src/hotspot/share/runtime/thread.cpp
changeset 47216 71c04702a3d5
parent 47106 bed18a111b90
child 47600 5c8607bb3d2d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/runtime/thread.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,4864 @@
+/*
+ * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "classfile/classLoader.hpp"
+#include "classfile/javaClasses.hpp"
+#include "classfile/moduleEntry.hpp"
+#include "classfile/systemDictionary.hpp"
+#include "classfile/vmSymbols.hpp"
+#include "code/codeCache.hpp"
+#include "code/scopeDesc.hpp"
+#include "compiler/compileBroker.hpp"
+#include "compiler/compileTask.hpp"
+#include "gc/shared/gcId.hpp"
+#include "gc/shared/gcLocker.inline.hpp"
+#include "gc/shared/workgroup.hpp"
+#include "interpreter/interpreter.hpp"
+#include "interpreter/linkResolver.hpp"
+#include "interpreter/oopMapCache.hpp"
+#include "jvmtifiles/jvmtiEnv.hpp"
+#include "logging/log.hpp"
+#include "logging/logConfiguration.hpp"
+#include "logging/logStream.hpp"
+#include "memory/metaspaceShared.hpp"
+#include "memory/oopFactory.hpp"
+#include "memory/resourceArea.hpp"
+#include "memory/universe.inline.hpp"
+#include "oops/instanceKlass.hpp"
+#include "oops/objArrayOop.hpp"
+#include "oops/oop.inline.hpp"
+#include "oops/symbol.hpp"
+#include "oops/verifyOopClosure.hpp"
+#include "prims/jvm.h"
+#include "prims/jvm_misc.hpp"
+#include "prims/jvmtiExport.hpp"
+#include "prims/jvmtiThreadState.hpp"
+#include "prims/privilegedStack.hpp"
+#include "runtime/arguments.hpp"
+#include "runtime/atomic.hpp"
+#include "runtime/biasedLocking.hpp"
+#include "runtime/commandLineFlagConstraintList.hpp"
+#include "runtime/commandLineFlagWriteableList.hpp"
+#include "runtime/commandLineFlagRangeList.hpp"
+#include "runtime/deoptimization.hpp"
+#include "runtime/frame.inline.hpp"
+#include "runtime/globals.hpp"
+#include "runtime/init.hpp"
+#include "runtime/interfaceSupport.hpp"
+#include "runtime/java.hpp"
+#include "runtime/javaCalls.hpp"
+#include "runtime/jniPeriodicChecker.hpp"
+#include "runtime/timerTrace.hpp"
+#include "runtime/memprofiler.hpp"
+#include "runtime/mutexLocker.hpp"
+#include "runtime/objectMonitor.hpp"
+#include "runtime/orderAccess.inline.hpp"
+#include "runtime/osThread.hpp"
+#include "runtime/safepoint.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/statSampler.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "runtime/sweeper.hpp"
+#include "runtime/task.hpp"
+#include "runtime/thread.inline.hpp"
+#include "runtime/threadCritical.hpp"
+#include "runtime/vframe.hpp"
+#include "runtime/vframeArray.hpp"
+#include "runtime/vframe_hp.hpp"
+#include "runtime/vmThread.hpp"
+#include "runtime/vm_operations.hpp"
+#include "runtime/vm_version.hpp"
+#include "services/attachListener.hpp"
+#include "services/management.hpp"
+#include "services/memTracker.hpp"
+#include "services/threadService.hpp"
+#include "trace/traceMacros.hpp"
+#include "trace/tracing.hpp"
+#include "utilities/align.hpp"
+#include "utilities/defaultStream.hpp"
+#include "utilities/dtrace.hpp"
+#include "utilities/events.hpp"
+#include "utilities/macros.hpp"
+#include "utilities/preserveException.hpp"
+#include "utilities/vmError.hpp"
+#if INCLUDE_ALL_GCS
+#include "gc/cms/concurrentMarkSweepThread.hpp"
+#include "gc/g1/concurrentMarkThread.inline.hpp"
+#include "gc/parallel/pcTasks.hpp"
+#endif // INCLUDE_ALL_GCS
+#if INCLUDE_JVMCI
+#include "jvmci/jvmciCompiler.hpp"
+#include "jvmci/jvmciRuntime.hpp"
+#include "logging/logHandle.hpp"
+#endif
+#ifdef COMPILER1
+#include "c1/c1_Compiler.hpp"
+#endif
+#ifdef COMPILER2
+#include "opto/c2compiler.hpp"
+#include "opto/idealGraphPrinter.hpp"
+#endif
+#if INCLUDE_RTM_OPT
+#include "runtime/rtmLocking.hpp"
+#endif
+
+// Initialization after module runtime initialization
+void universe_post_module_init();  // must happen after call_initPhase2
+
+#ifdef DTRACE_ENABLED
+
+// Only bother with this argument setup if dtrace is available
+
+  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
+  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
+
+  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
+    {                                                                      \
+      ResourceMark rm(this);                                               \
+      int len = 0;                                                         \
+      const char* name = (javathread)->get_thread_name();                  \
+      len = strlen(name);                                                  \
+      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
+        (char *) name, len,                                                \
+        java_lang_Thread::thread_id((javathread)->threadObj()),            \
+        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
+        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
+    }
+
+#else //  ndef DTRACE_ENABLED
+
+  #define DTRACE_THREAD_PROBE(probe, javathread)
+
+#endif // ndef DTRACE_ENABLED
+
+#ifndef USE_LIBRARY_BASED_TLS_ONLY
+// Current thread is maintained as a thread-local variable
+THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
+#endif
+// Class hierarchy
+// - Thread
+//   - VMThread
+//   - WatcherThread
+//   - ConcurrentMarkSweepThread
+//   - JavaThread
+//     - CompilerThread
+
+// ======= Thread ========
+// Support for forcing alignment of thread objects for biased locking
+void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
+  if (UseBiasedLocking) {
+    const int alignment = markOopDesc::biased_lock_alignment;
+    size_t aligned_size = size + (alignment - sizeof(intptr_t));
+    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
+                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
+                                                         AllocFailStrategy::RETURN_NULL);
+    void* aligned_addr     = align_up(real_malloc_addr, alignment);
+    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
+           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
+           "JavaThread alignment code overflowed allocated storage");
+    if (aligned_addr != real_malloc_addr) {
+      log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
+                              p2i(real_malloc_addr),
+                              p2i(aligned_addr));
+    }
+    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
+    return aligned_addr;
+  } else {
+    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
+                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
+  }
+}
+
+void Thread::operator delete(void* p) {
+  if (UseBiasedLocking) {
+    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
+    FreeHeap(real_malloc_addr);
+  } else {
+    FreeHeap(p);
+  }
+}
+
+
+// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
+// JavaThread
+
+
+Thread::Thread() {
+  // stack and get_thread
+  set_stack_base(NULL);
+  set_stack_size(0);
+  set_self_raw_id(0);
+  set_lgrp_id(-1);
+  DEBUG_ONLY(clear_suspendible_thread();)
+
+  // allocated data structures
+  set_osthread(NULL);
+  set_resource_area(new (mtThread)ResourceArea());
+  DEBUG_ONLY(_current_resource_mark = NULL;)
+  set_handle_area(new (mtThread) HandleArea(NULL));
+  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
+  set_active_handles(NULL);
+  set_free_handle_block(NULL);
+  set_last_handle_mark(NULL);
+
+  // This initial value ==> never claimed.
+  _oops_do_parity = 0;
+
+  // the handle mark links itself to last_handle_mark
+  new HandleMark(this);
+
+  // plain initialization
+  debug_only(_owned_locks = NULL;)
+  debug_only(_allow_allocation_count = 0;)
+  NOT_PRODUCT(_allow_safepoint_count = 0;)
+  NOT_PRODUCT(_skip_gcalot = false;)
+  _jvmti_env_iteration_count = 0;
+  set_allocated_bytes(0);
+  _vm_operation_started_count = 0;
+  _vm_operation_completed_count = 0;
+  _current_pending_monitor = NULL;
+  _current_pending_monitor_is_from_java = true;
+  _current_waiting_monitor = NULL;
+  _num_nested_signal = 0;
+  omFreeList = NULL;
+  omFreeCount = 0;
+  omFreeProvision = 32;
+  omInUseList = NULL;
+  omInUseCount = 0;
+
+#ifdef ASSERT
+  _visited_for_critical_count = false;
+#endif
+
+  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
+                         Monitor::_safepoint_check_sometimes);
+  _suspend_flags = 0;
+
+  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
+  _hashStateX = os::random();
+  _hashStateY = 842502087;
+  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
+  _hashStateW = 273326509;
+
+  _OnTrap   = 0;
+  _schedctl = NULL;
+  _Stalled  = 0;
+  _TypeTag  = 0x2BAD;
+
+  // Many of the following fields are effectively final - immutable
+  // Note that nascent threads can't use the Native Monitor-Mutex
+  // construct until the _MutexEvent is initialized ...
+  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
+  // we might instead use a stack of ParkEvents that we could provision on-demand.
+  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
+  // and ::Release()
+  _ParkEvent   = ParkEvent::Allocate(this);
+  _SleepEvent  = ParkEvent::Allocate(this);
+  _MutexEvent  = ParkEvent::Allocate(this);
+  _MuxEvent    = ParkEvent::Allocate(this);
+
+#ifdef CHECK_UNHANDLED_OOPS
+  if (CheckUnhandledOops) {
+    _unhandled_oops = new UnhandledOops(this);
+  }
+#endif // CHECK_UNHANDLED_OOPS
+#ifdef ASSERT
+  if (UseBiasedLocking) {
+    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
+    assert(this == _real_malloc_address ||
+           this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
+           "bug in forced alignment of thread objects");
+  }
+#endif // ASSERT
+}
+
+void Thread::initialize_thread_current() {
+#ifndef USE_LIBRARY_BASED_TLS_ONLY
+  assert(_thr_current == NULL, "Thread::current already initialized");
+  _thr_current = this;
+#endif
+  assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
+  ThreadLocalStorage::set_thread(this);
+  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
+}
+
+void Thread::clear_thread_current() {
+  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
+#ifndef USE_LIBRARY_BASED_TLS_ONLY
+  _thr_current = NULL;
+#endif
+  ThreadLocalStorage::set_thread(NULL);
+}
+
+void Thread::record_stack_base_and_size() {
+  set_stack_base(os::current_stack_base());
+  set_stack_size(os::current_stack_size());
+  // CR 7190089: on Solaris, primordial thread's stack is adjusted
+  // in initialize_thread(). Without the adjustment, stack size is
+  // incorrect if stack is set to unlimited (ulimit -s unlimited).
+  // So far, only Solaris has real implementation of initialize_thread().
+  //
+  // set up any platform-specific state.
+  os::initialize_thread(this);
+
+  // Set stack limits after thread is initialized.
+  if (is_Java_thread()) {
+    ((JavaThread*) this)->set_stack_overflow_limit();
+    ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
+  }
+#if INCLUDE_NMT
+  // record thread's native stack, stack grows downward
+  MemTracker::record_thread_stack(stack_end(), stack_size());
+#endif // INCLUDE_NMT
+  log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
+    PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
+    os::current_thread_id(), p2i(stack_base() - stack_size()),
+    p2i(stack_base()), stack_size()/1024);
+}
+
+
+Thread::~Thread() {
+  EVENT_THREAD_DESTRUCT(this);
+
+  // stack_base can be NULL if the thread is never started or exited before
+  // record_stack_base_and_size called. Although, we would like to ensure
+  // that all started threads do call record_stack_base_and_size(), there is
+  // not proper way to enforce that.
+#if INCLUDE_NMT
+  if (_stack_base != NULL) {
+    MemTracker::release_thread_stack(stack_end(), stack_size());
+#ifdef ASSERT
+    set_stack_base(NULL);
+#endif
+  }
+#endif // INCLUDE_NMT
+
+  // deallocate data structures
+  delete resource_area();
+  // since the handle marks are using the handle area, we have to deallocated the root
+  // handle mark before deallocating the thread's handle area,
+  assert(last_handle_mark() != NULL, "check we have an element");
+  delete last_handle_mark();
+  assert(last_handle_mark() == NULL, "check we have reached the end");
+
+  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
+  // We NULL out the fields for good hygiene.
+  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
+  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
+  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
+  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
+
+  delete handle_area();
+  delete metadata_handles();
+
+  // SR_handler uses this as a termination indicator -
+  // needs to happen before os::free_thread()
+  delete _SR_lock;
+  _SR_lock = NULL;
+
+  // osthread() can be NULL, if creation of thread failed.
+  if (osthread() != NULL) os::free_thread(osthread());
+
+  // clear Thread::current if thread is deleting itself.
+  // Needed to ensure JNI correctly detects non-attached threads.
+  if (this == Thread::current()) {
+    clear_thread_current();
+  }
+
+  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
+}
+
+// NOTE: dummy function for assertion purpose.
+void Thread::run() {
+  ShouldNotReachHere();
+}
+
+#ifdef ASSERT
+// Private method to check for dangling thread pointer
+void check_for_dangling_thread_pointer(Thread *thread) {
+  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
+         "possibility of dangling Thread pointer");
+}
+#endif
+
+ThreadPriority Thread::get_priority(const Thread* const thread) {
+  ThreadPriority priority;
+  // Can return an error!
+  (void)os::get_priority(thread, priority);
+  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
+  return priority;
+}
+
+void Thread::set_priority(Thread* thread, ThreadPriority priority) {
+  debug_only(check_for_dangling_thread_pointer(thread);)
+  // Can return an error!
+  (void)os::set_priority(thread, priority);
+}
+
+
+void Thread::start(Thread* thread) {
+  // Start is different from resume in that its safety is guaranteed by context or
+  // being called from a Java method synchronized on the Thread object.
+  if (!DisableStartThread) {
+    if (thread->is_Java_thread()) {
+      // Initialize the thread state to RUNNABLE before starting this thread.
+      // Can not set it after the thread started because we do not know the
+      // exact thread state at that time. It could be in MONITOR_WAIT or
+      // in SLEEPING or some other state.
+      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
+                                          java_lang_Thread::RUNNABLE);
+    }
+    os::start_thread(thread);
+  }
+}
+
+// Enqueue a VM_Operation to do the job for us - sometime later
+void Thread::send_async_exception(oop java_thread, oop java_throwable) {
+  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
+  VMThread::execute(vm_stop);
+}
+
+
+// Check if an external suspend request has completed (or has been
+// cancelled). Returns true if the thread is externally suspended and
+// false otherwise.
+//
+// The bits parameter returns information about the code path through
+// the routine. Useful for debugging:
+//
+// set in is_ext_suspend_completed():
+// 0x00000001 - routine was entered
+// 0x00000010 - routine return false at end
+// 0x00000100 - thread exited (return false)
+// 0x00000200 - suspend request cancelled (return false)
+// 0x00000400 - thread suspended (return true)
+// 0x00001000 - thread is in a suspend equivalent state (return true)
+// 0x00002000 - thread is native and walkable (return true)
+// 0x00004000 - thread is native_trans and walkable (needed retry)
+//
+// set in wait_for_ext_suspend_completion():
+// 0x00010000 - routine was entered
+// 0x00020000 - suspend request cancelled before loop (return false)
+// 0x00040000 - thread suspended before loop (return true)
+// 0x00080000 - suspend request cancelled in loop (return false)
+// 0x00100000 - thread suspended in loop (return true)
+// 0x00200000 - suspend not completed during retry loop (return false)
+
+// Helper class for tracing suspend wait debug bits.
+//
+// 0x00000100 indicates that the target thread exited before it could
+// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
+// 0x00080000 each indicate a cancelled suspend request so they don't
+// count as wait failures either.
+#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
+
+class TraceSuspendDebugBits : public StackObj {
+ private:
+  JavaThread * jt;
+  bool         is_wait;
+  bool         called_by_wait;  // meaningful when !is_wait
+  uint32_t *   bits;
+
+ public:
+  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
+                        uint32_t *_bits) {
+    jt             = _jt;
+    is_wait        = _is_wait;
+    called_by_wait = _called_by_wait;
+    bits           = _bits;
+  }
+
+  ~TraceSuspendDebugBits() {
+    if (!is_wait) {
+#if 1
+      // By default, don't trace bits for is_ext_suspend_completed() calls.
+      // That trace is very chatty.
+      return;
+#else
+      if (!called_by_wait) {
+        // If tracing for is_ext_suspend_completed() is enabled, then only
+        // trace calls to it from wait_for_ext_suspend_completion()
+        return;
+      }
+#endif
+    }
+
+    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
+      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
+        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
+        ResourceMark rm;
+
+        tty->print_cr(
+                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
+                      jt->get_thread_name(), *bits);
+
+        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
+      }
+    }
+  }
+};
+#undef DEBUG_FALSE_BITS
+
+
+bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
+                                          uint32_t *bits) {
+  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
+
+  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
+  bool do_trans_retry;           // flag to force the retry
+
+  *bits |= 0x00000001;
+
+  do {
+    do_trans_retry = false;
+
+    if (is_exiting()) {
+      // Thread is in the process of exiting. This is always checked
+      // first to reduce the risk of dereferencing a freed JavaThread.
+      *bits |= 0x00000100;
+      return false;
+    }
+
+    if (!is_external_suspend()) {
+      // Suspend request is cancelled. This is always checked before
+      // is_ext_suspended() to reduce the risk of a rogue resume
+      // confusing the thread that made the suspend request.
+      *bits |= 0x00000200;
+      return false;
+    }
+
+    if (is_ext_suspended()) {
+      // thread is suspended
+      *bits |= 0x00000400;
+      return true;
+    }
+
+    // Now that we no longer do hard suspends of threads running
+    // native code, the target thread can be changing thread state
+    // while we are in this routine:
+    //
+    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
+    //
+    // We save a copy of the thread state as observed at this moment
+    // and make our decision about suspend completeness based on the
+    // copy. This closes the race where the thread state is seen as
+    // _thread_in_native_trans in the if-thread_blocked check, but is
+    // seen as _thread_blocked in if-thread_in_native_trans check.
+    JavaThreadState save_state = thread_state();
+
+    if (save_state == _thread_blocked && is_suspend_equivalent()) {
+      // If the thread's state is _thread_blocked and this blocking
+      // condition is known to be equivalent to a suspend, then we can
+      // consider the thread to be externally suspended. This means that
+      // the code that sets _thread_blocked has been modified to do
+      // self-suspension if the blocking condition releases. We also
+      // used to check for CONDVAR_WAIT here, but that is now covered by
+      // the _thread_blocked with self-suspension check.
+      //
+      // Return true since we wouldn't be here unless there was still an
+      // external suspend request.
+      *bits |= 0x00001000;
+      return true;
+    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
+      // Threads running native code will self-suspend on native==>VM/Java
+      // transitions. If its stack is walkable (should always be the case
+      // unless this function is called before the actual java_suspend()
+      // call), then the wait is done.
+      *bits |= 0x00002000;
+      return true;
+    } else if (!called_by_wait && !did_trans_retry &&
+               save_state == _thread_in_native_trans &&
+               frame_anchor()->walkable()) {
+      // The thread is transitioning from thread_in_native to another
+      // thread state. check_safepoint_and_suspend_for_native_trans()
+      // will force the thread to self-suspend. If it hasn't gotten
+      // there yet we may have caught the thread in-between the native
+      // code check above and the self-suspend. Lucky us. If we were
+      // called by wait_for_ext_suspend_completion(), then it
+      // will be doing the retries so we don't have to.
+      //
+      // Since we use the saved thread state in the if-statement above,
+      // there is a chance that the thread has already transitioned to
+      // _thread_blocked by the time we get here. In that case, we will
+      // make a single unnecessary pass through the logic below. This
+      // doesn't hurt anything since we still do the trans retry.
+
+      *bits |= 0x00004000;
+
+      // Once the thread leaves thread_in_native_trans for another
+      // thread state, we break out of this retry loop. We shouldn't
+      // need this flag to prevent us from getting back here, but
+      // sometimes paranoia is good.
+      did_trans_retry = true;
+
+      // We wait for the thread to transition to a more usable state.
+      for (int i = 1; i <= SuspendRetryCount; i++) {
+        // We used to do an "os::yield_all(i)" call here with the intention
+        // that yielding would increase on each retry. However, the parameter
+        // is ignored on Linux which means the yield didn't scale up. Waiting
+        // on the SR_lock below provides a much more predictable scale up for
+        // the delay. It also provides a simple/direct point to check for any
+        // safepoint requests from the VMThread
+
+        // temporarily drops SR_lock while doing wait with safepoint check
+        // (if we're a JavaThread - the WatcherThread can also call this)
+        // and increase delay with each retry
+        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
+
+        // check the actual thread state instead of what we saved above
+        if (thread_state() != _thread_in_native_trans) {
+          // the thread has transitioned to another thread state so
+          // try all the checks (except this one) one more time.
+          do_trans_retry = true;
+          break;
+        }
+      } // end retry loop
+
+
+    }
+  } while (do_trans_retry);
+
+  *bits |= 0x00000010;
+  return false;
+}
+
+// Wait for an external suspend request to complete (or be cancelled).
+// Returns true if the thread is externally suspended and false otherwise.
+//
+bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
+                                                 uint32_t *bits) {
+  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
+                             false /* !called_by_wait */, bits);
+
+  // local flag copies to minimize SR_lock hold time
+  bool is_suspended;
+  bool pending;
+  uint32_t reset_bits;
+
+  // set a marker so is_ext_suspend_completed() knows we are the caller
+  *bits |= 0x00010000;
+
+  // We use reset_bits to reinitialize the bits value at the top of
+  // each retry loop. This allows the caller to make use of any
+  // unused bits for their own marking purposes.
+  reset_bits = *bits;
+
+  {
+    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
+    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
+                                            delay, bits);
+    pending = is_external_suspend();
+  }
+  // must release SR_lock to allow suspension to complete
+
+  if (!pending) {
+    // A cancelled suspend request is the only false return from
+    // is_ext_suspend_completed() that keeps us from entering the
+    // retry loop.
+    *bits |= 0x00020000;
+    return false;
+  }
+
+  if (is_suspended) {
+    *bits |= 0x00040000;
+    return true;
+  }
+
+  for (int i = 1; i <= retries; i++) {
+    *bits = reset_bits;  // reinit to only track last retry
+
+    // We used to do an "os::yield_all(i)" call here with the intention
+    // that yielding would increase on each retry. However, the parameter
+    // is ignored on Linux which means the yield didn't scale up. Waiting
+    // on the SR_lock below provides a much more predictable scale up for
+    // the delay. It also provides a simple/direct point to check for any
+    // safepoint requests from the VMThread
+
+    {
+      MutexLocker ml(SR_lock());
+      // wait with safepoint check (if we're a JavaThread - the WatcherThread
+      // can also call this)  and increase delay with each retry
+      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
+
+      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
+                                              delay, bits);
+
+      // It is possible for the external suspend request to be cancelled
+      // (by a resume) before the actual suspend operation is completed.
+      // Refresh our local copy to see if we still need to wait.
+      pending = is_external_suspend();
+    }
+
+    if (!pending) {
+      // A cancelled suspend request is the only false return from
+      // is_ext_suspend_completed() that keeps us from staying in the
+      // retry loop.
+      *bits |= 0x00080000;
+      return false;
+    }
+
+    if (is_suspended) {
+      *bits |= 0x00100000;
+      return true;
+    }
+  } // end retry loop
+
+  // thread did not suspend after all our retries
+  *bits |= 0x00200000;
+  return false;
+}
+
+#ifndef PRODUCT
+void JavaThread::record_jump(address target, address instr, const char* file,
+                             int line) {
+
+  // This should not need to be atomic as the only way for simultaneous
+  // updates is via interrupts. Even then this should be rare or non-existent
+  // and we don't care that much anyway.
+
+  int index = _jmp_ring_index;
+  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
+  _jmp_ring[index]._target = (intptr_t) target;
+  _jmp_ring[index]._instruction = (intptr_t) instr;
+  _jmp_ring[index]._file = file;
+  _jmp_ring[index]._line = line;
+}
+#endif // PRODUCT
+
+void Thread::interrupt(Thread* thread) {
+  debug_only(check_for_dangling_thread_pointer(thread);)
+  os::interrupt(thread);
+}
+
+bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
+  debug_only(check_for_dangling_thread_pointer(thread);)
+  // Note:  If clear_interrupted==false, this simply fetches and
+  // returns the value of the field osthread()->interrupted().
+  return os::is_interrupted(thread, clear_interrupted);
+}
+
+
+// GC Support
+bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
+  jint thread_parity = _oops_do_parity;
+  if (thread_parity != strong_roots_parity) {
+    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
+    if (res == thread_parity) {
+      return true;
+    } else {
+      guarantee(res == strong_roots_parity, "Or else what?");
+      return false;
+    }
+  }
+  return false;
+}
+
+void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
+  active_handles()->oops_do(f);
+  // Do oop for ThreadShadow
+  f->do_oop((oop*)&_pending_exception);
+  handle_area()->oops_do(f);
+
+  if (MonitorInUseLists) {
+    // When using thread local monitor lists, we scan them here,
+    // and the remaining global monitors in ObjectSynchronizer::oops_do().
+    ObjectSynchronizer::thread_local_used_oops_do(this, f);
+  }
+}
+
+void Thread::metadata_handles_do(void f(Metadata*)) {
+  // Only walk the Handles in Thread.
+  if (metadata_handles() != NULL) {
+    for (int i = 0; i< metadata_handles()->length(); i++) {
+      f(metadata_handles()->at(i));
+    }
+  }
+}
+
+void Thread::print_on(outputStream* st) const {
+  // get_priority assumes osthread initialized
+  if (osthread() != NULL) {
+    int os_prio;
+    if (os::get_native_priority(this, &os_prio) == OS_OK) {
+      st->print("os_prio=%d ", os_prio);
+    }
+    st->print("tid=" INTPTR_FORMAT " ", p2i(this));
+    ext().print_on(st);
+    osthread()->print_on(st);
+  }
+  debug_only(if (WizardMode) print_owned_locks_on(st);)
+}
+
+// Thread::print_on_error() is called by fatal error handler. Don't use
+// any lock or allocate memory.
+void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
+  assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
+
+  if (is_VM_thread())                 { st->print("VMThread"); }
+  else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
+  else if (is_Watcher_thread())       { st->print("WatcherThread"); }
+  else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
+  else                                { st->print("Thread"); }
+
+  if (is_Named_thread()) {
+    st->print(" \"%s\"", name());
+  }
+
+  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
+            p2i(stack_end()), p2i(stack_base()));
+
+  if (osthread()) {
+    st->print(" [id=%d]", osthread()->thread_id());
+  }
+}
+
+void Thread::print_value_on(outputStream* st) const {
+  if (is_Named_thread()) {
+    st->print(" \"%s\" ", name());
+  }
+  st->print(INTPTR_FORMAT, p2i(this));   // print address
+}
+
+#ifdef ASSERT
+void Thread::print_owned_locks_on(outputStream* st) const {
+  Monitor *cur = _owned_locks;
+  if (cur == NULL) {
+    st->print(" (no locks) ");
+  } else {
+    st->print_cr(" Locks owned:");
+    while (cur) {
+      cur->print_on(st);
+      cur = cur->next();
+    }
+  }
+}
+
+static int ref_use_count  = 0;
+
+bool Thread::owns_locks_but_compiled_lock() const {
+  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
+    if (cur != Compile_lock) return true;
+  }
+  return false;
+}
+
+
+#endif
+
+#ifndef PRODUCT
+
+// The flag: potential_vm_operation notifies if this particular safepoint state could potential
+// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
+// no threads which allow_vm_block's are held
+void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
+  // Check if current thread is allowed to block at a safepoint
+  if (!(_allow_safepoint_count == 0)) {
+    fatal("Possible safepoint reached by thread that does not allow it");
+  }
+  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
+    fatal("LEAF method calling lock?");
+  }
+
+#ifdef ASSERT
+  if (potential_vm_operation && is_Java_thread()
+      && !Universe::is_bootstrapping()) {
+    // Make sure we do not hold any locks that the VM thread also uses.
+    // This could potentially lead to deadlocks
+    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
+      // Threads_lock is special, since the safepoint synchronization will not start before this is
+      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
+      // since it is used to transfer control between JavaThreads and the VMThread
+      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
+      if ((cur->allow_vm_block() &&
+           cur != Threads_lock &&
+           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
+           cur != VMOperationRequest_lock &&
+           cur != VMOperationQueue_lock) ||
+           cur->rank() == Mutex::special) {
+        fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
+      }
+    }
+  }
+
+  if (GCALotAtAllSafepoints) {
+    // We could enter a safepoint here and thus have a gc
+    InterfaceSupport::check_gc_alot();
+  }
+#endif
+}
+#endif
+
+bool Thread::is_in_stack(address adr) const {
+  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
+  address end = os::current_stack_pointer();
+  // Allow non Java threads to call this without stack_base
+  if (_stack_base == NULL) return true;
+  if (stack_base() >= adr && adr >= end) return true;
+
+  return false;
+}
+
+bool Thread::is_in_usable_stack(address adr) const {
+  size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
+  size_t usable_stack_size = _stack_size - stack_guard_size;
+
+  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
+}
+
+
+// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
+// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
+// used for compilation in the future. If that change is made, the need for these methods
+// should be revisited, and they should be removed if possible.
+
+bool Thread::is_lock_owned(address adr) const {
+  return on_local_stack(adr);
+}
+
+bool Thread::set_as_starting_thread() {
+  // NOTE: this must be called inside the main thread.
+  return os::create_main_thread((JavaThread*)this);
+}
+
+static void initialize_class(Symbol* class_name, TRAPS) {
+  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
+  InstanceKlass::cast(klass)->initialize(CHECK);
+}
+
+
+// Creates the initial ThreadGroup
+static Handle create_initial_thread_group(TRAPS) {
+  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
+  InstanceKlass* ik = InstanceKlass::cast(k);
+
+  Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
+  {
+    JavaValue result(T_VOID);
+    JavaCalls::call_special(&result,
+                            system_instance,
+                            ik,
+                            vmSymbols::object_initializer_name(),
+                            vmSymbols::void_method_signature(),
+                            CHECK_NH);
+  }
+  Universe::set_system_thread_group(system_instance());
+
+  Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
+  {
+    JavaValue result(T_VOID);
+    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
+    JavaCalls::call_special(&result,
+                            main_instance,
+                            ik,
+                            vmSymbols::object_initializer_name(),
+                            vmSymbols::threadgroup_string_void_signature(),
+                            system_instance,
+                            string,
+                            CHECK_NH);
+  }
+  return main_instance;
+}
+
+// Creates the initial Thread
+static oop create_initial_thread(Handle thread_group, JavaThread* thread,
+                                 TRAPS) {
+  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
+  InstanceKlass* ik = InstanceKlass::cast(k);
+  instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
+
+  java_lang_Thread::set_thread(thread_oop(), thread);
+  java_lang_Thread::set_priority(thread_oop(), NormPriority);
+  thread->set_threadObj(thread_oop());
+
+  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
+
+  JavaValue result(T_VOID);
+  JavaCalls::call_special(&result, thread_oop,
+                          ik,
+                          vmSymbols::object_initializer_name(),
+                          vmSymbols::threadgroup_string_void_signature(),
+                          thread_group,
+                          string,
+                          CHECK_NULL);
+  return thread_oop();
+}
+
+char java_runtime_name[128] = "";
+char java_runtime_version[128] = "";
+
+// extract the JRE name from java.lang.VersionProps.java_runtime_name
+static const char* get_java_runtime_name(TRAPS) {
+  Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
+                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
+  fieldDescriptor fd;
+  bool found = k != NULL &&
+               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
+                                                        vmSymbols::string_signature(), &fd);
+  if (found) {
+    oop name_oop = k->java_mirror()->obj_field(fd.offset());
+    if (name_oop == NULL) {
+      return NULL;
+    }
+    const char* name = java_lang_String::as_utf8_string(name_oop,
+                                                        java_runtime_name,
+                                                        sizeof(java_runtime_name));
+    return name;
+  } else {
+    return NULL;
+  }
+}
+
+// extract the JRE version from java.lang.VersionProps.java_runtime_version
+static const char* get_java_runtime_version(TRAPS) {
+  Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
+                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
+  fieldDescriptor fd;
+  bool found = k != NULL &&
+               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
+                                                        vmSymbols::string_signature(), &fd);
+  if (found) {
+    oop name_oop = k->java_mirror()->obj_field(fd.offset());
+    if (name_oop == NULL) {
+      return NULL;
+    }
+    const char* name = java_lang_String::as_utf8_string(name_oop,
+                                                        java_runtime_version,
+                                                        sizeof(java_runtime_version));
+    return name;
+  } else {
+    return NULL;
+  }
+}
+
+// General purpose hook into Java code, run once when the VM is initialized.
+// The Java library method itself may be changed independently from the VM.
+static void call_postVMInitHook(TRAPS) {
+  Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
+  if (klass != NULL) {
+    JavaValue result(T_VOID);
+    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
+                           vmSymbols::void_method_signature(),
+                           CHECK);
+  }
+}
+
+static void reset_vm_info_property(TRAPS) {
+  // the vm info string
+  ResourceMark rm(THREAD);
+  const char *vm_info = VM_Version::vm_info_string();
+
+  // java.lang.System class
+  Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
+
+  // setProperty arguments
+  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
+  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
+
+  // return value
+  JavaValue r(T_OBJECT);
+
+  // public static String setProperty(String key, String value);
+  JavaCalls::call_static(&r,
+                         klass,
+                         vmSymbols::setProperty_name(),
+                         vmSymbols::string_string_string_signature(),
+                         key_str,
+                         value_str,
+                         CHECK);
+}
+
+
+void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
+                                    bool daemon, TRAPS) {
+  assert(thread_group.not_null(), "thread group should be specified");
+  assert(threadObj() == NULL, "should only create Java thread object once");
+
+  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
+  InstanceKlass* ik = InstanceKlass::cast(k);
+  instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
+
+  java_lang_Thread::set_thread(thread_oop(), this);
+  java_lang_Thread::set_priority(thread_oop(), NormPriority);
+  set_threadObj(thread_oop());
+
+  JavaValue result(T_VOID);
+  if (thread_name != NULL) {
+    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
+    // Thread gets assigned specified name and null target
+    JavaCalls::call_special(&result,
+                            thread_oop,
+                            ik,
+                            vmSymbols::object_initializer_name(),
+                            vmSymbols::threadgroup_string_void_signature(),
+                            thread_group, // Argument 1
+                            name,         // Argument 2
+                            THREAD);
+  } else {
+    // Thread gets assigned name "Thread-nnn" and null target
+    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
+    JavaCalls::call_special(&result,
+                            thread_oop,
+                            ik,
+                            vmSymbols::object_initializer_name(),
+                            vmSymbols::threadgroup_runnable_void_signature(),
+                            thread_group, // Argument 1
+                            Handle(),     // Argument 2
+                            THREAD);
+  }
+
+
+  if (daemon) {
+    java_lang_Thread::set_daemon(thread_oop());
+  }
+
+  if (HAS_PENDING_EXCEPTION) {
+    return;
+  }
+
+  Klass* group =  SystemDictionary::ThreadGroup_klass();
+  Handle threadObj(THREAD, this->threadObj());
+
+  JavaCalls::call_special(&result,
+                          thread_group,
+                          group,
+                          vmSymbols::add_method_name(),
+                          vmSymbols::thread_void_signature(),
+                          threadObj,          // Arg 1
+                          THREAD);
+}
+
+// NamedThread --  non-JavaThread subclasses with multiple
+// uniquely named instances should derive from this.
+NamedThread::NamedThread() : Thread() {
+  _name = NULL;
+  _processed_thread = NULL;
+  _gc_id = GCId::undefined();
+}
+
+NamedThread::~NamedThread() {
+  if (_name != NULL) {
+    FREE_C_HEAP_ARRAY(char, _name);
+    _name = NULL;
+  }
+}
+
+void NamedThread::set_name(const char* format, ...) {
+  guarantee(_name == NULL, "Only get to set name once.");
+  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
+  guarantee(_name != NULL, "alloc failure");
+  va_list ap;
+  va_start(ap, format);
+  jio_vsnprintf(_name, max_name_len, format, ap);
+  va_end(ap);
+}
+
+void NamedThread::initialize_named_thread() {
+  set_native_thread_name(name());
+}
+
+void NamedThread::print_on(outputStream* st) const {
+  st->print("\"%s\" ", name());
+  Thread::print_on(st);
+  st->cr();
+}
+
+
+// ======= WatcherThread ========
+
+// The watcher thread exists to simulate timer interrupts.  It should
+// be replaced by an abstraction over whatever native support for
+// timer interrupts exists on the platform.
+
+WatcherThread* WatcherThread::_watcher_thread   = NULL;
+bool WatcherThread::_startable = false;
+volatile bool  WatcherThread::_should_terminate = false;
+
+WatcherThread::WatcherThread() : Thread() {
+  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
+  if (os::create_thread(this, os::watcher_thread)) {
+    _watcher_thread = this;
+
+    // Set the watcher thread to the highest OS priority which should not be
+    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
+    // is created. The only normal thread using this priority is the reference
+    // handler thread, which runs for very short intervals only.
+    // If the VMThread's priority is not lower than the WatcherThread profiling
+    // will be inaccurate.
+    os::set_priority(this, MaxPriority);
+    if (!DisableStartThread) {
+      os::start_thread(this);
+    }
+  }
+}
+
+int WatcherThread::sleep() const {
+  // The WatcherThread does not participate in the safepoint protocol
+  // for the PeriodicTask_lock because it is not a JavaThread.
+  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
+
+  if (_should_terminate) {
+    // check for termination before we do any housekeeping or wait
+    return 0;  // we did not sleep.
+  }
+
+  // remaining will be zero if there are no tasks,
+  // causing the WatcherThread to sleep until a task is
+  // enrolled
+  int remaining = PeriodicTask::time_to_wait();
+  int time_slept = 0;
+
+  // we expect this to timeout - we only ever get unparked when
+  // we should terminate or when a new task has been enrolled
+  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
+
+  jlong time_before_loop = os::javaTimeNanos();
+
+  while (true) {
+    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
+                                            remaining);
+    jlong now = os::javaTimeNanos();
+
+    if (remaining == 0) {
+      // if we didn't have any tasks we could have waited for a long time
+      // consider the time_slept zero and reset time_before_loop
+      time_slept = 0;
+      time_before_loop = now;
+    } else {
+      // need to recalculate since we might have new tasks in _tasks
+      time_slept = (int) ((now - time_before_loop) / 1000000);
+    }
+
+    // Change to task list or spurious wakeup of some kind
+    if (timedout || _should_terminate) {
+      break;
+    }
+
+    remaining = PeriodicTask::time_to_wait();
+    if (remaining == 0) {
+      // Last task was just disenrolled so loop around and wait until
+      // another task gets enrolled
+      continue;
+    }
+
+    remaining -= time_slept;
+    if (remaining <= 0) {
+      break;
+    }
+  }
+
+  return time_slept;
+}
+
+void WatcherThread::run() {
+  assert(this == watcher_thread(), "just checking");
+
+  this->record_stack_base_and_size();
+  this->set_native_thread_name(this->name());
+  this->set_active_handles(JNIHandleBlock::allocate_block());
+  while (true) {
+    assert(watcher_thread() == Thread::current(), "thread consistency check");
+    assert(watcher_thread() == this, "thread consistency check");
+
+    // Calculate how long it'll be until the next PeriodicTask work
+    // should be done, and sleep that amount of time.
+    int time_waited = sleep();
+
+    if (VMError::is_error_reported()) {
+      // A fatal error has happened, the error handler(VMError::report_and_die)
+      // should abort JVM after creating an error log file. However in some
+      // rare cases, the error handler itself might deadlock. Here periodically
+      // check for error reporting timeouts, and if it happens, just proceed to
+      // abort the VM.
+
+      // This code is in WatcherThread because WatcherThread wakes up
+      // periodically so the fatal error handler doesn't need to do anything;
+      // also because the WatcherThread is less likely to crash than other
+      // threads.
+
+      for (;;) {
+        // Note: we use naked sleep in this loop because we want to avoid using
+        // any kind of VM infrastructure which may be broken at this point.
+        if (VMError::check_timeout()) {
+          // We hit error reporting timeout. Error reporting was interrupted and
+          // will be wrapping things up now (closing files etc). Give it some more
+          // time, then quit the VM.
+          os::naked_short_sleep(200);
+          // Print a message to stderr.
+          fdStream err(defaultStream::output_fd());
+          err.print_raw_cr("# [ timer expired, abort... ]");
+          // skip atexit/vm_exit/vm_abort hooks
+          os::die();
+        }
+
+        // Wait a second, then recheck for timeout.
+        os::naked_short_sleep(999);
+      }
+    }
+
+    if (_should_terminate) {
+      // check for termination before posting the next tick
+      break;
+    }
+
+    PeriodicTask::real_time_tick(time_waited);
+  }
+
+  // Signal that it is terminated
+  {
+    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
+    _watcher_thread = NULL;
+    Terminator_lock->notify();
+  }
+}
+
+void WatcherThread::start() {
+  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
+
+  if (watcher_thread() == NULL && _startable) {
+    _should_terminate = false;
+    // Create the single instance of WatcherThread
+    new WatcherThread();
+  }
+}
+
+void WatcherThread::make_startable() {
+  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
+  _startable = true;
+}
+
+void WatcherThread::stop() {
+  {
+    // Follow normal safepoint aware lock enter protocol since the
+    // WatcherThread is stopped by another JavaThread.
+    MutexLocker ml(PeriodicTask_lock);
+    _should_terminate = true;
+
+    WatcherThread* watcher = watcher_thread();
+    if (watcher != NULL) {
+      // unpark the WatcherThread so it can see that it should terminate
+      watcher->unpark();
+    }
+  }
+
+  MutexLocker mu(Terminator_lock);
+
+  while (watcher_thread() != NULL) {
+    // This wait should make safepoint checks, wait without a timeout,
+    // and wait as a suspend-equivalent condition.
+    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
+                          Mutex::_as_suspend_equivalent_flag);
+  }
+}
+
+void WatcherThread::unpark() {
+  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
+  PeriodicTask_lock->notify();
+}
+
+void WatcherThread::print_on(outputStream* st) const {
+  st->print("\"%s\" ", name());
+  Thread::print_on(st);
+  st->cr();
+}
+
+// ======= JavaThread ========
+
+#if INCLUDE_JVMCI
+
+jlong* JavaThread::_jvmci_old_thread_counters;
+
+bool jvmci_counters_include(JavaThread* thread) {
+  oop threadObj = thread->threadObj();
+  return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
+}
+
+void JavaThread::collect_counters(typeArrayOop array) {
+  if (JVMCICounterSize > 0) {
+    MutexLocker tl(Threads_lock);
+    for (int i = 0; i < array->length(); i++) {
+      array->long_at_put(i, _jvmci_old_thread_counters[i]);
+    }
+    for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
+      if (jvmci_counters_include(tp)) {
+        for (int i = 0; i < array->length(); i++) {
+          array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
+        }
+      }
+    }
+  }
+}
+
+#endif // INCLUDE_JVMCI
+
+// A JavaThread is a normal Java thread
+
+void JavaThread::initialize() {
+  // Initialize fields
+
+  set_saved_exception_pc(NULL);
+  set_threadObj(NULL);
+  _anchor.clear();
+  set_entry_point(NULL);
+  set_jni_functions(jni_functions());
+  set_callee_target(NULL);
+  set_vm_result(NULL);
+  set_vm_result_2(NULL);
+  set_vframe_array_head(NULL);
+  set_vframe_array_last(NULL);
+  set_deferred_locals(NULL);
+  set_deopt_mark(NULL);
+  set_deopt_compiled_method(NULL);
+  clear_must_deopt_id();
+  set_monitor_chunks(NULL);
+  set_next(NULL);
+  set_thread_state(_thread_new);
+  _terminated = _not_terminated;
+  _privileged_stack_top = NULL;
+  _array_for_gc = NULL;
+  _suspend_equivalent = false;
+  _in_deopt_handler = 0;
+  _doing_unsafe_access = false;
+  _stack_guard_state = stack_guard_unused;
+#if INCLUDE_JVMCI
+  _pending_monitorenter = false;
+  _pending_deoptimization = -1;
+  _pending_failed_speculation = NULL;
+  _pending_transfer_to_interpreter = false;
+  _adjusting_comp_level = false;
+  _jvmci._alternate_call_target = NULL;
+  assert(_jvmci._implicit_exception_pc == NULL, "must be");
+  if (JVMCICounterSize > 0) {
+    _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
+    memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
+  } else {
+    _jvmci_counters = NULL;
+  }
+#endif // INCLUDE_JVMCI
+  _reserved_stack_activation = NULL;  // stack base not known yet
+  (void)const_cast<oop&>(_exception_oop = oop(NULL));
+  _exception_pc  = 0;
+  _exception_handler_pc = 0;
+  _is_method_handle_return = 0;
+  _jvmti_thread_state= NULL;
+  _should_post_on_exceptions_flag = JNI_FALSE;
+  _jvmti_get_loaded_classes_closure = NULL;
+  _interp_only_mode    = 0;
+  _special_runtime_exit_condition = _no_async_condition;
+  _pending_async_exception = NULL;
+  _thread_stat = NULL;
+  _thread_stat = new ThreadStatistics();
+  _blocked_on_compilation = false;
+  _jni_active_critical = 0;
+  _pending_jni_exception_check_fn = NULL;
+  _do_not_unlock_if_synchronized = false;
+  _cached_monitor_info = NULL;
+  _parker = Parker::Allocate(this);
+
+#ifndef PRODUCT
+  _jmp_ring_index = 0;
+  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
+    record_jump(NULL, NULL, NULL, 0);
+  }
+#endif // PRODUCT
+
+  // Setup safepoint state info for this thread
+  ThreadSafepointState::create(this);
+
+  debug_only(_java_call_counter = 0);
+
+  // JVMTI PopFrame support
+  _popframe_condition = popframe_inactive;
+  _popframe_preserved_args = NULL;
+  _popframe_preserved_args_size = 0;
+  _frames_to_pop_failed_realloc = 0;
+
+  pd_initialize();
+}
+
+#if INCLUDE_ALL_GCS
+SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
+DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
+#endif // INCLUDE_ALL_GCS
+
+JavaThread::JavaThread(bool is_attaching_via_jni) :
+                       Thread()
+#if INCLUDE_ALL_GCS
+                       , _satb_mark_queue(&_satb_mark_queue_set),
+                       _dirty_card_queue(&_dirty_card_queue_set)
+#endif // INCLUDE_ALL_GCS
+{
+  initialize();
+  if (is_attaching_via_jni) {
+    _jni_attach_state = _attaching_via_jni;
+  } else {
+    _jni_attach_state = _not_attaching_via_jni;
+  }
+  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
+}
+
+bool JavaThread::reguard_stack(address cur_sp) {
+  if (_stack_guard_state != stack_guard_yellow_reserved_disabled
+      && _stack_guard_state != stack_guard_reserved_disabled) {
+    return true; // Stack already guarded or guard pages not needed.
+  }
+
+  if (register_stack_overflow()) {
+    // For those architectures which have separate register and
+    // memory stacks, we must check the register stack to see if
+    // it has overflowed.
+    return false;
+  }
+
+  // Java code never executes within the yellow zone: the latter is only
+  // there to provoke an exception during stack banging.  If java code
+  // is executing there, either StackShadowPages should be larger, or
+  // some exception code in c1, c2 or the interpreter isn't unwinding
+  // when it should.
+  guarantee(cur_sp > stack_reserved_zone_base(),
+            "not enough space to reguard - increase StackShadowPages");
+  if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
+    enable_stack_yellow_reserved_zone();
+    if (reserved_stack_activation() != stack_base()) {
+      set_reserved_stack_activation(stack_base());
+    }
+  } else if (_stack_guard_state == stack_guard_reserved_disabled) {
+    set_reserved_stack_activation(stack_base());
+    enable_stack_reserved_zone();
+  }
+  return true;
+}
+
+bool JavaThread::reguard_stack(void) {
+  return reguard_stack(os::current_stack_pointer());
+}
+
+
+void JavaThread::block_if_vm_exited() {
+  if (_terminated == _vm_exited) {
+    // _vm_exited is set at safepoint, and Threads_lock is never released
+    // we will block here forever
+    Threads_lock->lock_without_safepoint_check();
+    ShouldNotReachHere();
+  }
+}
+
+
+// Remove this ifdef when C1 is ported to the compiler interface.
+static void compiler_thread_entry(JavaThread* thread, TRAPS);
+static void sweeper_thread_entry(JavaThread* thread, TRAPS);
+
+JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
+                       Thread()
+#if INCLUDE_ALL_GCS
+                       , _satb_mark_queue(&_satb_mark_queue_set),
+                       _dirty_card_queue(&_dirty_card_queue_set)
+#endif // INCLUDE_ALL_GCS
+{
+  initialize();
+  _jni_attach_state = _not_attaching_via_jni;
+  set_entry_point(entry_point);
+  // Create the native thread itself.
+  // %note runtime_23
+  os::ThreadType thr_type = os::java_thread;
+  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
+                                                     os::java_thread;
+  os::create_thread(this, thr_type, stack_sz);
+  // The _osthread may be NULL here because we ran out of memory (too many threads active).
+  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
+  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
+  // the exception consists of creating the exception object & initializing it, initialization
+  // will leave the VM via a JavaCall and then all locks must be unlocked).
+  //
+  // The thread is still suspended when we reach here. Thread must be explicit started
+  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
+  // by calling Threads:add. The reason why this is not done here, is because the thread
+  // object must be fully initialized (take a look at JVM_Start)
+}
+
+JavaThread::~JavaThread() {
+
+  // JSR166 -- return the parker to the free list
+  Parker::Release(_parker);
+  _parker = NULL;
+
+  // Free any remaining  previous UnrollBlock
+  vframeArray* old_array = vframe_array_last();
+
+  if (old_array != NULL) {
+    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
+    old_array->set_unroll_block(NULL);
+    delete old_info;
+    delete old_array;
+  }
+
+  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
+  if (deferred != NULL) {
+    // This can only happen if thread is destroyed before deoptimization occurs.
+    assert(deferred->length() != 0, "empty array!");
+    do {
+      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
+      deferred->remove_at(0);
+      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
+      delete dlv;
+    } while (deferred->length() != 0);
+    delete deferred;
+  }
+
+  // All Java related clean up happens in exit
+  ThreadSafepointState::destroy(this);
+  if (_thread_stat != NULL) delete _thread_stat;
+
+#if INCLUDE_JVMCI
+  if (JVMCICounterSize > 0) {
+    if (jvmci_counters_include(this)) {
+      for (int i = 0; i < JVMCICounterSize; i++) {
+        _jvmci_old_thread_counters[i] += _jvmci_counters[i];
+      }
+    }
+    FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
+  }
+#endif // INCLUDE_JVMCI
+}
+
+
+// The first routine called by a new Java thread
+void JavaThread::run() {
+  // initialize thread-local alloc buffer related fields
+  this->initialize_tlab();
+
+  // used to test validity of stack trace backs
+  this->record_base_of_stack_pointer();
+
+  // Record real stack base and size.
+  this->record_stack_base_and_size();
+
+  this->create_stack_guard_pages();
+
+  this->cache_global_variables();
+
+  // Thread is now sufficient initialized to be handled by the safepoint code as being
+  // in the VM. Change thread state from _thread_new to _thread_in_vm
+  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
+
+  assert(JavaThread::current() == this, "sanity check");
+  assert(!Thread::current()->owns_locks(), "sanity check");
+
+  DTRACE_THREAD_PROBE(start, this);
+
+  // This operation might block. We call that after all safepoint checks for a new thread has
+  // been completed.
+  this->set_active_handles(JNIHandleBlock::allocate_block());
+
+  if (JvmtiExport::should_post_thread_life()) {
+    JvmtiExport::post_thread_start(this);
+  }
+
+  EventThreadStart event;
+  if (event.should_commit()) {
+    event.set_thread(THREAD_TRACE_ID(this));
+    event.commit();
+  }
+
+  // We call another function to do the rest so we are sure that the stack addresses used
+  // from there will be lower than the stack base just computed
+  thread_main_inner();
+
+  // Note, thread is no longer valid at this point!
+}
+
+
+void JavaThread::thread_main_inner() {
+  assert(JavaThread::current() == this, "sanity check");
+  assert(this->threadObj() != NULL, "just checking");
+
+  // Execute thread entry point unless this thread has a pending exception
+  // or has been stopped before starting.
+  // Note: Due to JVM_StopThread we can have pending exceptions already!
+  if (!this->has_pending_exception() &&
+      !java_lang_Thread::is_stillborn(this->threadObj())) {
+    {
+      ResourceMark rm(this);
+      this->set_native_thread_name(this->get_thread_name());
+    }
+    HandleMark hm(this);
+    this->entry_point()(this, this);
+  }
+
+  DTRACE_THREAD_PROBE(stop, this);
+
+  this->exit(false);
+  delete this;
+}
+
+
+static void ensure_join(JavaThread* thread) {
+  // We do not need to grap the Threads_lock, since we are operating on ourself.
+  Handle threadObj(thread, thread->threadObj());
+  assert(threadObj.not_null(), "java thread object must exist");
+  ObjectLocker lock(threadObj, thread);
+  // Ignore pending exception (ThreadDeath), since we are exiting anyway
+  thread->clear_pending_exception();
+  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
+  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
+  // Clear the native thread instance - this makes isAlive return false and allows the join()
+  // to complete once we've done the notify_all below
+  java_lang_Thread::set_thread(threadObj(), NULL);
+  lock.notify_all(thread);
+  // Ignore pending exception (ThreadDeath), since we are exiting anyway
+  thread->clear_pending_exception();
+}
+
+
+// For any new cleanup additions, please check to see if they need to be applied to
+// cleanup_failed_attach_current_thread as well.
+void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
+  assert(this == JavaThread::current(), "thread consistency check");
+
+  HandleMark hm(this);
+  Handle uncaught_exception(this, this->pending_exception());
+  this->clear_pending_exception();
+  Handle threadObj(this, this->threadObj());
+  assert(threadObj.not_null(), "Java thread object should be created");
+
+  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
+  {
+    EXCEPTION_MARK;
+
+    CLEAR_PENDING_EXCEPTION;
+  }
+  if (!destroy_vm) {
+    if (uncaught_exception.not_null()) {
+      EXCEPTION_MARK;
+      // Call method Thread.dispatchUncaughtException().
+      Klass* thread_klass = SystemDictionary::Thread_klass();
+      JavaValue result(T_VOID);
+      JavaCalls::call_virtual(&result,
+                              threadObj, thread_klass,
+                              vmSymbols::dispatchUncaughtException_name(),
+                              vmSymbols::throwable_void_signature(),
+                              uncaught_exception,
+                              THREAD);
+      if (HAS_PENDING_EXCEPTION) {
+        ResourceMark rm(this);
+        jio_fprintf(defaultStream::error_stream(),
+                    "\nException: %s thrown from the UncaughtExceptionHandler"
+                    " in thread \"%s\"\n",
+                    pending_exception()->klass()->external_name(),
+                    get_thread_name());
+        CLEAR_PENDING_EXCEPTION;
+      }
+    }
+
+    // Called before the java thread exit since we want to read info
+    // from java_lang_Thread object
+    EventThreadEnd event;
+    if (event.should_commit()) {
+      event.set_thread(THREAD_TRACE_ID(this));
+      event.commit();
+    }
+
+    // Call after last event on thread
+    EVENT_THREAD_EXIT(this);
+
+    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
+    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
+    // is deprecated anyhow.
+    if (!is_Compiler_thread()) {
+      int count = 3;
+      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
+        EXCEPTION_MARK;
+        JavaValue result(T_VOID);
+        Klass* thread_klass = SystemDictionary::Thread_klass();
+        JavaCalls::call_virtual(&result,
+                                threadObj, thread_klass,
+                                vmSymbols::exit_method_name(),
+                                vmSymbols::void_method_signature(),
+                                THREAD);
+        CLEAR_PENDING_EXCEPTION;
+      }
+    }
+    // notify JVMTI
+    if (JvmtiExport::should_post_thread_life()) {
+      JvmtiExport::post_thread_end(this);
+    }
+
+    // We have notified the agents that we are exiting, before we go on,
+    // we must check for a pending external suspend request and honor it
+    // in order to not surprise the thread that made the suspend request.
+    while (true) {
+      {
+        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
+        if (!is_external_suspend()) {
+          set_terminated(_thread_exiting);
+          ThreadService::current_thread_exiting(this);
+          break;
+        }
+        // Implied else:
+        // Things get a little tricky here. We have a pending external
+        // suspend request, but we are holding the SR_lock so we
+        // can't just self-suspend. So we temporarily drop the lock
+        // and then self-suspend.
+      }
+
+      ThreadBlockInVM tbivm(this);
+      java_suspend_self();
+
+      // We're done with this suspend request, but we have to loop around
+      // and check again. Eventually we will get SR_lock without a pending
+      // external suspend request and will be able to mark ourselves as
+      // exiting.
+    }
+    // no more external suspends are allowed at this point
+  } else {
+    // before_exit() has already posted JVMTI THREAD_END events
+  }
+
+  // Notify waiters on thread object. This has to be done after exit() is called
+  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
+  // group should have the destroyed bit set before waiters are notified).
+  ensure_join(this);
+  assert(!this->has_pending_exception(), "ensure_join should have cleared");
+
+  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
+  // held by this thread must be released. The spec does not distinguish
+  // between JNI-acquired and regular Java monitors. We can only see
+  // regular Java monitors here if monitor enter-exit matching is broken.
+  //
+  // Optionally release any monitors for regular JavaThread exits. This
+  // is provided as a work around for any bugs in monitor enter-exit
+  // matching. This can be expensive so it is not enabled by default.
+  //
+  // ensure_join() ignores IllegalThreadStateExceptions, and so does
+  // ObjectSynchronizer::release_monitors_owned_by_thread().
+  if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
+    // Sanity check even though JNI DetachCurrentThread() would have
+    // returned JNI_ERR if there was a Java frame. JavaThread exit
+    // should be done executing Java code by the time we get here.
+    assert(!this->has_last_Java_frame(),
+           "should not have a Java frame when detaching or exiting");
+    ObjectSynchronizer::release_monitors_owned_by_thread(this);
+    assert(!this->has_pending_exception(), "release_monitors should have cleared");
+  }
+
+  // These things needs to be done while we are still a Java Thread. Make sure that thread
+  // is in a consistent state, in case GC happens
+  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
+
+  if (active_handles() != NULL) {
+    JNIHandleBlock* block = active_handles();
+    set_active_handles(NULL);
+    JNIHandleBlock::release_block(block);
+  }
+
+  if (free_handle_block() != NULL) {
+    JNIHandleBlock* block = free_handle_block();
+    set_free_handle_block(NULL);
+    JNIHandleBlock::release_block(block);
+  }
+
+  // These have to be removed while this is still a valid thread.
+  remove_stack_guard_pages();
+
+  if (UseTLAB) {
+    tlab().make_parsable(true);  // retire TLAB
+  }
+
+  if (JvmtiEnv::environments_might_exist()) {
+    JvmtiExport::cleanup_thread(this);
+  }
+
+  // We must flush any deferred card marks before removing a thread from
+  // the list of active threads.
+  Universe::heap()->flush_deferred_store_barrier(this);
+  assert(deferred_card_mark().is_empty(), "Should have been flushed");
+
+#if INCLUDE_ALL_GCS
+  // We must flush the G1-related buffers before removing a thread
+  // from the list of active threads. We must do this after any deferred
+  // card marks have been flushed (above) so that any entries that are
+  // added to the thread's dirty card queue as a result are not lost.
+  if (UseG1GC) {
+    flush_barrier_queues();
+  }
+#endif // INCLUDE_ALL_GCS
+
+  log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
+    exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
+    os::current_thread_id());
+
+  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
+  Threads::remove(this);
+}
+
+#if INCLUDE_ALL_GCS
+// Flush G1-related queues.
+void JavaThread::flush_barrier_queues() {
+  satb_mark_queue().flush();
+  dirty_card_queue().flush();
+}
+
+void JavaThread::initialize_queues() {
+  assert(!SafepointSynchronize::is_at_safepoint(),
+         "we should not be at a safepoint");
+
+  SATBMarkQueue& satb_queue = satb_mark_queue();
+  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
+  // The SATB queue should have been constructed with its active
+  // field set to false.
+  assert(!satb_queue.is_active(), "SATB queue should not be active");
+  assert(satb_queue.is_empty(), "SATB queue should be empty");
+  // If we are creating the thread during a marking cycle, we should
+  // set the active field of the SATB queue to true.
+  if (satb_queue_set.is_active()) {
+    satb_queue.set_active(true);
+  }
+
+  DirtyCardQueue& dirty_queue = dirty_card_queue();
+  // The dirty card queue should have been constructed with its
+  // active field set to true.
+  assert(dirty_queue.is_active(), "dirty card queue should be active");
+}
+#endif // INCLUDE_ALL_GCS
+
+void JavaThread::cleanup_failed_attach_current_thread() {
+  if (active_handles() != NULL) {
+    JNIHandleBlock* block = active_handles();
+    set_active_handles(NULL);
+    JNIHandleBlock::release_block(block);
+  }
+
+  if (free_handle_block() != NULL) {
+    JNIHandleBlock* block = free_handle_block();
+    set_free_handle_block(NULL);
+    JNIHandleBlock::release_block(block);
+  }
+
+  // These have to be removed while this is still a valid thread.
+  remove_stack_guard_pages();
+
+  if (UseTLAB) {
+    tlab().make_parsable(true);  // retire TLAB, if any
+  }
+
+#if INCLUDE_ALL_GCS
+  if (UseG1GC) {
+    flush_barrier_queues();
+  }
+#endif // INCLUDE_ALL_GCS
+
+  Threads::remove(this);
+  delete this;
+}
+
+
+
+
+JavaThread* JavaThread::active() {
+  Thread* thread = Thread::current();
+  if (thread->is_Java_thread()) {
+    return (JavaThread*) thread;
+  } else {
+    assert(thread->is_VM_thread(), "this must be a vm thread");
+    VM_Operation* op = ((VMThread*) thread)->vm_operation();
+    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
+    assert(ret->is_Java_thread(), "must be a Java thread");
+    return ret;
+  }
+}
+
+bool JavaThread::is_lock_owned(address adr) const {
+  if (Thread::is_lock_owned(adr)) return true;
+
+  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
+    if (chunk->contains(adr)) return true;
+  }
+
+  return false;
+}
+
+
+void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
+  chunk->set_next(monitor_chunks());
+  set_monitor_chunks(chunk);
+}
+
+void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
+  guarantee(monitor_chunks() != NULL, "must be non empty");
+  if (monitor_chunks() == chunk) {
+    set_monitor_chunks(chunk->next());
+  } else {
+    MonitorChunk* prev = monitor_chunks();
+    while (prev->next() != chunk) prev = prev->next();
+    prev->set_next(chunk->next());
+  }
+}
+
+// JVM support.
+
+// Note: this function shouldn't block if it's called in
+// _thread_in_native_trans state (such as from
+// check_special_condition_for_native_trans()).
+void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
+
+  if (has_last_Java_frame() && has_async_condition()) {
+    // If we are at a polling page safepoint (not a poll return)
+    // then we must defer async exception because live registers
+    // will be clobbered by the exception path. Poll return is
+    // ok because the call we a returning from already collides
+    // with exception handling registers and so there is no issue.
+    // (The exception handling path kills call result registers but
+    //  this is ok since the exception kills the result anyway).
+
+    if (is_at_poll_safepoint()) {
+      // if the code we are returning to has deoptimized we must defer
+      // the exception otherwise live registers get clobbered on the
+      // exception path before deoptimization is able to retrieve them.
+      //
+      RegisterMap map(this, false);
+      frame caller_fr = last_frame().sender(&map);
+      assert(caller_fr.is_compiled_frame(), "what?");
+      if (caller_fr.is_deoptimized_frame()) {
+        log_info(exceptions)("deferred async exception at compiled safepoint");
+        return;
+      }
+    }
+  }
+
+  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
+  if (condition == _no_async_condition) {
+    // Conditions have changed since has_special_runtime_exit_condition()
+    // was called:
+    // - if we were here only because of an external suspend request,
+    //   then that was taken care of above (or cancelled) so we are done
+    // - if we were here because of another async request, then it has
+    //   been cleared between the has_special_runtime_exit_condition()
+    //   and now so again we are done
+    return;
+  }
+
+  // Check for pending async. exception
+  if (_pending_async_exception != NULL) {
+    // Only overwrite an already pending exception, if it is not a threadDeath.
+    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
+
+      // We cannot call Exceptions::_throw(...) here because we cannot block
+      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
+
+      LogTarget(Info, exceptions) lt;
+      if (lt.is_enabled()) {
+        ResourceMark rm;
+        LogStream ls(lt);
+        ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
+          if (has_last_Java_frame()) {
+            frame f = last_frame();
+           ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
+          }
+        ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
+      }
+      _pending_async_exception = NULL;
+      clear_has_async_exception();
+    }
+  }
+
+  if (check_unsafe_error &&
+      condition == _async_unsafe_access_error && !has_pending_exception()) {
+    condition = _no_async_condition;  // done
+    switch (thread_state()) {
+    case _thread_in_vm: {
+      JavaThread* THREAD = this;
+      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
+    }
+    case _thread_in_native: {
+      ThreadInVMfromNative tiv(this);
+      JavaThread* THREAD = this;
+      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
+    }
+    case _thread_in_Java: {
+      ThreadInVMfromJava tiv(this);
+      JavaThread* THREAD = this;
+      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
+    }
+    default:
+      ShouldNotReachHere();
+    }
+  }
+
+  assert(condition == _no_async_condition || has_pending_exception() ||
+         (!check_unsafe_error && condition == _async_unsafe_access_error),
+         "must have handled the async condition, if no exception");
+}
+
+void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
+  //
+  // Check for pending external suspend. Internal suspend requests do
+  // not use handle_special_runtime_exit_condition().
+  // If JNIEnv proxies are allowed, don't self-suspend if the target
+  // thread is not the current thread. In older versions of jdbx, jdbx
+  // threads could call into the VM with another thread's JNIEnv so we
+  // can be here operating on behalf of a suspended thread (4432884).
+  bool do_self_suspend = is_external_suspend_with_lock();
+  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
+    //
+    // Because thread is external suspended the safepoint code will count
+    // thread as at a safepoint. This can be odd because we can be here
+    // as _thread_in_Java which would normally transition to _thread_blocked
+    // at a safepoint. We would like to mark the thread as _thread_blocked
+    // before calling java_suspend_self like all other callers of it but
+    // we must then observe proper safepoint protocol. (We can't leave
+    // _thread_blocked with a safepoint in progress). However we can be
+    // here as _thread_in_native_trans so we can't use a normal transition
+    // constructor/destructor pair because they assert on that type of
+    // transition. We could do something like:
+    //
+    // JavaThreadState state = thread_state();
+    // set_thread_state(_thread_in_vm);
+    // {
+    //   ThreadBlockInVM tbivm(this);
+    //   java_suspend_self()
+    // }
+    // set_thread_state(_thread_in_vm_trans);
+    // if (safepoint) block;
+    // set_thread_state(state);
+    //
+    // but that is pretty messy. Instead we just go with the way the
+    // code has worked before and note that this is the only path to
+    // java_suspend_self that doesn't put the thread in _thread_blocked
+    // mode.
+
+    frame_anchor()->make_walkable(this);
+    java_suspend_self();
+
+    // We might be here for reasons in addition to the self-suspend request
+    // so check for other async requests.
+  }
+
+  if (check_asyncs) {
+    check_and_handle_async_exceptions();
+  }
+#if INCLUDE_TRACE
+  if (is_trace_suspend()) {
+    TRACE_SUSPEND_THREAD(this);
+  }
+#endif
+}
+
+void JavaThread::send_thread_stop(oop java_throwable)  {
+  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
+  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
+  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
+
+  // Do not throw asynchronous exceptions against the compiler thread
+  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
+  if (!can_call_java()) return;
+
+  {
+    // Actually throw the Throwable against the target Thread - however
+    // only if there is no thread death exception installed already.
+    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
+      // If the topmost frame is a runtime stub, then we are calling into
+      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
+      // must deoptimize the caller before continuing, as the compiled  exception handler table
+      // may not be valid
+      if (has_last_Java_frame()) {
+        frame f = last_frame();
+        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
+          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
+          RegisterMap reg_map(this, UseBiasedLocking);
+          frame compiled_frame = f.sender(&reg_map);
+          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
+            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
+          }
+        }
+      }
+
+      // Set async. pending exception in thread.
+      set_pending_async_exception(java_throwable);
+
+      if (log_is_enabled(Info, exceptions)) {
+         ResourceMark rm;
+        log_info(exceptions)("Pending Async. exception installed of type: %s",
+                             InstanceKlass::cast(_pending_async_exception->klass())->external_name());
+      }
+      // for AbortVMOnException flag
+      Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
+    }
+  }
+
+
+  // Interrupt thread so it will wake up from a potential wait()
+  Thread::interrupt(this);
+}
+
+// External suspension mechanism.
+//
+// Tell the VM to suspend a thread when ever it knows that it does not hold on
+// to any VM_locks and it is at a transition
+// Self-suspension will happen on the transition out of the vm.
+// Catch "this" coming in from JNIEnv pointers when the thread has been freed
+//
+// Guarantees on return:
+//   + Target thread will not execute any new bytecode (that's why we need to
+//     force a safepoint)
+//   + Target thread will not enter any new monitors
+//
+void JavaThread::java_suspend() {
+  { MutexLocker mu(Threads_lock);
+    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
+      return;
+    }
+  }
+
+  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
+    if (!is_external_suspend()) {
+      // a racing resume has cancelled us; bail out now
+      return;
+    }
+
+    // suspend is done
+    uint32_t debug_bits = 0;
+    // Warning: is_ext_suspend_completed() may temporarily drop the
+    // SR_lock to allow the thread to reach a stable thread state if
+    // it is currently in a transient thread state.
+    if (is_ext_suspend_completed(false /* !called_by_wait */,
+                                 SuspendRetryDelay, &debug_bits)) {
+      return;
+    }
+  }
+
+  VM_ThreadSuspend vm_suspend;
+  VMThread::execute(&vm_suspend);
+}
+
+// Part II of external suspension.
+// A JavaThread self suspends when it detects a pending external suspend
+// request. This is usually on transitions. It is also done in places
+// where continuing to the next transition would surprise the caller,
+// e.g., monitor entry.
+//
+// Returns the number of times that the thread self-suspended.
+//
+// Note: DO NOT call java_suspend_self() when you just want to block current
+//       thread. java_suspend_self() is the second stage of cooperative
+//       suspension for external suspend requests and should only be used
+//       to complete an external suspend request.
+//
+int JavaThread::java_suspend_self() {
+  int ret = 0;
+
+  // we are in the process of exiting so don't suspend
+  if (is_exiting()) {
+    clear_external_suspend();
+    return ret;
+  }
+
+  assert(_anchor.walkable() ||
+         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
+         "must have walkable stack");
+
+  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
+
+  assert(!this->is_ext_suspended(),
+         "a thread trying to self-suspend should not already be suspended");
+
+  if (this->is_suspend_equivalent()) {
+    // If we are self-suspending as a result of the lifting of a
+    // suspend equivalent condition, then the suspend_equivalent
+    // flag is not cleared until we set the ext_suspended flag so
+    // that wait_for_ext_suspend_completion() returns consistent
+    // results.
+    this->clear_suspend_equivalent();
+  }
+
+  // A racing resume may have cancelled us before we grabbed SR_lock
+  // above. Or another external suspend request could be waiting for us
+  // by the time we return from SR_lock()->wait(). The thread
+  // that requested the suspension may already be trying to walk our
+  // stack and if we return now, we can change the stack out from under
+  // it. This would be a "bad thing (TM)" and cause the stack walker
+  // to crash. We stay self-suspended until there are no more pending
+  // external suspend requests.
+  while (is_external_suspend()) {
+    ret++;
+    this->set_ext_suspended();
+
+    // _ext_suspended flag is cleared by java_resume()
+    while (is_ext_suspended()) {
+      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
+    }
+  }
+
+  return ret;
+}
+
+#ifdef ASSERT
+// verify the JavaThread has not yet been published in the Threads::list, and
+// hence doesn't need protection from concurrent access at this stage
+void JavaThread::verify_not_published() {
+  if (!Threads_lock->owned_by_self()) {
+    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
+    assert(!Threads::includes(this),
+           "java thread shouldn't have been published yet!");
+  } else {
+    assert(!Threads::includes(this),
+           "java thread shouldn't have been published yet!");
+  }
+}
+#endif
+
+// Slow path when the native==>VM/Java barriers detect a safepoint is in
+// progress or when _suspend_flags is non-zero.
+// Current thread needs to self-suspend if there is a suspend request and/or
+// block if a safepoint is in progress.
+// Async exception ISN'T checked.
+// Note only the ThreadInVMfromNative transition can call this function
+// directly and when thread state is _thread_in_native_trans
+void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
+  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
+
+  JavaThread *curJT = JavaThread::current();
+  bool do_self_suspend = thread->is_external_suspend();
+
+  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
+
+  // If JNIEnv proxies are allowed, don't self-suspend if the target
+  // thread is not the current thread. In older versions of jdbx, jdbx
+  // threads could call into the VM with another thread's JNIEnv so we
+  // can be here operating on behalf of a suspended thread (4432884).
+  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
+    JavaThreadState state = thread->thread_state();
+
+    // We mark this thread_blocked state as a suspend-equivalent so
+    // that a caller to is_ext_suspend_completed() won't be confused.
+    // The suspend-equivalent state is cleared by java_suspend_self().
+    thread->set_suspend_equivalent();
+
+    // If the safepoint code sees the _thread_in_native_trans state, it will
+    // wait until the thread changes to other thread state. There is no
+    // guarantee on how soon we can obtain the SR_lock and complete the
+    // self-suspend request. It would be a bad idea to let safepoint wait for
+    // too long. Temporarily change the state to _thread_blocked to
+    // let the VM thread know that this thread is ready for GC. The problem
+    // of changing thread state is that safepoint could happen just after
+    // java_suspend_self() returns after being resumed, and VM thread will
+    // see the _thread_blocked state. We must check for safepoint
+    // after restoring the state and make sure we won't leave while a safepoint
+    // is in progress.
+    thread->set_thread_state(_thread_blocked);
+    thread->java_suspend_self();
+    thread->set_thread_state(state);
+
+    InterfaceSupport::serialize_thread_state_with_handler(thread);
+  }
+
+  if (SafepointSynchronize::do_call_back()) {
+    // If we are safepointing, then block the caller which may not be
+    // the same as the target thread (see above).
+    SafepointSynchronize::block(curJT);
+  }
+
+  if (thread->is_deopt_suspend()) {
+    thread->clear_deopt_suspend();
+    RegisterMap map(thread, false);
+    frame f = thread->last_frame();
+    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
+      f = f.sender(&map);
+    }
+    if (f.id() == thread->must_deopt_id()) {
+      thread->clear_must_deopt_id();
+      f.deoptimize(thread);
+    } else {
+      fatal("missed deoptimization!");
+    }
+  }
+#if INCLUDE_TRACE
+  if (thread->is_trace_suspend()) {
+    TRACE_SUSPEND_THREAD(thread);
+  }
+#endif
+}
+
+// Slow path when the native==>VM/Java barriers detect a safepoint is in
+// progress or when _suspend_flags is non-zero.
+// Current thread needs to self-suspend if there is a suspend request and/or
+// block if a safepoint is in progress.
+// Also check for pending async exception (not including unsafe access error).
+// Note only the native==>VM/Java barriers can call this function and when
+// thread state is _thread_in_native_trans.
+void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
+  check_safepoint_and_suspend_for_native_trans(thread);
+
+  if (thread->has_async_exception()) {
+    // We are in _thread_in_native_trans state, don't handle unsafe
+    // access error since that may block.
+    thread->check_and_handle_async_exceptions(false);
+  }
+}
+
+// This is a variant of the normal
+// check_special_condition_for_native_trans with slightly different
+// semantics for use by critical native wrappers.  It does all the
+// normal checks but also performs the transition back into
+// thread_in_Java state.  This is required so that critical natives
+// can potentially block and perform a GC if they are the last thread
+// exiting the GCLocker.
+void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
+  check_special_condition_for_native_trans(thread);
+
+  // Finish the transition
+  thread->set_thread_state(_thread_in_Java);
+
+  if (thread->do_critical_native_unlock()) {
+    ThreadInVMfromJavaNoAsyncException tiv(thread);
+    GCLocker::unlock_critical(thread);
+    thread->clear_critical_native_unlock();
+  }
+}
+
+// We need to guarantee the Threads_lock here, since resumes are not
+// allowed during safepoint synchronization
+// Can only resume from an external suspension
+void JavaThread::java_resume() {
+  assert_locked_or_safepoint(Threads_lock);
+
+  // Sanity check: thread is gone, has started exiting or the thread
+  // was not externally suspended.
+  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
+    return;
+  }
+
+  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
+
+  clear_external_suspend();
+
+  if (is_ext_suspended()) {
+    clear_ext_suspended();
+    SR_lock()->notify_all();
+  }
+}
+
+size_t JavaThread::_stack_red_zone_size = 0;
+size_t JavaThread::_stack_yellow_zone_size = 0;
+size_t JavaThread::_stack_reserved_zone_size = 0;
+size_t JavaThread::_stack_shadow_zone_size = 0;
+
+void JavaThread::create_stack_guard_pages() {
+  if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
+  address low_addr = stack_end();
+  size_t len = stack_guard_zone_size();
+
+  assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
+  assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
+
+  int must_commit = os::must_commit_stack_guard_pages();
+  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
+
+  if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
+    log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
+    return;
+  }
+
+  if (os::guard_memory((char *) low_addr, len)) {
+    _stack_guard_state = stack_guard_enabled;
+  } else {
+    log_warning(os, thread)("Attempt to protect stack guard pages failed ("
+      PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
+    if (os::uncommit_memory((char *) low_addr, len)) {
+      log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
+    }
+    return;
+  }
+
+  log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
+    PTR_FORMAT "-" PTR_FORMAT ".",
+    os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
+}
+
+void JavaThread::remove_stack_guard_pages() {
+  assert(Thread::current() == this, "from different thread");
+  if (_stack_guard_state == stack_guard_unused) return;
+  address low_addr = stack_end();
+  size_t len = stack_guard_zone_size();
+
+  if (os::must_commit_stack_guard_pages()) {
+    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
+      _stack_guard_state = stack_guard_unused;
+    } else {
+      log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
+        PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
+      return;
+    }
+  } else {
+    if (_stack_guard_state == stack_guard_unused) return;
+    if (os::unguard_memory((char *) low_addr, len)) {
+      _stack_guard_state = stack_guard_unused;
+    } else {
+      log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
+        PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
+      return;
+    }
+  }
+
+  log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
+    PTR_FORMAT "-" PTR_FORMAT ".",
+    os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
+}
+
+void JavaThread::enable_stack_reserved_zone() {
+  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
+  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
+
+  // The base notation is from the stack's point of view, growing downward.
+  // We need to adjust it to work correctly with guard_memory()
+  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
+
+  guarantee(base < stack_base(),"Error calculating stack reserved zone");
+  guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
+
+  if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
+    _stack_guard_state = stack_guard_enabled;
+  } else {
+    warning("Attempt to guard stack reserved zone failed.");
+  }
+  enable_register_stack_guard();
+}
+
+void JavaThread::disable_stack_reserved_zone() {
+  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
+  assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
+
+  // Simply return if called for a thread that does not use guard pages.
+  if (_stack_guard_state == stack_guard_unused) return;
+
+  // The base notation is from the stack's point of view, growing downward.
+  // We need to adjust it to work correctly with guard_memory()
+  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
+
+  if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
+    _stack_guard_state = stack_guard_reserved_disabled;
+  } else {
+    warning("Attempt to unguard stack reserved zone failed.");
+  }
+  disable_register_stack_guard();
+}
+
+void JavaThread::enable_stack_yellow_reserved_zone() {
+  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
+  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
+
+  // The base notation is from the stacks point of view, growing downward.
+  // We need to adjust it to work correctly with guard_memory()
+  address base = stack_red_zone_base();
+
+  guarantee(base < stack_base(), "Error calculating stack yellow zone");
+  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
+
+  if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
+    _stack_guard_state = stack_guard_enabled;
+  } else {
+    warning("Attempt to guard stack yellow zone failed.");
+  }
+  enable_register_stack_guard();
+}
+
+void JavaThread::disable_stack_yellow_reserved_zone() {
+  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
+  assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
+
+  // Simply return if called for a thread that does not use guard pages.
+  if (_stack_guard_state == stack_guard_unused) return;
+
+  // The base notation is from the stacks point of view, growing downward.
+  // We need to adjust it to work correctly with guard_memory()
+  address base = stack_red_zone_base();
+
+  if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
+    _stack_guard_state = stack_guard_yellow_reserved_disabled;
+  } else {
+    warning("Attempt to unguard stack yellow zone failed.");
+  }
+  disable_register_stack_guard();
+}
+
+void JavaThread::enable_stack_red_zone() {
+  // The base notation is from the stacks point of view, growing downward.
+  // We need to adjust it to work correctly with guard_memory()
+  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
+  address base = stack_red_zone_base() - stack_red_zone_size();
+
+  guarantee(base < stack_base(), "Error calculating stack red zone");
+  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
+
+  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
+    warning("Attempt to guard stack red zone failed.");
+  }
+}
+
+void JavaThread::disable_stack_red_zone() {
+  // The base notation is from the stacks point of view, growing downward.
+  // We need to adjust it to work correctly with guard_memory()
+  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
+  address base = stack_red_zone_base() - stack_red_zone_size();
+  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
+    warning("Attempt to unguard stack red zone failed.");
+  }
+}
+
+void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
+  // ignore is there is no stack
+  if (!has_last_Java_frame()) return;
+  // traverse the stack frames. Starts from top frame.
+  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
+    frame* fr = fst.current();
+    f(fr, fst.register_map());
+  }
+}
+
+
+#ifndef PRODUCT
+// Deoptimization
+// Function for testing deoptimization
+void JavaThread::deoptimize() {
+  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
+  StackFrameStream fst(this, UseBiasedLocking);
+  bool deopt = false;           // Dump stack only if a deopt actually happens.
+  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
+  // Iterate over all frames in the thread and deoptimize
+  for (; !fst.is_done(); fst.next()) {
+    if (fst.current()->can_be_deoptimized()) {
+
+      if (only_at) {
+        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
+        // consists of comma or carriage return separated numbers so
+        // search for the current bci in that string.
+        address pc = fst.current()->pc();
+        nmethod* nm =  (nmethod*) fst.current()->cb();
+        ScopeDesc* sd = nm->scope_desc_at(pc);
+        char buffer[8];
+        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
+        size_t len = strlen(buffer);
+        const char * found = strstr(DeoptimizeOnlyAt, buffer);
+        while (found != NULL) {
+          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
+              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
+            // Check that the bci found is bracketed by terminators.
+            break;
+          }
+          found = strstr(found + 1, buffer);
+        }
+        if (!found) {
+          continue;
+        }
+      }
+
+      if (DebugDeoptimization && !deopt) {
+        deopt = true; // One-time only print before deopt
+        tty->print_cr("[BEFORE Deoptimization]");
+        trace_frames();
+        trace_stack();
+      }
+      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
+    }
+  }
+
+  if (DebugDeoptimization && deopt) {
+    tty->print_cr("[AFTER Deoptimization]");
+    trace_frames();
+  }
+}
+
+
+// Make zombies
+void JavaThread::make_zombies() {
+  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
+    if (fst.current()->can_be_deoptimized()) {
+      // it is a Java nmethod
+      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
+      nm->make_not_entrant();
+    }
+  }
+}
+#endif // PRODUCT
+
+
+void JavaThread::deoptimized_wrt_marked_nmethods() {
+  if (!has_last_Java_frame()) return;
+  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
+  StackFrameStream fst(this, UseBiasedLocking);
+  for (; !fst.is_done(); fst.next()) {
+    if (fst.current()->should_be_deoptimized()) {
+      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
+    }
+  }
+}
+
+
+// If the caller is a NamedThread, then remember, in the current scope,
+// the given JavaThread in its _processed_thread field.
+class RememberProcessedThread: public StackObj {
+  NamedThread* _cur_thr;
+ public:
+  RememberProcessedThread(JavaThread* jthr) {
+    Thread* thread = Thread::current();
+    if (thread->is_Named_thread()) {
+      _cur_thr = (NamedThread *)thread;
+      _cur_thr->set_processed_thread(jthr);
+    } else {
+      _cur_thr = NULL;
+    }
+  }
+
+  ~RememberProcessedThread() {
+    if (_cur_thr) {
+      _cur_thr->set_processed_thread(NULL);
+    }
+  }
+};
+
+void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
+  // Verify that the deferred card marks have been flushed.
+  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
+
+  // Traverse the GCHandles
+  Thread::oops_do(f, cf);
+
+  JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
+
+  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
+         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
+
+  if (has_last_Java_frame()) {
+    // Record JavaThread to GC thread
+    RememberProcessedThread rpt(this);
+
+    // Traverse the privileged stack
+    if (_privileged_stack_top != NULL) {
+      _privileged_stack_top->oops_do(f);
+    }
+
+    // traverse the registered growable array
+    if (_array_for_gc != NULL) {
+      for (int index = 0; index < _array_for_gc->length(); index++) {
+        f->do_oop(_array_for_gc->adr_at(index));
+      }
+    }
+
+    // Traverse the monitor chunks
+    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
+      chunk->oops_do(f);
+    }
+
+    // Traverse the execution stack
+    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
+      fst.current()->oops_do(f, cf, fst.register_map());
+    }
+  }
+
+  // callee_target is never live across a gc point so NULL it here should
+  // it still contain a methdOop.
+
+  set_callee_target(NULL);
+
+  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
+  // If we have deferred set_locals there might be oops waiting to be
+  // written
+  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
+  if (list != NULL) {
+    for (int i = 0; i < list->length(); i++) {
+      list->at(i)->oops_do(f);
+    }
+  }
+
+  // Traverse instance variables at the end since the GC may be moving things
+  // around using this function
+  f->do_oop((oop*) &_threadObj);
+  f->do_oop((oop*) &_vm_result);
+  f->do_oop((oop*) &_exception_oop);
+  f->do_oop((oop*) &_pending_async_exception);
+
+  if (jvmti_thread_state() != NULL) {
+    jvmti_thread_state()->oops_do(f);
+  }
+}
+
+void JavaThread::nmethods_do(CodeBlobClosure* cf) {
+  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
+         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
+
+  if (has_last_Java_frame()) {
+    // Traverse the execution stack
+    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
+      fst.current()->nmethods_do(cf);
+    }
+  }
+}
+
+void JavaThread::metadata_do(void f(Metadata*)) {
+  if (has_last_Java_frame()) {
+    // Traverse the execution stack to call f() on the methods in the stack
+    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
+      fst.current()->metadata_do(f);
+    }
+  } else if (is_Compiler_thread()) {
+    // need to walk ciMetadata in current compile tasks to keep alive.
+    CompilerThread* ct = (CompilerThread*)this;
+    if (ct->env() != NULL) {
+      ct->env()->metadata_do(f);
+    }
+    if (ct->task() != NULL) {
+      ct->task()->metadata_do(f);
+    }
+  }
+}
+
+// Printing
+const char* _get_thread_state_name(JavaThreadState _thread_state) {
+  switch (_thread_state) {
+  case _thread_uninitialized:     return "_thread_uninitialized";
+  case _thread_new:               return "_thread_new";
+  case _thread_new_trans:         return "_thread_new_trans";
+  case _thread_in_native:         return "_thread_in_native";
+  case _thread_in_native_trans:   return "_thread_in_native_trans";
+  case _thread_in_vm:             return "_thread_in_vm";
+  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
+  case _thread_in_Java:           return "_thread_in_Java";
+  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
+  case _thread_blocked:           return "_thread_blocked";
+  case _thread_blocked_trans:     return "_thread_blocked_trans";
+  default:                        return "unknown thread state";
+  }
+}
+
+#ifndef PRODUCT
+void JavaThread::print_thread_state_on(outputStream *st) const {
+  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
+};
+void JavaThread::print_thread_state() const {
+  print_thread_state_on(tty);
+}
+#endif // PRODUCT
+
+// Called by Threads::print() for VM_PrintThreads operation
+void JavaThread::print_on(outputStream *st) const {
+  st->print_raw("\"");
+  st->print_raw(get_thread_name());
+  st->print_raw("\" ");
+  oop thread_oop = threadObj();
+  if (thread_oop != NULL) {
+    st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
+    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
+    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
+  }
+  Thread::print_on(st);
+  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
+  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
+  if (thread_oop != NULL) {
+    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
+  }
+#ifndef PRODUCT
+  print_thread_state_on(st);
+  _safepoint_state->print_on(st);
+#endif // PRODUCT
+  if (is_Compiler_thread()) {
+    CompilerThread* ct = (CompilerThread*)this;
+    if (ct->task() != NULL) {
+      st->print("   Compiling: ");
+      ct->task()->print(st, NULL, true, false);
+    } else {
+      st->print("   No compile task");
+    }
+    st->cr();
+  }
+}
+
+void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
+  st->print("%s", get_thread_name_string(buf, buflen));
+}
+
+// Called by fatal error handler. The difference between this and
+// JavaThread::print() is that we can't grab lock or allocate memory.
+void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
+  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
+  oop thread_obj = threadObj();
+  if (thread_obj != NULL) {
+    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
+  }
+  st->print(" [");
+  st->print("%s", _get_thread_state_name(_thread_state));
+  if (osthread()) {
+    st->print(", id=%d", osthread()->thread_id());
+  }
+  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
+            p2i(stack_end()), p2i(stack_base()));
+  st->print("]");
+  return;
+}
+
+// Verification
+
+static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
+
+void JavaThread::verify() {
+  // Verify oops in the thread.
+  oops_do(&VerifyOopClosure::verify_oop, NULL);
+
+  // Verify the stack frames.
+  frames_do(frame_verify);
+}
+
+// CR 6300358 (sub-CR 2137150)
+// Most callers of this method assume that it can't return NULL but a
+// thread may not have a name whilst it is in the process of attaching to
+// the VM - see CR 6412693, and there are places where a JavaThread can be
+// seen prior to having it's threadObj set (eg JNI attaching threads and
+// if vm exit occurs during initialization). These cases can all be accounted
+// for such that this method never returns NULL.
+const char* JavaThread::get_thread_name() const {
+#ifdef ASSERT
+  // early safepoints can hit while current thread does not yet have TLS
+  if (!SafepointSynchronize::is_at_safepoint()) {
+    Thread *cur = Thread::current();
+    if (!(cur->is_Java_thread() && cur == this)) {
+      // Current JavaThreads are allowed to get their own name without
+      // the Threads_lock.
+      assert_locked_or_safepoint(Threads_lock);
+    }
+  }
+#endif // ASSERT
+  return get_thread_name_string();
+}
+
+// Returns a non-NULL representation of this thread's name, or a suitable
+// descriptive string if there is no set name
+const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
+  const char* name_str;
+  oop thread_obj = threadObj();
+  if (thread_obj != NULL) {
+    oop name = java_lang_Thread::name(thread_obj);
+    if (name != NULL) {
+      if (buf == NULL) {
+        name_str = java_lang_String::as_utf8_string(name);
+      } else {
+        name_str = java_lang_String::as_utf8_string(name, buf, buflen);
+      }
+    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
+      name_str = "<no-name - thread is attaching>";
+    } else {
+      name_str = Thread::name();
+    }
+  } else {
+    name_str = Thread::name();
+  }
+  assert(name_str != NULL, "unexpected NULL thread name");
+  return name_str;
+}
+
+
+const char* JavaThread::get_threadgroup_name() const {
+  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
+  oop thread_obj = threadObj();
+  if (thread_obj != NULL) {
+    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
+    if (thread_group != NULL) {
+      // ThreadGroup.name can be null
+      return java_lang_ThreadGroup::name(thread_group);
+    }
+  }
+  return NULL;
+}
+
+const char* JavaThread::get_parent_name() const {
+  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
+  oop thread_obj = threadObj();
+  if (thread_obj != NULL) {
+    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
+    if (thread_group != NULL) {
+      oop parent = java_lang_ThreadGroup::parent(thread_group);
+      if (parent != NULL) {
+        // ThreadGroup.name can be null
+        return java_lang_ThreadGroup::name(parent);
+      }
+    }
+  }
+  return NULL;
+}
+
+ThreadPriority JavaThread::java_priority() const {
+  oop thr_oop = threadObj();
+  if (thr_oop == NULL) return NormPriority; // Bootstrapping
+  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
+  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
+  return priority;
+}
+
+void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
+
+  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
+  // Link Java Thread object <-> C++ Thread
+
+  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
+  // and put it into a new Handle.  The Handle "thread_oop" can then
+  // be used to pass the C++ thread object to other methods.
+
+  // Set the Java level thread object (jthread) field of the
+  // new thread (a JavaThread *) to C++ thread object using the
+  // "thread_oop" handle.
+
+  // Set the thread field (a JavaThread *) of the
+  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
+
+  Handle thread_oop(Thread::current(),
+                    JNIHandles::resolve_non_null(jni_thread));
+  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
+         "must be initialized");
+  set_threadObj(thread_oop());
+  java_lang_Thread::set_thread(thread_oop(), this);
+
+  if (prio == NoPriority) {
+    prio = java_lang_Thread::priority(thread_oop());
+    assert(prio != NoPriority, "A valid priority should be present");
+  }
+
+  // Push the Java priority down to the native thread; needs Threads_lock
+  Thread::set_priority(this, prio);
+
+  prepare_ext();
+
+  // Add the new thread to the Threads list and set it in motion.
+  // We must have threads lock in order to call Threads::add.
+  // It is crucial that we do not block before the thread is
+  // added to the Threads list for if a GC happens, then the java_thread oop
+  // will not be visited by GC.
+  Threads::add(this);
+}
+
+oop JavaThread::current_park_blocker() {
+  // Support for JSR-166 locks
+  oop thread_oop = threadObj();
+  if (thread_oop != NULL &&
+      JDK_Version::current().supports_thread_park_blocker()) {
+    return java_lang_Thread::park_blocker(thread_oop);
+  }
+  return NULL;
+}
+
+
+void JavaThread::print_stack_on(outputStream* st) {
+  if (!has_last_Java_frame()) return;
+  ResourceMark rm;
+  HandleMark   hm;
+
+  RegisterMap reg_map(this);
+  vframe* start_vf = last_java_vframe(&reg_map);
+  int count = 0;
+  for (vframe* f = start_vf; f; f = f->sender()) {
+    if (f->is_java_frame()) {
+      javaVFrame* jvf = javaVFrame::cast(f);
+      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
+
+      // Print out lock information
+      if (JavaMonitorsInStackTrace) {
+        jvf->print_lock_info_on(st, count);
+      }
+    } else {
+      // Ignore non-Java frames
+    }
+
+    // Bail-out case for too deep stacks
+    count++;
+    if (MaxJavaStackTraceDepth == count) return;
+  }
+}
+
+
+// JVMTI PopFrame support
+void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
+  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
+  if (in_bytes(size_in_bytes) != 0) {
+    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
+    _popframe_preserved_args_size = in_bytes(size_in_bytes);
+    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
+  }
+}
+
+void* JavaThread::popframe_preserved_args() {
+  return _popframe_preserved_args;
+}
+
+ByteSize JavaThread::popframe_preserved_args_size() {
+  return in_ByteSize(_popframe_preserved_args_size);
+}
+
+WordSize JavaThread::popframe_preserved_args_size_in_words() {
+  int sz = in_bytes(popframe_preserved_args_size());
+  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
+  return in_WordSize(sz / wordSize);
+}
+
+void JavaThread::popframe_free_preserved_args() {
+  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
+  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
+  _popframe_preserved_args = NULL;
+  _popframe_preserved_args_size = 0;
+}
+
+#ifndef PRODUCT
+
+void JavaThread::trace_frames() {
+  tty->print_cr("[Describe stack]");
+  int frame_no = 1;
+  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
+    tty->print("  %d. ", frame_no++);
+    fst.current()->print_value_on(tty, this);
+    tty->cr();
+  }
+}
+
+class PrintAndVerifyOopClosure: public OopClosure {
+ protected:
+  template <class T> inline void do_oop_work(T* p) {
+    oop obj = oopDesc::load_decode_heap_oop(p);
+    if (obj == NULL) return;
+    tty->print(INTPTR_FORMAT ": ", p2i(p));
+    if (oopDesc::is_oop_or_null(obj)) {
+      if (obj->is_objArray()) {
+        tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
+      } else {
+        obj->print();
+      }
+    } else {
+      tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
+    }
+    tty->cr();
+  }
+ public:
+  virtual void do_oop(oop* p) { do_oop_work(p); }
+  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
+};
+
+
+static void oops_print(frame* f, const RegisterMap *map) {
+  PrintAndVerifyOopClosure print;
+  f->print_value();
+  f->oops_do(&print, NULL, (RegisterMap*)map);
+}
+
+// Print our all the locations that contain oops and whether they are
+// valid or not.  This useful when trying to find the oldest frame
+// where an oop has gone bad since the frame walk is from youngest to
+// oldest.
+void JavaThread::trace_oops() {
+  tty->print_cr("[Trace oops]");
+  frames_do(oops_print);
+}
+
+
+#ifdef ASSERT
+// Print or validate the layout of stack frames
+void JavaThread::print_frame_layout(int depth, bool validate_only) {
+  ResourceMark rm;
+  PRESERVE_EXCEPTION_MARK;
+  FrameValues values;
+  int frame_no = 0;
+  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
+    fst.current()->describe(values, ++frame_no);
+    if (depth == frame_no) break;
+  }
+  if (validate_only) {
+    values.validate();
+  } else {
+    tty->print_cr("[Describe stack layout]");
+    values.print(this);
+  }
+}
+#endif
+
+void JavaThread::trace_stack_from(vframe* start_vf) {
+  ResourceMark rm;
+  int vframe_no = 1;
+  for (vframe* f = start_vf; f; f = f->sender()) {
+    if (f->is_java_frame()) {
+      javaVFrame::cast(f)->print_activation(vframe_no++);
+    } else {
+      f->print();
+    }
+    if (vframe_no > StackPrintLimit) {
+      tty->print_cr("...<more frames>...");
+      return;
+    }
+  }
+}
+
+
+void JavaThread::trace_stack() {
+  if (!has_last_Java_frame()) return;
+  ResourceMark rm;
+  HandleMark   hm;
+  RegisterMap reg_map(this);
+  trace_stack_from(last_java_vframe(&reg_map));
+}
+
+
+#endif // PRODUCT
+
+
+javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
+  assert(reg_map != NULL, "a map must be given");
+  frame f = last_frame();
+  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
+    if (vf->is_java_frame()) return javaVFrame::cast(vf);
+  }
+  return NULL;
+}
+
+
+Klass* JavaThread::security_get_caller_class(int depth) {
+  vframeStream vfst(this);
+  vfst.security_get_caller_frame(depth);
+  if (!vfst.at_end()) {
+    return vfst.method()->method_holder();
+  }
+  return NULL;
+}
+
+static void compiler_thread_entry(JavaThread* thread, TRAPS) {
+  assert(thread->is_Compiler_thread(), "must be compiler thread");
+  CompileBroker::compiler_thread_loop();
+}
+
+static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
+  NMethodSweeper::sweeper_loop();
+}
+
+// Create a CompilerThread
+CompilerThread::CompilerThread(CompileQueue* queue,
+                               CompilerCounters* counters)
+                               : JavaThread(&compiler_thread_entry) {
+  _env   = NULL;
+  _log   = NULL;
+  _task  = NULL;
+  _queue = queue;
+  _counters = counters;
+  _buffer_blob = NULL;
+  _compiler = NULL;
+
+#ifndef PRODUCT
+  _ideal_graph_printer = NULL;
+#endif
+}
+
+bool CompilerThread::can_call_java() const {
+  return _compiler != NULL && _compiler->is_jvmci();
+}
+
+// Create sweeper thread
+CodeCacheSweeperThread::CodeCacheSweeperThread()
+: JavaThread(&sweeper_thread_entry) {
+  _scanned_compiled_method = NULL;
+}
+
+void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
+  JavaThread::oops_do(f, cf);
+  if (_scanned_compiled_method != NULL && cf != NULL) {
+    // Safepoints can occur when the sweeper is scanning an nmethod so
+    // process it here to make sure it isn't unloaded in the middle of
+    // a scan.
+    cf->do_code_blob(_scanned_compiled_method);
+  }
+}
+
+void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
+  JavaThread::nmethods_do(cf);
+  if (_scanned_compiled_method != NULL && cf != NULL) {
+    // Safepoints can occur when the sweeper is scanning an nmethod so
+    // process it here to make sure it isn't unloaded in the middle of
+    // a scan.
+    cf->do_code_blob(_scanned_compiled_method);
+  }
+}
+
+
+// ======= Threads ========
+
+// The Threads class links together all active threads, and provides
+// operations over all threads.  It is protected by its own Mutex
+// lock, which is also used in other contexts to protect thread
+// operations from having the thread being operated on from exiting
+// and going away unexpectedly (e.g., safepoint synchronization)
+
+JavaThread* Threads::_thread_list = NULL;
+int         Threads::_number_of_threads = 0;
+int         Threads::_number_of_non_daemon_threads = 0;
+int         Threads::_return_code = 0;
+int         Threads::_thread_claim_parity = 0;
+size_t      JavaThread::_stack_size_at_create = 0;
+#ifdef ASSERT
+bool        Threads::_vm_complete = false;
+#endif
+
+// All JavaThreads
+#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
+
+// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
+void Threads::threads_do(ThreadClosure* tc) {
+  assert_locked_or_safepoint(Threads_lock);
+  // ALL_JAVA_THREADS iterates through all JavaThreads
+  ALL_JAVA_THREADS(p) {
+    tc->do_thread(p);
+  }
+  // Someday we could have a table or list of all non-JavaThreads.
+  // For now, just manually iterate through them.
+  tc->do_thread(VMThread::vm_thread());
+  Universe::heap()->gc_threads_do(tc);
+  WatcherThread *wt = WatcherThread::watcher_thread();
+  // Strictly speaking, the following NULL check isn't sufficient to make sure
+  // the data for WatcherThread is still valid upon being examined. However,
+  // considering that WatchThread terminates when the VM is on the way to
+  // exit at safepoint, the chance of the above is extremely small. The right
+  // way to prevent termination of WatcherThread would be to acquire
+  // Terminator_lock, but we can't do that without violating the lock rank
+  // checking in some cases.
+  if (wt != NULL) {
+    tc->do_thread(wt);
+  }
+
+  // If CompilerThreads ever become non-JavaThreads, add them here
+}
+
+void Threads::parallel_java_threads_do(ThreadClosure* tc) {
+  int cp = Threads::thread_claim_parity();
+  ALL_JAVA_THREADS(p) {
+    if (p->claim_oops_do(true, cp)) {
+      tc->do_thread(p);
+    }
+  }
+  // Thread claiming protocol requires us to claim the same interesting
+  // threads on all paths. Notably, Threads::possibly_parallel_threads_do
+  // claims all Java threads *and* the VMThread. To avoid breaking the
+  // claiming protocol, we have to claim VMThread on this path too, even
+  // if we do not apply the closure to the VMThread.
+  VMThread* vmt = VMThread::vm_thread();
+  (void)vmt->claim_oops_do(true, cp);
+}
+
+// The system initialization in the library has three phases.
+//
+// Phase 1: java.lang.System class initialization
+//     java.lang.System is a primordial class loaded and initialized
+//     by the VM early during startup.  java.lang.System.<clinit>
+//     only does registerNatives and keeps the rest of the class
+//     initialization work later until thread initialization completes.
+//
+//     System.initPhase1 initializes the system properties, the static
+//     fields in, out, and err. Set up java signal handlers, OS-specific
+//     system settings, and thread group of the main thread.
+static void call_initPhase1(TRAPS) {
+  Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
+  JavaValue result(T_VOID);
+  JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
+                                         vmSymbols::void_method_signature(), CHECK);
+}
+
+// Phase 2. Module system initialization
+//     This will initialize the module system.  Only java.base classes
+//     can be loaded until phase 2 completes.
+//
+//     Call System.initPhase2 after the compiler initialization and jsr292
+//     classes get initialized because module initialization runs a lot of java
+//     code, that for performance reasons, should be compiled.  Also, this will
+//     enable the startup code to use lambda and other language features in this
+//     phase and onward.
+//
+//     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
+static void call_initPhase2(TRAPS) {
+  TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
+
+  Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
+
+  JavaValue result(T_INT);
+  JavaCallArguments args;
+  args.push_int(DisplayVMOutputToStderr);
+  args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
+  JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
+                                         vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
+  if (result.get_jint() != JNI_OK) {
+    vm_exit_during_initialization(); // no message or exception
+  }
+
+  universe_post_module_init();
+}
+
+// Phase 3. final setup - set security manager, system class loader and TCCL
+//
+//     This will instantiate and set the security manager, set the system class
+//     loader as well as the thread context class loader.  The security manager
+//     and system class loader may be a custom class loaded from -Xbootclasspath/a,
+//     other modules or the application's classpath.
+static void call_initPhase3(TRAPS) {
+  Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
+  JavaValue result(T_VOID);
+  JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
+                                         vmSymbols::void_method_signature(), CHECK);
+}
+
+void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
+  TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
+
+  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
+    create_vm_init_libraries();
+  }
+
+  initialize_class(vmSymbols::java_lang_String(), CHECK);
+
+  // Inject CompactStrings value after the static initializers for String ran.
+  java_lang_String::set_compact_strings(CompactStrings);
+
+  // Initialize java_lang.System (needed before creating the thread)
+  initialize_class(vmSymbols::java_lang_System(), CHECK);
+  // The VM creates & returns objects of this class. Make sure it's initialized.
+  initialize_class(vmSymbols::java_lang_Class(), CHECK);
+  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
+  Handle thread_group = create_initial_thread_group(CHECK);
+  Universe::set_main_thread_group(thread_group());
+  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
+  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
+  main_thread->set_threadObj(thread_object);
+  // Set thread status to running since main thread has
+  // been started and running.
+  java_lang_Thread::set_thread_status(thread_object,
+                                      java_lang_Thread::RUNNABLE);
+
+  // The VM creates objects of this class.
+  initialize_class(vmSymbols::java_lang_Module(), CHECK);
+
+  // The VM preresolves methods to these classes. Make sure that they get initialized
+  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
+  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
+
+  // Phase 1 of the system initialization in the library, java.lang.System class initialization
+  call_initPhase1(CHECK);
+
+  // get the Java runtime name after java.lang.System is initialized
+  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
+  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
+
+  // an instance of OutOfMemory exception has been allocated earlier
+  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
+  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
+  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
+  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
+  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
+  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
+  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
+  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
+}
+
+void Threads::initialize_jsr292_core_classes(TRAPS) {
+  TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
+
+  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
+  initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
+  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
+  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
+}
+
+jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
+  extern void JDK_Version_init();
+
+  // Preinitialize version info.
+  VM_Version::early_initialize();
+
+  // Check version
+  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
+
+  // Initialize library-based TLS
+  ThreadLocalStorage::init();
+
+  // Initialize the output stream module
+  ostream_init();
+
+  // Process java launcher properties.
+  Arguments::process_sun_java_launcher_properties(args);
+
+  // Initialize the os module
+  os::init();
+
+  // Record VM creation timing statistics
+  TraceVmCreationTime create_vm_timer;
+  create_vm_timer.start();
+
+  // Initialize system properties.
+  Arguments::init_system_properties();
+
+  // So that JDK version can be used as a discriminator when parsing arguments
+  JDK_Version_init();
+
+  // Update/Initialize System properties after JDK version number is known
+  Arguments::init_version_specific_system_properties();
+
+  // Make sure to initialize log configuration *before* parsing arguments
+  LogConfiguration::initialize(create_vm_timer.begin_time());
+
+  // Parse arguments
+  jint parse_result = Arguments::parse(args);
+  if (parse_result != JNI_OK) return parse_result;
+
+  os::init_before_ergo();
+
+  jint ergo_result = Arguments::apply_ergo();
+  if (ergo_result != JNI_OK) return ergo_result;
+
+  // Final check of all ranges after ergonomics which may change values.
+  if (!CommandLineFlagRangeList::check_ranges()) {
+    return JNI_EINVAL;
+  }
+
+  // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
+  bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
+  if (!constraint_result) {
+    return JNI_EINVAL;
+  }
+
+  CommandLineFlagWriteableList::mark_startup();
+
+  if (PauseAtStartup) {
+    os::pause();
+  }
+
+  HOTSPOT_VM_INIT_BEGIN();
+
+  // Timing (must come after argument parsing)
+  TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
+
+  // Initialize the os module after parsing the args
+  jint os_init_2_result = os::init_2();
+  if (os_init_2_result != JNI_OK) return os_init_2_result;
+
+  jint adjust_after_os_result = Arguments::adjust_after_os();
+  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
+
+  // Initialize output stream logging
+  ostream_init_log();
+
+  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
+  // Must be before create_vm_init_agents()
+  if (Arguments::init_libraries_at_startup()) {
+    convert_vm_init_libraries_to_agents();
+  }
+
+  // Launch -agentlib/-agentpath and converted -Xrun agents
+  if (Arguments::init_agents_at_startup()) {
+    create_vm_init_agents();
+  }
+
+  // Initialize Threads state
+  _thread_list = NULL;
+  _number_of_threads = 0;
+  _number_of_non_daemon_threads = 0;
+
+  // Initialize global data structures and create system classes in heap
+  vm_init_globals();
+
+#if INCLUDE_JVMCI
+  if (JVMCICounterSize > 0) {
+    JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
+    memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
+  } else {
+    JavaThread::_jvmci_old_thread_counters = NULL;
+  }
+#endif // INCLUDE_JVMCI
+
+  // Attach the main thread to this os thread
+  JavaThread* main_thread = new JavaThread();
+  main_thread->set_thread_state(_thread_in_vm);
+  main_thread->initialize_thread_current();
+  // must do this before set_active_handles
+  main_thread->record_stack_base_and_size();
+  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
+
+  if (!main_thread->set_as_starting_thread()) {
+    vm_shutdown_during_initialization(
+                                      "Failed necessary internal allocation. Out of swap space");
+    delete main_thread;
+    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
+    return JNI_ENOMEM;
+  }
+
+  // Enable guard page *after* os::create_main_thread(), otherwise it would
+  // crash Linux VM, see notes in os_linux.cpp.
+  main_thread->create_stack_guard_pages();
+
+  // Initialize Java-Level synchronization subsystem
+  ObjectMonitor::Initialize();
+
+  // Initialize global modules
+  jint status = init_globals();
+  if (status != JNI_OK) {
+    delete main_thread;
+    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
+    return status;
+  }
+
+  if (TRACE_INITIALIZE() != JNI_OK) {
+    vm_exit_during_initialization("Failed to initialize tracing backend");
+  }
+
+  // Should be done after the heap is fully created
+  main_thread->cache_global_variables();
+
+  HandleMark hm;
+
+  { MutexLocker mu(Threads_lock);
+    Threads::add(main_thread);
+  }
+
+  // Any JVMTI raw monitors entered in onload will transition into
+  // real raw monitor. VM is setup enough here for raw monitor enter.
+  JvmtiExport::transition_pending_onload_raw_monitors();
+
+  // Create the VMThread
+  { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
+
+  VMThread::create();
+    Thread* vmthread = VMThread::vm_thread();
+
+    if (!os::create_thread(vmthread, os::vm_thread)) {
+      vm_exit_during_initialization("Cannot create VM thread. "
+                                    "Out of system resources.");
+    }
+
+    // Wait for the VM thread to become ready, and VMThread::run to initialize
+    // Monitors can have spurious returns, must always check another state flag
+    {
+      MutexLocker ml(Notify_lock);
+      os::start_thread(vmthread);
+      while (vmthread->active_handles() == NULL) {
+        Notify_lock->wait();
+      }
+    }
+  }
+
+  assert(Universe::is_fully_initialized(), "not initialized");
+  if (VerifyDuringStartup) {
+    // Make sure we're starting with a clean slate.
+    VM_Verify verify_op;
+    VMThread::execute(&verify_op);
+  }
+
+  Thread* THREAD = Thread::current();
+
+  // Always call even when there are not JVMTI environments yet, since environments
+  // may be attached late and JVMTI must track phases of VM execution
+  JvmtiExport::enter_early_start_phase();
+
+  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
+  JvmtiExport::post_early_vm_start();
+
+  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
+
+  // We need this for ClassDataSharing - the initial vm.info property is set
+  // with the default value of CDS "sharing" which may be reset through
+  // command line options.
+  reset_vm_info_property(CHECK_JNI_ERR);
+
+  quicken_jni_functions();
+
+  // No more stub generation allowed after that point.
+  StubCodeDesc::freeze();
+
+  // Set flag that basic initialization has completed. Used by exceptions and various
+  // debug stuff, that does not work until all basic classes have been initialized.
+  set_init_completed();
+
+  LogConfiguration::post_initialize();
+  Metaspace::post_initialize();
+
+  HOTSPOT_VM_INIT_END();
+
+  // record VM initialization completion time
+#if INCLUDE_MANAGEMENT
+  Management::record_vm_init_completed();
+#endif // INCLUDE_MANAGEMENT
+
+  // Signal Dispatcher needs to be started before VMInit event is posted
+  os::signal_init(CHECK_JNI_ERR);
+
+  // Start Attach Listener if +StartAttachListener or it can't be started lazily
+  if (!DisableAttachMechanism) {
+    AttachListener::vm_start();
+    if (StartAttachListener || AttachListener::init_at_startup()) {
+      AttachListener::init();
+    }
+  }
+
+  // Launch -Xrun agents
+  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
+  // back-end can launch with -Xdebug -Xrunjdwp.
+  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
+    create_vm_init_libraries();
+  }
+
+  if (CleanChunkPoolAsync) {
+    Chunk::start_chunk_pool_cleaner_task();
+  }
+
+  // initialize compiler(s)
+#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
+  CompileBroker::compilation_init(CHECK_JNI_ERR);
+#endif
+
+  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
+  // It is done after compilers are initialized, because otherwise compilations of
+  // signature polymorphic MH intrinsics can be missed
+  // (see SystemDictionary::find_method_handle_intrinsic).
+  initialize_jsr292_core_classes(CHECK_JNI_ERR);
+
+  // This will initialize the module system.  Only java.base classes can be
+  // loaded until phase 2 completes
+  call_initPhase2(CHECK_JNI_ERR);
+
+  // Always call even when there are not JVMTI environments yet, since environments
+  // may be attached late and JVMTI must track phases of VM execution
+  JvmtiExport::enter_start_phase();
+
+  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
+  JvmtiExport::post_vm_start();
+
+  // Final system initialization including security manager and system class loader
+  call_initPhase3(CHECK_JNI_ERR);
+
+  // cache the system class loader
+  SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
+
+#if INCLUDE_JVMCI
+  if (EnableJVMCI) {
+    // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
+    // The JVMCI Java initialization code will read this flag and
+    // do the printing if it's set.
+    bool init = JVMCIPrintProperties;
+
+    if (!init) {
+      // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
+      // compilations via JVMCI will not actually block until JVMCI is initialized.
+      init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
+    }
+
+    if (init) {
+      JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
+    }
+  }
+#endif
+
+  // Always call even when there are not JVMTI environments yet, since environments
+  // may be attached late and JVMTI must track phases of VM execution
+  JvmtiExport::enter_live_phase();
+
+  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
+  JvmtiExport::post_vm_initialized();
+
+  if (TRACE_START() != JNI_OK) {
+    vm_exit_during_initialization("Failed to start tracing backend.");
+  }
+
+#if INCLUDE_MANAGEMENT
+  Management::initialize(THREAD);
+
+  if (HAS_PENDING_EXCEPTION) {
+    // management agent fails to start possibly due to
+    // configuration problem and is responsible for printing
+    // stack trace if appropriate. Simply exit VM.
+    vm_exit(1);
+  }
+#endif // INCLUDE_MANAGEMENT
+
+  if (MemProfiling)                   MemProfiler::engage();
+  StatSampler::engage();
+  if (CheckJNICalls)                  JniPeriodicChecker::engage();
+
+  BiasedLocking::init();
+
+#if INCLUDE_RTM_OPT
+  RTMLockingCounters::init();
+#endif
+
+  if (JDK_Version::current().post_vm_init_hook_enabled()) {
+    call_postVMInitHook(THREAD);
+    // The Java side of PostVMInitHook.run must deal with all
+    // exceptions and provide means of diagnosis.
+    if (HAS_PENDING_EXCEPTION) {
+      CLEAR_PENDING_EXCEPTION;
+    }
+  }
+
+  {
+    MutexLocker ml(PeriodicTask_lock);
+    // Make sure the WatcherThread can be started by WatcherThread::start()
+    // or by dynamic enrollment.
+    WatcherThread::make_startable();
+    // Start up the WatcherThread if there are any periodic tasks
+    // NOTE:  All PeriodicTasks should be registered by now. If they
+    //   aren't, late joiners might appear to start slowly (we might
+    //   take a while to process their first tick).
+    if (PeriodicTask::num_tasks() > 0) {
+      WatcherThread::start();
+    }
+  }
+
+  create_vm_timer.end();
+#ifdef ASSERT
+  _vm_complete = true;
+#endif
+
+  if (DumpSharedSpaces) {
+    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
+    ShouldNotReachHere();
+  }
+
+  return JNI_OK;
+}
+
+// type for the Agent_OnLoad and JVM_OnLoad entry points
+extern "C" {
+  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
+}
+// Find a command line agent library and return its entry point for
+//         -agentlib:  -agentpath:   -Xrun
+// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
+static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
+                                    const char *on_load_symbols[],
+                                    size_t num_symbol_entries) {
+  OnLoadEntry_t on_load_entry = NULL;
+  void *library = NULL;
+
+  if (!agent->valid()) {
+    char buffer[JVM_MAXPATHLEN];
+    char ebuf[1024] = "";
+    const char *name = agent->name();
+    const char *msg = "Could not find agent library ";
+
+    // First check to see if agent is statically linked into executable
+    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
+      library = agent->os_lib();
+    } else if (agent->is_absolute_path()) {
+      library = os::dll_load(name, ebuf, sizeof ebuf);
+      if (library == NULL) {
+        const char *sub_msg = " in absolute path, with error: ";
+        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
+        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
+        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
+        // If we can't find the agent, exit.
+        vm_exit_during_initialization(buf, NULL);
+        FREE_C_HEAP_ARRAY(char, buf);
+      }
+    } else {
+      // Try to load the agent from the standard dll directory
+      if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
+                             name)) {
+        library = os::dll_load(buffer, ebuf, sizeof ebuf);
+      }
+      if (library == NULL) { // Try the library path directory.
+        if (os::dll_build_name(buffer, sizeof(buffer), name)) {
+          library = os::dll_load(buffer, ebuf, sizeof ebuf);
+        }
+        if (library == NULL) {
+          const char *sub_msg = " on the library path, with error: ";
+          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
+          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
+          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
+          // If we can't find the agent, exit.
+          vm_exit_during_initialization(buf, NULL);
+          FREE_C_HEAP_ARRAY(char, buf);
+        }
+      }
+    }
+    agent->set_os_lib(library);
+    agent->set_valid();
+  }
+
+  // Find the OnLoad function.
+  on_load_entry =
+    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
+                                                          false,
+                                                          on_load_symbols,
+                                                          num_symbol_entries));
+  return on_load_entry;
+}
+
+// Find the JVM_OnLoad entry point
+static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
+  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
+  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
+}
+
+// Find the Agent_OnLoad entry point
+static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
+  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
+  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
+}
+
+// For backwards compatibility with -Xrun
+// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
+// treated like -agentpath:
+// Must be called before agent libraries are created
+void Threads::convert_vm_init_libraries_to_agents() {
+  AgentLibrary* agent;
+  AgentLibrary* next;
+
+  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
+    next = agent->next();  // cache the next agent now as this agent may get moved off this list
+    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
+
+    // If there is an JVM_OnLoad function it will get called later,
+    // otherwise see if there is an Agent_OnLoad
+    if (on_load_entry == NULL) {
+      on_load_entry = lookup_agent_on_load(agent);
+      if (on_load_entry != NULL) {
+        // switch it to the agent list -- so that Agent_OnLoad will be called,
+        // JVM_OnLoad won't be attempted and Agent_OnUnload will
+        Arguments::convert_library_to_agent(agent);
+      } else {
+        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
+      }
+    }
+  }
+}
+
+// Create agents for -agentlib:  -agentpath:  and converted -Xrun
+// Invokes Agent_OnLoad
+// Called very early -- before JavaThreads exist
+void Threads::create_vm_init_agents() {
+  extern struct JavaVM_ main_vm;
+  AgentLibrary* agent;
+
+  JvmtiExport::enter_onload_phase();
+
+  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
+    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
+
+    if (on_load_entry != NULL) {
+      // Invoke the Agent_OnLoad function
+      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
+      if (err != JNI_OK) {
+        vm_exit_during_initialization("agent library failed to init", agent->name());
+      }
+    } else {
+      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
+    }
+  }
+  JvmtiExport::enter_primordial_phase();
+}
+
+extern "C" {
+  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
+}
+
+void Threads::shutdown_vm_agents() {
+  // Send any Agent_OnUnload notifications
+  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
+  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
+  extern struct JavaVM_ main_vm;
+  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
+
+    // Find the Agent_OnUnload function.
+    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
+                                                   os::find_agent_function(agent,
+                                                   false,
+                                                   on_unload_symbols,
+                                                   num_symbol_entries));
+
+    // Invoke the Agent_OnUnload function
+    if (unload_entry != NULL) {
+      JavaThread* thread = JavaThread::current();
+      ThreadToNativeFromVM ttn(thread);
+      HandleMark hm(thread);
+      (*unload_entry)(&main_vm);
+    }
+  }
+}
+
+// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
+// Invokes JVM_OnLoad
+void Threads::create_vm_init_libraries() {
+  extern struct JavaVM_ main_vm;
+  AgentLibrary* agent;
+
+  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
+    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
+
+    if (on_load_entry != NULL) {
+      // Invoke the JVM_OnLoad function
+      JavaThread* thread = JavaThread::current();
+      ThreadToNativeFromVM ttn(thread);
+      HandleMark hm(thread);
+      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
+      if (err != JNI_OK) {
+        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
+      }
+    } else {
+      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
+    }
+  }
+}
+
+JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
+  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
+
+  JavaThread* java_thread = NULL;
+  // Sequential search for now.  Need to do better optimization later.
+  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
+    oop tobj = thread->threadObj();
+    if (!thread->is_exiting() &&
+        tobj != NULL &&
+        java_tid == java_lang_Thread::thread_id(tobj)) {
+      java_thread = thread;
+      break;
+    }
+  }
+  return java_thread;
+}
+
+
+// Last thread running calls java.lang.Shutdown.shutdown()
+void JavaThread::invoke_shutdown_hooks() {
+  HandleMark hm(this);
+
+  // We could get here with a pending exception, if so clear it now.
+  if (this->has_pending_exception()) {
+    this->clear_pending_exception();
+  }
+
+  EXCEPTION_MARK;
+  Klass* shutdown_klass =
+    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
+                                      THREAD);
+  if (shutdown_klass != NULL) {
+    // SystemDictionary::resolve_or_null will return null if there was
+    // an exception.  If we cannot load the Shutdown class, just don't
+    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
+    // and finalizers (if runFinalizersOnExit is set) won't be run.
+    // Note that if a shutdown hook was registered or runFinalizersOnExit
+    // was called, the Shutdown class would have already been loaded
+    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
+    JavaValue result(T_VOID);
+    JavaCalls::call_static(&result,
+                           shutdown_klass,
+                           vmSymbols::shutdown_method_name(),
+                           vmSymbols::void_method_signature(),
+                           THREAD);
+  }
+  CLEAR_PENDING_EXCEPTION;
+}
+
+// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
+// the program falls off the end of main(). Another VM exit path is through
+// vm_exit() when the program calls System.exit() to return a value or when
+// there is a serious error in VM. The two shutdown paths are not exactly
+// the same, but they share Shutdown.shutdown() at Java level and before_exit()
+// and VM_Exit op at VM level.
+//
+// Shutdown sequence:
+//   + Shutdown native memory tracking if it is on
+//   + Wait until we are the last non-daemon thread to execute
+//     <-- every thing is still working at this moment -->
+//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
+//        shutdown hooks, run finalizers if finalization-on-exit
+//   + Call before_exit(), prepare for VM exit
+//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
+//        currently the only user of this mechanism is File.deleteOnExit())
+//      > stop StatSampler, watcher thread, CMS threads,
+//        post thread end and vm death events to JVMTI,
+//        stop signal thread
+//   + Call JavaThread::exit(), it will:
+//      > release JNI handle blocks, remove stack guard pages
+//      > remove this thread from Threads list
+//     <-- no more Java code from this thread after this point -->
+//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
+//     the compiler threads at safepoint
+//     <-- do not use anything that could get blocked by Safepoint -->
+//   + Disable tracing at JNI/JVM barriers
+//   + Set _vm_exited flag for threads that are still running native code
+//   + Delete this thread
+//   + Call exit_globals()
+//      > deletes tty
+//      > deletes PerfMemory resources
+//   + Return to caller
+
+bool Threads::destroy_vm() {
+  JavaThread* thread = JavaThread::current();
+
+#ifdef ASSERT
+  _vm_complete = false;
+#endif
+  // Wait until we are the last non-daemon thread to execute
+  { MutexLocker nu(Threads_lock);
+    while (Threads::number_of_non_daemon_threads() > 1)
+      // This wait should make safepoint checks, wait without a timeout,
+      // and wait as a suspend-equivalent condition.
+      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
+                         Mutex::_as_suspend_equivalent_flag);
+  }
+
+  // Hang forever on exit if we are reporting an error.
+  if (ShowMessageBoxOnError && VMError::is_error_reported()) {
+    os::infinite_sleep();
+  }
+  os::wait_for_keypress_at_exit();
+
+  // run Java level shutdown hooks
+  thread->invoke_shutdown_hooks();
+
+  before_exit(thread);
+
+  thread->exit(true);
+
+  // Stop VM thread.
+  {
+    // 4945125 The vm thread comes to a safepoint during exit.
+    // GC vm_operations can get caught at the safepoint, and the
+    // heap is unparseable if they are caught. Grab the Heap_lock
+    // to prevent this. The GC vm_operations will not be able to
+    // queue until after the vm thread is dead. After this point,
+    // we'll never emerge out of the safepoint before the VM exits.
+
+    MutexLocker ml(Heap_lock);
+
+    VMThread::wait_for_vm_thread_exit();
+    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
+    VMThread::destroy();
+  }
+
+  // clean up ideal graph printers
+#if defined(COMPILER2) && !defined(PRODUCT)
+  IdealGraphPrinter::clean_up();
+#endif
+
+  // Now, all Java threads are gone except daemon threads. Daemon threads
+  // running Java code or in VM are stopped by the Safepoint. However,
+  // daemon threads executing native code are still running.  But they
+  // will be stopped at native=>Java/VM barriers. Note that we can't
+  // simply kill or suspend them, as it is inherently deadlock-prone.
+
+  VM_Exit::set_vm_exited();
+
+  notify_vm_shutdown();
+
+  delete thread;
+
+#if INCLUDE_JVMCI
+  if (JVMCICounterSize > 0) {
+    FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
+  }
+#endif
+
+  // exit_globals() will delete tty
+  exit_globals();
+
+  LogConfiguration::finalize();
+
+  return true;
+}
+
+
+jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
+  if (version == JNI_VERSION_1_1) return JNI_TRUE;
+  return is_supported_jni_version(version);
+}
+
+
+jboolean Threads::is_supported_jni_version(jint version) {
+  if (version == JNI_VERSION_1_2) return JNI_TRUE;
+  if (version == JNI_VERSION_1_4) return JNI_TRUE;
+  if (version == JNI_VERSION_1_6) return JNI_TRUE;
+  if (version == JNI_VERSION_1_8) return JNI_TRUE;
+  if (version == JNI_VERSION_9) return JNI_TRUE;
+  return JNI_FALSE;
+}
+
+
+void Threads::add(JavaThread* p, bool force_daemon) {
+  // The threads lock must be owned at this point
+  assert_locked_or_safepoint(Threads_lock);
+
+  // See the comment for this method in thread.hpp for its purpose and
+  // why it is called here.
+  p->initialize_queues();
+  p->set_next(_thread_list);
+  _thread_list = p;
+  _number_of_threads++;
+  oop threadObj = p->threadObj();
+  bool daemon = true;
+  // Bootstrapping problem: threadObj can be null for initial
+  // JavaThread (or for threads attached via JNI)
+  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
+    _number_of_non_daemon_threads++;
+    daemon = false;
+  }
+
+  ThreadService::add_thread(p, daemon);
+
+  // Possible GC point.
+  Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
+}
+
+void Threads::remove(JavaThread* p) {
+
+  // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
+  ObjectSynchronizer::omFlush(p);
+
+  // Extra scope needed for Thread_lock, so we can check
+  // that we do not remove thread without safepoint code notice
+  { MutexLocker ml(Threads_lock);
+
+    assert(includes(p), "p must be present");
+
+    JavaThread* current = _thread_list;
+    JavaThread* prev    = NULL;
+
+    while (current != p) {
+      prev    = current;
+      current = current->next();
+    }
+
+    if (prev) {
+      prev->set_next(current->next());
+    } else {
+      _thread_list = p->next();
+    }
+    _number_of_threads--;
+    oop threadObj = p->threadObj();
+    bool daemon = true;
+    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
+      _number_of_non_daemon_threads--;
+      daemon = false;
+
+      // Only one thread left, do a notify on the Threads_lock so a thread waiting
+      // on destroy_vm will wake up.
+      if (number_of_non_daemon_threads() == 1) {
+        Threads_lock->notify_all();
+      }
+    }
+    ThreadService::remove_thread(p, daemon);
+
+    // Make sure that safepoint code disregard this thread. This is needed since
+    // the thread might mess around with locks after this point. This can cause it
+    // to do callbacks into the safepoint code. However, the safepoint code is not aware
+    // of this thread since it is removed from the queue.
+    p->set_terminated_value();
+  } // unlock Threads_lock
+
+  // Since Events::log uses a lock, we grab it outside the Threads_lock
+  Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
+}
+
+// Threads_lock must be held when this is called (or must be called during a safepoint)
+bool Threads::includes(JavaThread* p) {
+  assert(Threads_lock->is_locked(), "sanity check");
+  ALL_JAVA_THREADS(q) {
+    if (q == p) {
+      return true;
+    }
+  }
+  return false;
+}
+
+// Operations on the Threads list for GC.  These are not explicitly locked,
+// but the garbage collector must provide a safe context for them to run.
+// In particular, these things should never be called when the Threads_lock
+// is held by some other thread. (Note: the Safepoint abstraction also
+// uses the Threads_lock to guarantee this property. It also makes sure that
+// all threads gets blocked when exiting or starting).
+
+void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
+  ALL_JAVA_THREADS(p) {
+    p->oops_do(f, cf);
+  }
+  VMThread::vm_thread()->oops_do(f, cf);
+}
+
+void Threads::change_thread_claim_parity() {
+  // Set the new claim parity.
+  assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
+         "Not in range.");
+  _thread_claim_parity++;
+  if (_thread_claim_parity == 3) _thread_claim_parity = 1;
+  assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
+         "Not in range.");
+}
+
+#ifdef ASSERT
+void Threads::assert_all_threads_claimed() {
+  ALL_JAVA_THREADS(p) {
+    const int thread_parity = p->oops_do_parity();
+    assert((thread_parity == _thread_claim_parity),
+           "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
+  }
+  VMThread* vmt = VMThread::vm_thread();
+  const int thread_parity = vmt->oops_do_parity();
+  assert((thread_parity == _thread_claim_parity),
+         "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
+}
+#endif // ASSERT
+
+void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
+  int cp = Threads::thread_claim_parity();
+  ALL_JAVA_THREADS(p) {
+    if (p->claim_oops_do(is_par, cp)) {
+      p->oops_do(f, cf);
+    }
+  }
+  VMThread* vmt = VMThread::vm_thread();
+  if (vmt->claim_oops_do(is_par, cp)) {
+    vmt->oops_do(f, cf);
+  }
+}
+
+#if INCLUDE_ALL_GCS
+// Used by ParallelScavenge
+void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
+  ALL_JAVA_THREADS(p) {
+    q->enqueue(new ThreadRootsTask(p));
+  }
+  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
+}
+
+// Used by Parallel Old
+void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
+  ALL_JAVA_THREADS(p) {
+    q->enqueue(new ThreadRootsMarkingTask(p));
+  }
+  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
+}
+#endif // INCLUDE_ALL_GCS
+
+void Threads::nmethods_do(CodeBlobClosure* cf) {
+  ALL_JAVA_THREADS(p) {
+    // This is used by the code cache sweeper to mark nmethods that are active
+    // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
+    // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
+    if(!p->is_Code_cache_sweeper_thread()) {
+      p->nmethods_do(cf);
+    }
+  }
+}
+
+void Threads::metadata_do(void f(Metadata*)) {
+  ALL_JAVA_THREADS(p) {
+    p->metadata_do(f);
+  }
+}
+
+class ThreadHandlesClosure : public ThreadClosure {
+  void (*_f)(Metadata*);
+ public:
+  ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
+  virtual void do_thread(Thread* thread) {
+    thread->metadata_handles_do(_f);
+  }
+};
+
+void Threads::metadata_handles_do(void f(Metadata*)) {
+  // Only walk the Handles in Thread.
+  ThreadHandlesClosure handles_closure(f);
+  threads_do(&handles_closure);
+}
+
+void Threads::deoptimized_wrt_marked_nmethods() {
+  ALL_JAVA_THREADS(p) {
+    p->deoptimized_wrt_marked_nmethods();
+  }
+}
+
+
+// Get count Java threads that are waiting to enter the specified monitor.
+GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
+                                                         address monitor,
+                                                         bool doLock) {
+  assert(doLock || SafepointSynchronize::is_at_safepoint(),
+         "must grab Threads_lock or be at safepoint");
+  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
+
+  int i = 0;
+  {
+    MutexLockerEx ml(doLock ? Threads_lock : NULL);
+    ALL_JAVA_THREADS(p) {
+      if (!p->can_call_java()) continue;
+
+      address pending = (address)p->current_pending_monitor();
+      if (pending == monitor) {             // found a match
+        if (i < count) result->append(p);   // save the first count matches
+        i++;
+      }
+    }
+  }
+  return result;
+}
+
+
+JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
+                                                      bool doLock) {
+  assert(doLock ||
+         Threads_lock->owned_by_self() ||
+         SafepointSynchronize::is_at_safepoint(),
+         "must grab Threads_lock or be at safepoint");
+
+  // NULL owner means not locked so we can skip the search
+  if (owner == NULL) return NULL;
+
+  {
+    MutexLockerEx ml(doLock ? Threads_lock : NULL);
+    ALL_JAVA_THREADS(p) {
+      // first, see if owner is the address of a Java thread
+      if (owner == (address)p) return p;
+    }
+  }
+  // Cannot assert on lack of success here since this function may be
+  // used by code that is trying to report useful problem information
+  // like deadlock detection.
+  if (UseHeavyMonitors) return NULL;
+
+  // If we didn't find a matching Java thread and we didn't force use of
+  // heavyweight monitors, then the owner is the stack address of the
+  // Lock Word in the owning Java thread's stack.
+  //
+  JavaThread* the_owner = NULL;
+  {
+    MutexLockerEx ml(doLock ? Threads_lock : NULL);
+    ALL_JAVA_THREADS(q) {
+      if (q->is_lock_owned(owner)) {
+        the_owner = q;
+        break;
+      }
+    }
+  }
+  // cannot assert on lack of success here; see above comment
+  return the_owner;
+}
+
+// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
+void Threads::print_on(outputStream* st, bool print_stacks,
+                       bool internal_format, bool print_concurrent_locks) {
+  char buf[32];
+  st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
+
+  st->print_cr("Full thread dump %s (%s %s):",
+               Abstract_VM_Version::vm_name(),
+               Abstract_VM_Version::vm_release(),
+               Abstract_VM_Version::vm_info_string());
+  st->cr();
+
+#if INCLUDE_SERVICES
+  // Dump concurrent locks
+  ConcurrentLocksDump concurrent_locks;
+  if (print_concurrent_locks) {
+    concurrent_locks.dump_at_safepoint();
+  }
+#endif // INCLUDE_SERVICES
+
+  ALL_JAVA_THREADS(p) {
+    ResourceMark rm;
+    p->print_on(st);
+    if (print_stacks) {
+      if (internal_format) {
+        p->trace_stack();
+      } else {
+        p->print_stack_on(st);
+      }
+    }
+    st->cr();
+#if INCLUDE_SERVICES
+    if (print_concurrent_locks) {
+      concurrent_locks.print_locks_on(p, st);
+    }
+#endif // INCLUDE_SERVICES
+  }
+
+  VMThread::vm_thread()->print_on(st);
+  st->cr();
+  Universe::heap()->print_gc_threads_on(st);
+  WatcherThread* wt = WatcherThread::watcher_thread();
+  if (wt != NULL) {
+    wt->print_on(st);
+    st->cr();
+  }
+  st->flush();
+}
+
+void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
+                             int buflen, bool* found_current) {
+  if (this_thread != NULL) {
+    bool is_current = (current == this_thread);
+    *found_current = *found_current || is_current;
+    st->print("%s", is_current ? "=>" : "  ");
+
+    st->print(PTR_FORMAT, p2i(this_thread));
+    st->print(" ");
+    this_thread->print_on_error(st, buf, buflen);
+    st->cr();
+  }
+}
+
+class PrintOnErrorClosure : public ThreadClosure {
+  outputStream* _st;
+  Thread* _current;
+  char* _buf;
+  int _buflen;
+  bool* _found_current;
+ public:
+  PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
+                      int buflen, bool* found_current) :
+   _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
+
+  virtual void do_thread(Thread* thread) {
+    Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
+  }
+};
+
+// Threads::print_on_error() is called by fatal error handler. It's possible
+// that VM is not at safepoint and/or current thread is inside signal handler.
+// Don't print stack trace, as the stack may not be walkable. Don't allocate
+// memory (even in resource area), it might deadlock the error handler.
+void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
+                             int buflen) {
+  bool found_current = false;
+  st->print_cr("Java Threads: ( => current thread )");
+  ALL_JAVA_THREADS(thread) {
+    print_on_error(thread, st, current, buf, buflen, &found_current);
+  }
+  st->cr();
+
+  st->print_cr("Other Threads:");
+  print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
+  print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
+
+  PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
+  Universe::heap()->gc_threads_do(&print_closure);
+
+  if (!found_current) {
+    st->cr();
+    st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
+    current->print_on_error(st, buf, buflen);
+    st->cr();
+  }
+  st->cr();
+  st->print_cr("Threads with active compile tasks:");
+  print_threads_compiling(st, buf, buflen);
+}
+
+void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
+  ALL_JAVA_THREADS(thread) {
+    if (thread->is_Compiler_thread()) {
+      CompilerThread* ct = (CompilerThread*) thread;
+      if (ct->task() != NULL) {
+        thread->print_name_on_error(st, buf, buflen);
+        ct->task()->print(st, NULL, true, true);
+      }
+    }
+  }
+}
+
+
+// Internal SpinLock and Mutex
+// Based on ParkEvent
+
+// Ad-hoc mutual exclusion primitives: SpinLock and Mux
+//
+// We employ SpinLocks _only for low-contention, fixed-length
+// short-duration critical sections where we're concerned
+// about native mutex_t or HotSpot Mutex:: latency.
+// The mux construct provides a spin-then-block mutual exclusion
+// mechanism.
+//
+// Testing has shown that contention on the ListLock guarding gFreeList
+// is common.  If we implement ListLock as a simple SpinLock it's common
+// for the JVM to devolve to yielding with little progress.  This is true
+// despite the fact that the critical sections protected by ListLock are
+// extremely short.
+//
+// TODO-FIXME: ListLock should be of type SpinLock.
+// We should make this a 1st-class type, integrated into the lock
+// hierarchy as leaf-locks.  Critically, the SpinLock structure
+// should have sufficient padding to avoid false-sharing and excessive
+// cache-coherency traffic.
+
+
+typedef volatile int SpinLockT;
+
+void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
+  if (Atomic::cmpxchg (1, adr, 0) == 0) {
+    return;   // normal fast-path return
+  }
+
+  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
+  TEVENT(SpinAcquire - ctx);
+  int ctr = 0;
+  int Yields = 0;
+  for (;;) {
+    while (*adr != 0) {
+      ++ctr;
+      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
+        if (Yields > 5) {
+          os::naked_short_sleep(1);
+        } else {
+          os::naked_yield();
+          ++Yields;
+        }
+      } else {
+        SpinPause();
+      }
+    }
+    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
+  }
+}
+
+void Thread::SpinRelease(volatile int * adr) {
+  assert(*adr != 0, "invariant");
+  OrderAccess::fence();      // guarantee at least release consistency.
+  // Roach-motel semantics.
+  // It's safe if subsequent LDs and STs float "up" into the critical section,
+  // but prior LDs and STs within the critical section can't be allowed
+  // to reorder or float past the ST that releases the lock.
+  // Loads and stores in the critical section - which appear in program
+  // order before the store that releases the lock - must also appear
+  // before the store that releases the lock in memory visibility order.
+  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
+  // the ST of 0 into the lock-word which releases the lock, so fence
+  // more than covers this on all platforms.
+  *adr = 0;
+}
+
+// muxAcquire and muxRelease:
+//
+// *  muxAcquire and muxRelease support a single-word lock-word construct.
+//    The LSB of the word is set IFF the lock is held.
+//    The remainder of the word points to the head of a singly-linked list
+//    of threads blocked on the lock.
+//
+// *  The current implementation of muxAcquire-muxRelease uses its own
+//    dedicated Thread._MuxEvent instance.  If we're interested in
+//    minimizing the peak number of extant ParkEvent instances then
+//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
+//    as certain invariants were satisfied.  Specifically, care would need
+//    to be taken with regards to consuming unpark() "permits".
+//    A safe rule of thumb is that a thread would never call muxAcquire()
+//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
+//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
+//    consume an unpark() permit intended for monitorenter, for instance.
+//    One way around this would be to widen the restricted-range semaphore
+//    implemented in park().  Another alternative would be to provide
+//    multiple instances of the PlatformEvent() for each thread.  One
+//    instance would be dedicated to muxAcquire-muxRelease, for instance.
+//
+// *  Usage:
+//    -- Only as leaf locks
+//    -- for short-term locking only as muxAcquire does not perform
+//       thread state transitions.
+//
+// Alternatives:
+// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
+//    but with parking or spin-then-park instead of pure spinning.
+// *  Use Taura-Oyama-Yonenzawa locks.
+// *  It's possible to construct a 1-0 lock if we encode the lockword as
+//    (List,LockByte).  Acquire will CAS the full lockword while Release
+//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
+//    acquiring threads use timers (ParkTimed) to detect and recover from
+//    the stranding window.  Thread/Node structures must be aligned on 256-byte
+//    boundaries by using placement-new.
+// *  Augment MCS with advisory back-link fields maintained with CAS().
+//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
+//    The validity of the backlinks must be ratified before we trust the value.
+//    If the backlinks are invalid the exiting thread must back-track through the
+//    the forward links, which are always trustworthy.
+// *  Add a successor indication.  The LockWord is currently encoded as
+//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
+//    to provide the usual futile-wakeup optimization.
+//    See RTStt for details.
+// *  Consider schedctl.sc_nopreempt to cover the critical section.
+//
+
+
+typedef volatile intptr_t MutexT;      // Mux Lock-word
+enum MuxBits { LOCKBIT = 1 };
+
+void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
+  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
+  if (w == 0) return;
+  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
+    return;
+  }
+
+  TEVENT(muxAcquire - Contention);
+  ParkEvent * const Self = Thread::current()->_MuxEvent;
+  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
+  for (;;) {
+    int its = (os::is_MP() ? 100 : 0) + 1;
+
+    // Optional spin phase: spin-then-park strategy
+    while (--its >= 0) {
+      w = *Lock;
+      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
+        return;
+      }
+    }
+
+    Self->reset();
+    Self->OnList = intptr_t(Lock);
+    // The following fence() isn't _strictly necessary as the subsequent
+    // CAS() both serializes execution and ratifies the fetched *Lock value.
+    OrderAccess::fence();
+    for (;;) {
+      w = *Lock;
+      if ((w & LOCKBIT) == 0) {
+        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
+          Self->OnList = 0;   // hygiene - allows stronger asserts
+          return;
+        }
+        continue;      // Interference -- *Lock changed -- Just retry
+      }
+      assert(w & LOCKBIT, "invariant");
+      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
+      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
+    }
+
+    while (Self->OnList != 0) {
+      Self->park();
+    }
+  }
+}
+
+void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
+  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
+  if (w == 0) return;
+  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
+    return;
+  }
+
+  TEVENT(muxAcquire - Contention);
+  ParkEvent * ReleaseAfter = NULL;
+  if (ev == NULL) {
+    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
+  }
+  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
+  for (;;) {
+    guarantee(ev->OnList == 0, "invariant");
+    int its = (os::is_MP() ? 100 : 0) + 1;
+
+    // Optional spin phase: spin-then-park strategy
+    while (--its >= 0) {
+      w = *Lock;
+      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
+        if (ReleaseAfter != NULL) {
+          ParkEvent::Release(ReleaseAfter);
+        }
+        return;
+      }
+    }
+
+    ev->reset();
+    ev->OnList = intptr_t(Lock);
+    // The following fence() isn't _strictly necessary as the subsequent
+    // CAS() both serializes execution and ratifies the fetched *Lock value.
+    OrderAccess::fence();
+    for (;;) {
+      w = *Lock;
+      if ((w & LOCKBIT) == 0) {
+        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
+          ev->OnList = 0;
+          // We call ::Release while holding the outer lock, thus
+          // artificially lengthening the critical section.
+          // Consider deferring the ::Release() until the subsequent unlock(),
+          // after we've dropped the outer lock.
+          if (ReleaseAfter != NULL) {
+            ParkEvent::Release(ReleaseAfter);
+          }
+          return;
+        }
+        continue;      // Interference -- *Lock changed -- Just retry
+      }
+      assert(w & LOCKBIT, "invariant");
+      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
+      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
+    }
+
+    while (ev->OnList != 0) {
+      ev->park();
+    }
+  }
+}
+
+// Release() must extract a successor from the list and then wake that thread.
+// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
+// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
+// Release() would :
+// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
+// (B) Extract a successor from the private list "in-hand"
+// (C) attempt to CAS() the residual back into *Lock over null.
+//     If there were any newly arrived threads and the CAS() would fail.
+//     In that case Release() would detach the RATs, re-merge the list in-hand
+//     with the RATs and repeat as needed.  Alternately, Release() might
+//     detach and extract a successor, but then pass the residual list to the wakee.
+//     The wakee would be responsible for reattaching and remerging before it
+//     competed for the lock.
+//
+// Both "pop" and DMR are immune from ABA corruption -- there can be
+// multiple concurrent pushers, but only one popper or detacher.
+// This implementation pops from the head of the list.  This is unfair,
+// but tends to provide excellent throughput as hot threads remain hot.
+// (We wake recently run threads first).
+//
+// All paths through muxRelease() will execute a CAS.
+// Release consistency -- We depend on the CAS in muxRelease() to provide full
+// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
+// executed within the critical section are complete and globally visible before the
+// store (CAS) to the lock-word that releases the lock becomes globally visible.
+void Thread::muxRelease(volatile intptr_t * Lock)  {
+  for (;;) {
+    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
+    assert(w & LOCKBIT, "invariant");
+    if (w == LOCKBIT) return;
+    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
+    assert(List != NULL, "invariant");
+    assert(List->OnList == intptr_t(Lock), "invariant");
+    ParkEvent * const nxt = List->ListNext;
+    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
+
+    // The following CAS() releases the lock and pops the head element.
+    // The CAS() also ratifies the previously fetched lock-word value.
+    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
+      continue;
+    }
+    List->OnList = 0;
+    OrderAccess::fence();
+    List->unpark();
+    return;
+  }
+}
+
+
+void Threads::verify() {
+  ALL_JAVA_THREADS(p) {
+    p->verify();
+  }
+  VMThread* thread = VMThread::vm_thread();
+  if (thread != NULL) thread->verify();
+}