break;
       
   421                     // digits[maximumDigits] = '0'; // Unnecessary since we'll truncate this
       
   422                 }
       
   423                 ++maximumDigits; // Increment for use as count
       
   424             }
       
   425             count = maximumDigits;
       
   426 
       
   427             // Eliminate trailing zeros.
       
   428             while (count > 1 && digits[count-1] == '0') {
       
   429                 --count;
       
   430             }
       
   431         }
       
   432     }
       
   433 
       
   434 
       
   435     /**
       
   436      * Return true if truncating the representation to the given number
       
   437      * of digits will result in an increment to the last digit.  This
       
   438      * method implements the rounding modes defined in the
       
   439      * java.math.RoundingMode class.
       
   440      * [bnf]
       
   441      * @param maximumDigits the number of digits to keep, from 0 to
       
   442      * <code>count-1</code>.  If 0, then all digits are rounded away, and
       
   443      * this method returns true if a one should be generated (e.g., formatting
       
   444      * 0.09 with "#.#").
       
   445      * @param alreadyRounded whether or not rounding up has already happened.
       
   446      * @param valueExactAsDecimal whether or not collected digits provide
       
   447      * an exact decimal representation of the value.
       
   448      * @exception ArithmeticException if rounding is needed with rounding
       
   449      *            mode being set to RoundingMode.UNNECESSARY
       
   450      * @return true if digit <code>maximumDigits-1</code> should be
       
   451      * incremented
       
   452      */
       
   453     private boolean shouldRoundUp(int maximumDigits,
       
   454                                   boolean alreadyRounded,
       
   455                                   boolean valueExactAsDecimal) {
       
   456         if (maximumDigits < count) {
       
   457             /*
       
   458              * To avoid erroneous double-rounding or truncation when converting
       
   459              * a binary double value to text, information about the exactness
       
   460              * of the conversion result in FloatingDecimal, as well as any
       
   461              * rounding done, is needed in this class.
       
   462              *
       
   463              * - For the  HALF_DOWN, HALF_EVEN, HALF_UP rounding rules below:
       
   464              *   In the case of formating float or double, We must take into
       
   465              *   account what FloatingDecimal has done in the binary to decimal
       
   466              *   conversion.
       
   467              *
       
   468              *   Considering the tie cases, FloatingDecimal may round up the
       
   469              *   value (returning decimal digits equal to tie when it is below),
       
   470              *   or "truncate" the value to the tie while value is above it,
       
   471              *   or provide the exact decimal digits when the binary value can be
       
   472              *   converted exactly to its decimal representation given formating
       
   473              *   rules of FloatingDecimal ( we have thus an exact decimal
       
   474              *   representation of the binary value).
       
   475              *
       
   476              *   - If the double binary value was converted exactly as a decimal
       
   477              *     value, then DigitList code must apply the expected rounding
       
   478              *     rule.
       
   479              *
       
   480              *   - If FloatingDecimal already rounded up the decimal value,
       
   481              *     DigitList should neither round up the value again in any of
       
   482              *     the three rounding modes above.
       
   483              *
       
   484              *   - If FloatingDecimal has truncated the decimal value to
       
   485              *     an ending '5' digit, DigitList should round up the value in
       
   486              *     all of the three rounding modes above.
       
   487              *
       
   488              *
       
   489              *   This has to be considered only if digit at maximumDigits index
       
   490              *   is exactly the last one in the set of digits, otherwise there are
       
   491              *   remaining digits after that position and we don't have to consider
       
   492              *   what FloatingDecimal did.
       
   493              *
       
   494              * - Other rounding modes are not impacted by these tie cases.
       
   495              *
       
   496              * - For other numbers that are always converted to exact digits
       
   497              *   (like BigInteger, Long, ...), the passed alreadyRounded boolean
       
   498              *   have to be  set to false, and valueExactAsDecimal has to be set to
       
   499              *   true in the upper DigitList call stack, providing the right state
       
   500              *   for those situations..
       
   501              */
       
   502 
       
   503             switch(roundingMode) {
       
   504             case UP:
       
   505                 for (int i=maximumDigits; i<count; ++i) {
       
   506                     if (digits[i] != '0') {
       
   507                         return true;
       
   508                     }
       
   509                 }
       
   510                 break;
       
   511             case DOWN:
       
   512                 break;
       
   513             case CEILING:
       
   514                 for (int i=maximumDigits; i<count; ++i) {
       
   515                     if (digits[i] != '0') {
       
   516                         return !isNegative;
       
   517                     }
       
   518                 }
       
   519                 break;
       
   520             case FLOOR:
       
   521                 for (int i=maximumDigits; i<count; ++i) {
       
   522                     if (digits[i] != '0') {
       
   523                         return isNegative;
       
   524                     }
       
   525                 }
       
   526                 break;
       
   527             case HALF_UP:
       
   528             case HALF_DOWN:
       
   529                 if (digits[maximumDigits] > '5') {
       
   530                     // Value is above tie ==> must round up
       
   531                     return true;
       
   532                 } else if (digits[maximumDigits] == '5') {
       
   533                     // Digit at rounding position is a '5'. Tie cases.
       
   534                     if (maximumDigits != (count - 1)) {
       
   535                         // There are remaining digits. Above tie => must round up
       
   536                         return true;
       
   537                     } else {
       
   538                         // Digit at rounding position is the last one !
       
   539                         if (valueExactAsDecimal) {
       
   540                             // Exact binary representation. On the tie.
       
   541                             // Apply rounding given by roundingMode.
       
   542                             return roundingMode == RoundingMode.HALF_UP;
       
   543                         } else {
       
   544                             // Not an exact binary representation.
       
   545                             // Digit sequence either rounded up or truncated.
       
   546                             // Round up only if it was truncated.
       
   547                             return !alreadyRounded;
       
   548                         }
       
   549                     }
       
   550                 }
       
   551                 // Digit at rounding position is < '5' ==> no round up.
       
   552                 // Just let do the default, which is no round up (thus break).
       
   553                 break;
       
   554             case HALF_EVEN:
       
   555                 // Implement IEEE half-even rounding
       
   556                 if (digits[maximumDigits] > '5') {
       
   557                     return true;
       
   558                 } else if (digits[maximumDigits] == '5' ) {
       
   559                     if (maximumDigits == (count - 1)) {
       
   560                         // the rounding position is exactly the last index :
       
   561                         if (alreadyRounded)
       
   562                             // If FloatingDecimal rounded up (value was below tie),
       
   563                             // then we should not round up again.
       
   564                             return false;
       
   565 
       
   566                         if (!valueExactAsDecimal)
       
   567                             // Otherwise if the digits don't represent exact value,
       
   568                             // value was above tie and FloatingDecimal truncated
       
   569                             // digits to tie. We must round up.
       
   570                             return true;
       
   571                         else {
       
   572                             // This is an exact tie value, and FloatingDecimal
       
   573                             // provided all of the exact digits. We thus apply
       
   574                             // HALF_EVEN rounding rule.
       
   575                             return ((maximumDigits > 0) &&
       
   576                                     (digits[maximumDigits-1] % 2 != 0));
       
   577                         }
       
   578                     } else {
       
   579                         // Rounds up if it gives a non null digit after '5'
       
   580                         for (int i=maximumDigits+1; i<count; ++i) {
       
   581                             if (digits[i] != '0')
       
   582                                 return true;
       
   583                         }
       
   584                     }
       
   585                 }
       
   586                 break;
       
   587             case UNNECESSARY:
       
   588                 for (int i=maximumDigits; i<count; ++i) {
       
   589                     if (digits[i] != '0') {
       
   590                         throw new ArithmeticException(
       
   591                             "Rounding needed with the rounding mode being set to RoundingMode.UNNECESSARY");
       
   592                     }
       
   593                 }
       
   594                 break;
       
   595             default:
       
   596                 assert false;
       
   597             }
       
   598         }
       
   599         return false;
       
   600     }
       
   601 
       
   602     /**
       
   603      * Utility routine to set the value of the digit list from a long
       
   604      */
       
   605     final void set(boolean isNegative, long source) {
       
   606         set(isNegative, source, 0);
       
   607     }
       
   608 
       
   609     /**
       
   610      * Set the digit list to a representation of the given long value.
       
   611      * @param isNegative Boolean value indicating whether the number is negative.
       
   612      * @param source Value to be converted; must be >= 0 or ==
       
   613      * Long.MIN_VALUE.
       
   614      * @param maximumDigits The most digits which should be converted.
       
   615      * If maximumDigits is lower than the number of significant digits
       
   616      * in source, the representation will be rounded.  Ignored if <= 0.
       
   617      */
       
   618     final void set(boolean isNegative, long source, int maximumDigits) {
       
   619         this.isNegative = isNegative;
       
   620 
       
   621         // This method does not expect a negative number. However,
       
   622         // "source" can be a Long.MIN_VALUE (-9223372036854775808),
       
   623         // if the number being formatted is a Long.MIN_VALUE.  In that
       
   624         // case, it will be formatted as -Long.MIN_VALUE, a number
       
   625         // which is outside the legal range of a long, but which can
       
   626         // be represented by DigitList.
       
   627         if (source <= 0) {
       
   628             if (source == Long.MIN_VALUE) {
       
   629                 decimalAt = count = MAX_COUNT;
       
   630                 System.arraycopy(LONG_MIN_REP, 0, digits, 0, count);
       
   631             } else {
       
   632                 decimalAt = count = 0; // Values <= 0 format as zero
       
   633             }
       
   634         } else {
       
   635             // Rewritten to improve performance.  I used to call
       
   636             // Long.toString(), which was about 4x slower than this code.
       
   637             int left = MAX_COUNT;
       
   638             int right;
       
   639             while (source > 0) {
       
   640                 digits[--left] = (char)('0' + (source % 10));
       
   641                 source /= 10;
       
   642             }
       
   643             decimalAt = MAX_COUNT - left;
       
   644             // Don't copy trailing zeros.  We are guaranteed that there is at
       
   645             // least one non-zero digit, so we don't have to check lower bounds.
       
   646             for (right = MAX_COUNT - 1; digits[right] == '0'; --right)
       
   647                 ;
       
   648             count = right - left + 1;
       
   649             System.arraycopy(digits, left, digits, 0, count);
       
   650         }
       
   651         if (maximumDigits > 0) round(maximumDigits, false, true);
       
   652     }
       
   653 
       
   654     /**
       
   655      * Set the digit list to a representation of the given BigDecimal value.
       
   656      * This method supports both fixed-point and exponential notation.
       
   657      * @param isNegative Boolean value indicating whether the number is negative.
       
   658      * @param source Value to be converted; must not be a value <= 0.
       
   659      * @param maximumDigits The most fractional or total digits which should
       
   660      * be converted.
       
   661      * @param fixedPoint If true, then maximumDigits is the maximum
       
   662      * fractional digits to be converted.  If false, total digits.
       
   663      */
       
   664     final void set(boolean isNegative, BigDecimal source, int maximumDigits, boolean fixedPoint) {
       
   665         String s = source.toString();
       
   666         extendDigits(s.length());
       
   667 
       
   668         set(isNegative, s,
       
   669             false, true,
       
   670             maximumDigits, fixedPoint);
       
   671     }
       
   672 
       
   673     /**
       
   674      * Set the digit list to a representation of the given BigInteger value.
       
   675      * @param isNegative Boolean value indicating whether the number is negative.
       
   676      * @param source Value to be converted; must be >= 0.
       
   677      * @param maximumDigits The most digits which should be converted.
       
   678      * If maximumDigits is lower than the number of significant digits
       
   679      * in source, the representation will be rounded.  Ignored if <= 0.
       
   680      */
       
   681     final void set(boolean isNegative, BigInteger source, int maximumDigits) {
       
   682         this.isNegative = isNegative;
       
   683         String s = source.toString();
       
   684         int len = s.length();
       
   685         extendDigits(len);
       
   686         s.getChars(0, len, digits, 0);
       
   687 
       
   688         decimalAt = len;
       
   689         int right;
       
   690         for (right = len - 1; right >= 0 && digits[right] == '0'; --right)
       
   691             ;
       
   692         count = right + 1;
       
   693 
       
   694         if (maximumDigits > 0) {
       
   695             round(maximumDigits, false, true);
       
   696         }
       
   697     }
       
   698 
       
   699     /**
       
   700      * equality test between two digit lists.
       
   701      */
       
   702     public boolean equals(Object obj) {
       
   703         if (this == obj)                      // quick check
       
   704             return true;
       
   705         if (!(obj instanceof DigitList))         // (1) same object?
       
   706             return false;
       
   707         DigitList other = (DigitList) obj;
       
   708         if (count != other.count ||
       
   709         decimalAt != other.decimalAt)
       
   710             return false;
       
   711         for (int i = 0; i < count; i++)
       
   712             if (digits[i] != other.digits[i])
       
   713                 return false;
       
   714         return true;
       
   715     }
       
   716 
       
   717     /**
       
   718      * Generates the hash code for the digit list.
       
   719      */
       
   720     public int hashCode() {
       
   721         int hashcode = decimalAt;
       
   722 
       
   723         for (int i = 0; i < count; i++) {
       
   724             hashcode = hashcode * 37 + digits[i];
       
   725         }
       
   726 
       
   727         return hashcode;
       
   728     }
       
   729 
       
   730     /**
       
   731      * Creates a copy of this object.
       
   732      * @return a clone of this instance.
       
   733      */
       
   734     public Object clone() {
       
   735         try {
       
   736             DigitList other = (DigitList) super.clone();
       
   737             char[] newDigits = new char[digits.length];
       
   738             System.arraycopy(digits, 0, newDigits, 0, digits.length);
       
   739             other.digits = newDigits;
       
   740             other.tempBuffer = null;
       
   741             return other;
       
   742         } catch (CloneNotSupportedException e) {
       
   743             throw new InternalError(e);
       
   744         }
       
   745     }
       
   746 
       
   747     /**
       
   748      * Returns true if this DigitList represents Long.MIN_VALUE;
       
   749      * false, otherwise.  This is required so that getLong() works.
       
   750      */
       
   751     private boolean isLongMIN_VALUE() {
       
   752         if (decimalAt != count || count != MAX_COUNT) {
       
   753             return false;
       
   754         }
       
   755 
       
   756         for (int i = 0; i < count; ++i) {
       
   757             if (digits[i] != LONG_MIN_REP[i]) return false;
       
   758         }
       
   759 
       
   760         return true;
       
   761     }
       
   762 
       
   763     private static final int parseInt(char[] str, int offset, int strLen) {
       
   764         char c;
       
   765         boolean positive = true;
       
   766         if ((c = str[offset]) == '-') {
       
   767             positive = false;
       
   768             offset++;
       
   769         } else if (c == '+') {
       
   770             offset++;
       
   771         }
       
   772 
       
   773         int value = 0;
       
   774         while (offset < strLen) {
       
   775             c = str[offset++];
       
   776             if (c >= '0' && c <= '9') {
       
   777                 value = value * 10 + (c - '0');
       
   778             } else {
       
   779                 break;
       
   780             }
       
   781         }
       
   782         return positive ? value : -value;
       
   783     }
       
   784 
       
   785     // The digit part of -9223372036854775808L
       
   786     private static final char[] LONG_MIN_REP = "9223372036854775808".toCharArray();
       
   787 
       
   788     public String toString() {
       
   789         if (isZero()) {
       
   790             return "0";
       
   791         }
       
   792         StringBuffer buf = getStringBuffer();
       
   793         buf.append("0.");
       
   794         buf.append(digits, 0, count);
       
   795         buf.append("x10^");
       
   796         buf.append(decimalAt);
       
   797         return buf.toString();
       
   798     }
       
   799 
       
   800     private StringBuffer tempBuffer;
       
   801 
       
   802     private StringBuffer getStringBuffer() {
       
   803         if (tempBuffer == null) {
       
   804             tempBuffer = new StringBuffer(MAX_COUNT);
       
   805         } else {
       
   806             tempBuffer.setLength(0);
       
   807         }
       
   808         return tempBuffer;
       
   809     }
       
   810 
       
   811     private void extendDigits(int len) {
       
   812         if (len > digits.length) {
       
   813             digits = new char[len];
       
   814         }
       
   815     }
       
   816 
       
   817     private final char[] getDataChars(int length) {
       
   818         if (data == null || data.length < length) {
       
   819             data = new char[length];
       
   820         }
       
   821         return data;
       
   822     }
       
   823 }