src/hotspot/share/runtime/thread.cpp
changeset 47216 71c04702a3d5
parent 47106 bed18a111b90
child 47600 5c8607bb3d2d
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "classfile/classLoader.hpp"
       
    27 #include "classfile/javaClasses.hpp"
       
    28 #include "classfile/moduleEntry.hpp"
       
    29 #include "classfile/systemDictionary.hpp"
       
    30 #include "classfile/vmSymbols.hpp"
       
    31 #include "code/codeCache.hpp"
       
    32 #include "code/scopeDesc.hpp"
       
    33 #include "compiler/compileBroker.hpp"
       
    34 #include "compiler/compileTask.hpp"
       
    35 #include "gc/shared/gcId.hpp"
       
    36 #include "gc/shared/gcLocker.inline.hpp"
       
    37 #include "gc/shared/workgroup.hpp"
       
    38 #include "interpreter/interpreter.hpp"
       
    39 #include "interpreter/linkResolver.hpp"
       
    40 #include "interpreter/oopMapCache.hpp"
       
    41 #include "jvmtifiles/jvmtiEnv.hpp"
       
    42 #include "logging/log.hpp"
       
    43 #include "logging/logConfiguration.hpp"
       
    44 #include "logging/logStream.hpp"
       
    45 #include "memory/metaspaceShared.hpp"
       
    46 #include "memory/oopFactory.hpp"
       
    47 #include "memory/resourceArea.hpp"
       
    48 #include "memory/universe.inline.hpp"
       
    49 #include "oops/instanceKlass.hpp"
       
    50 #include "oops/objArrayOop.hpp"
       
    51 #include "oops/oop.inline.hpp"
       
    52 #include "oops/symbol.hpp"
       
    53 #include "oops/verifyOopClosure.hpp"
       
    54 #include "prims/jvm.h"
       
    55 #include "prims/jvm_misc.hpp"
       
    56 #include "prims/jvmtiExport.hpp"
       
    57 #include "prims/jvmtiThreadState.hpp"
       
    58 #include "prims/privilegedStack.hpp"
       
    59 #include "runtime/arguments.hpp"
       
    60 #include "runtime/atomic.hpp"
       
    61 #include "runtime/biasedLocking.hpp"
       
    62 #include "runtime/commandLineFlagConstraintList.hpp"
       
    63 #include "runtime/commandLineFlagWriteableList.hpp"
       
    64 #include "runtime/commandLineFlagRangeList.hpp"
       
    65 #include "runtime/deoptimization.hpp"
       
    66 #include "runtime/frame.inline.hpp"
       
    67 #include "runtime/globals.hpp"
       
    68 #include "runtime/init.hpp"
       
    69 #include "runtime/interfaceSupport.hpp"
       
    70 #include "runtime/java.hpp"
       
    71 #include "runtime/javaCalls.hpp"
       
    72 #include "runtime/jniPeriodicChecker.hpp"
       
    73 #include "runtime/timerTrace.hpp"
       
    74 #include "runtime/memprofiler.hpp"
       
    75 #include "runtime/mutexLocker.hpp"
       
    76 #include "runtime/objectMonitor.hpp"
       
    77 #include "runtime/orderAccess.inline.hpp"
       
    78 #include "runtime/osThread.hpp"
       
    79 #include "runtime/safepoint.hpp"
       
    80 #include "runtime/sharedRuntime.hpp"
       
    81 #include "runtime/statSampler.hpp"
       
    82 #include "runtime/stubRoutines.hpp"
       
    83 #include "runtime/sweeper.hpp"
       
    84 #include "runtime/task.hpp"
       
    85 #include "runtime/thread.inline.hpp"
       
    86 #include "runtime/threadCritical.hpp"
       
    87 #include "runtime/vframe.hpp"
       
    88 #include "runtime/vframeArray.hpp"
       
    89 #include "runtime/vframe_hp.hpp"
       
    90 #include "runtime/vmThread.hpp"
       
    91 #include "runtime/vm_operations.hpp"
       
    92 #include "runtime/vm_version.hpp"
       
    93 #include "services/attachListener.hpp"
       
    94 #include "services/management.hpp"
       
    95 #include "services/memTracker.hpp"
       
    96 #include "services/threadService.hpp"
       
    97 #include "trace/traceMacros.hpp"
       
    98 #include "trace/tracing.hpp"
       
    99 #include "utilities/align.hpp"
       
   100 #include "utilities/defaultStream.hpp"
       
   101 #include "utilities/dtrace.hpp"
       
   102 #include "utilities/events.hpp"
       
   103 #include "utilities/macros.hpp"
       
   104 #include "utilities/preserveException.hpp"
       
   105 #include "utilities/vmError.hpp"
       
   106 #if INCLUDE_ALL_GCS
       
   107 #include "gc/cms/concurrentMarkSweepThread.hpp"
       
   108 #include "gc/g1/concurrentMarkThread.inline.hpp"
       
   109 #include "gc/parallel/pcTasks.hpp"
       
   110 #endif // INCLUDE_ALL_GCS
       
   111 #if INCLUDE_JVMCI
       
   112 #include "jvmci/jvmciCompiler.hpp"
       
   113 #include "jvmci/jvmciRuntime.hpp"
       
   114 #include "logging/logHandle.hpp"
       
   115 #endif
       
   116 #ifdef COMPILER1
       
   117 #include "c1/c1_Compiler.hpp"
       
   118 #endif
       
   119 #ifdef COMPILER2
       
   120 #include "opto/c2compiler.hpp"
       
   121 #include "opto/idealGraphPrinter.hpp"
       
   122 #endif
       
   123 #if INCLUDE_RTM_OPT
       
   124 #include "runtime/rtmLocking.hpp"
       
   125 #endif
       
   126 
       
   127 // Initialization after module runtime initialization
       
   128 void universe_post_module_init();  // must happen after call_initPhase2
       
   129 
       
   130 #ifdef DTRACE_ENABLED
       
   131 
       
   132 // Only bother with this argument setup if dtrace is available
       
   133 
       
   134   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
       
   135   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
       
   136 
       
   137   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
       
   138     {                                                                      \
       
   139       ResourceMark rm(this);                                               \
       
   140       int len = 0;                                                         \
       
   141       const char* name = (javathread)->get_thread_name();                  \
       
   142       len = strlen(name);                                                  \
       
   143       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
       
   144         (char *) name, len,                                                \
       
   145         java_lang_Thread::thread_id((javathread)->threadObj()),            \
       
   146         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
       
   147         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
       
   148     }
       
   149 
       
   150 #else //  ndef DTRACE_ENABLED
       
   151 
       
   152   #define DTRACE_THREAD_PROBE(probe, javathread)
       
   153 
       
   154 #endif // ndef DTRACE_ENABLED
       
   155 
       
   156 #ifndef USE_LIBRARY_BASED_TLS_ONLY
       
   157 // Current thread is maintained as a thread-local variable
       
   158 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
       
   159 #endif
       
   160 // Class hierarchy
       
   161 // - Thread
       
   162 //   - VMThread
       
   163 //   - WatcherThread
       
   164 //   - ConcurrentMarkSweepThread
       
   165 //   - JavaThread
       
   166 //     - CompilerThread
       
   167 
       
   168 // ======= Thread ========
       
   169 // Support for forcing alignment of thread objects for biased locking
       
   170 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
       
   171   if (UseBiasedLocking) {
       
   172     const int alignment = markOopDesc::biased_lock_alignment;
       
   173     size_t aligned_size = size + (alignment - sizeof(intptr_t));
       
   174     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
       
   175                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
       
   176                                                          AllocFailStrategy::RETURN_NULL);
       
   177     void* aligned_addr     = align_up(real_malloc_addr, alignment);
       
   178     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
       
   179            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
       
   180            "JavaThread alignment code overflowed allocated storage");
       
   181     if (aligned_addr != real_malloc_addr) {
       
   182       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
       
   183                               p2i(real_malloc_addr),
       
   184                               p2i(aligned_addr));
       
   185     }
       
   186     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
       
   187     return aligned_addr;
       
   188   } else {
       
   189     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
       
   190                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
       
   191   }
       
   192 }
       
   193 
       
   194 void Thread::operator delete(void* p) {
       
   195   if (UseBiasedLocking) {
       
   196     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
       
   197     FreeHeap(real_malloc_addr);
       
   198   } else {
       
   199     FreeHeap(p);
       
   200   }
       
   201 }
       
   202 
       
   203 
       
   204 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
       
   205 // JavaThread
       
   206 
       
   207 
       
   208 Thread::Thread() {
       
   209   // stack and get_thread
       
   210   set_stack_base(NULL);
       
   211   set_stack_size(0);
       
   212   set_self_raw_id(0);
       
   213   set_lgrp_id(-1);
       
   214   DEBUG_ONLY(clear_suspendible_thread();)
       
   215 
       
   216   // allocated data structures
       
   217   set_osthread(NULL);
       
   218   set_resource_area(new (mtThread)ResourceArea());
       
   219   DEBUG_ONLY(_current_resource_mark = NULL;)
       
   220   set_handle_area(new (mtThread) HandleArea(NULL));
       
   221   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
       
   222   set_active_handles(NULL);
       
   223   set_free_handle_block(NULL);
       
   224   set_last_handle_mark(NULL);
       
   225 
       
   226   // This initial value ==> never claimed.
       
   227   _oops_do_parity = 0;
       
   228 
       
   229   // the handle mark links itself to last_handle_mark
       
   230   new HandleMark(this);
       
   231 
       
   232   // plain initialization
       
   233   debug_only(_owned_locks = NULL;)
       
   234   debug_only(_allow_allocation_count = 0;)
       
   235   NOT_PRODUCT(_allow_safepoint_count = 0;)
       
   236   NOT_PRODUCT(_skip_gcalot = false;)
       
   237   _jvmti_env_iteration_count = 0;
       
   238   set_allocated_bytes(0);
       
   239   _vm_operation_started_count = 0;
       
   240   _vm_operation_completed_count = 0;
       
   241   _current_pending_monitor = NULL;
       
   242   _current_pending_monitor_is_from_java = true;
       
   243   _current_waiting_monitor = NULL;
       
   244   _num_nested_signal = 0;
       
   245   omFreeList = NULL;
       
   246   omFreeCount = 0;
       
   247   omFreeProvision = 32;
       
   248   omInUseList = NULL;
       
   249   omInUseCount = 0;
       
   250 
       
   251 #ifdef ASSERT
       
   252   _visited_for_critical_count = false;
       
   253 #endif
       
   254 
       
   255   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
       
   256                          Monitor::_safepoint_check_sometimes);
       
   257   _suspend_flags = 0;
       
   258 
       
   259   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
       
   260   _hashStateX = os::random();
       
   261   _hashStateY = 842502087;
       
   262   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
       
   263   _hashStateW = 273326509;
       
   264 
       
   265   _OnTrap   = 0;
       
   266   _schedctl = NULL;
       
   267   _Stalled  = 0;
       
   268   _TypeTag  = 0x2BAD;
       
   269 
       
   270   // Many of the following fields are effectively final - immutable
       
   271   // Note that nascent threads can't use the Native Monitor-Mutex
       
   272   // construct until the _MutexEvent is initialized ...
       
   273   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
       
   274   // we might instead use a stack of ParkEvents that we could provision on-demand.
       
   275   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
       
   276   // and ::Release()
       
   277   _ParkEvent   = ParkEvent::Allocate(this);
       
   278   _SleepEvent  = ParkEvent::Allocate(this);
       
   279   _MutexEvent  = ParkEvent::Allocate(this);
       
   280   _MuxEvent    = ParkEvent::Allocate(this);
       
   281 
       
   282 #ifdef CHECK_UNHANDLED_OOPS
       
   283   if (CheckUnhandledOops) {
       
   284     _unhandled_oops = new UnhandledOops(this);
       
   285   }
       
   286 #endif // CHECK_UNHANDLED_OOPS
       
   287 #ifdef ASSERT
       
   288   if (UseBiasedLocking) {
       
   289     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
       
   290     assert(this == _real_malloc_address ||
       
   291            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
       
   292            "bug in forced alignment of thread objects");
       
   293   }
       
   294 #endif // ASSERT
       
   295 }
       
   296 
       
   297 void Thread::initialize_thread_current() {
       
   298 #ifndef USE_LIBRARY_BASED_TLS_ONLY
       
   299   assert(_thr_current == NULL, "Thread::current already initialized");
       
   300   _thr_current = this;
       
   301 #endif
       
   302   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
       
   303   ThreadLocalStorage::set_thread(this);
       
   304   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
       
   305 }
       
   306 
       
   307 void Thread::clear_thread_current() {
       
   308   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
       
   309 #ifndef USE_LIBRARY_BASED_TLS_ONLY
       
   310   _thr_current = NULL;
       
   311 #endif
       
   312   ThreadLocalStorage::set_thread(NULL);
       
   313 }
       
   314 
       
   315 void Thread::record_stack_base_and_size() {
       
   316   set_stack_base(os::current_stack_base());
       
   317   set_stack_size(os::current_stack_size());
       
   318   // CR 7190089: on Solaris, primordial thread's stack is adjusted
       
   319   // in initialize_thread(). Without the adjustment, stack size is
       
   320   // incorrect if stack is set to unlimited (ulimit -s unlimited).
       
   321   // So far, only Solaris has real implementation of initialize_thread().
       
   322   //
       
   323   // set up any platform-specific state.
       
   324   os::initialize_thread(this);
       
   325 
       
   326   // Set stack limits after thread is initialized.
       
   327   if (is_Java_thread()) {
       
   328     ((JavaThread*) this)->set_stack_overflow_limit();
       
   329     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
       
   330   }
       
   331 #if INCLUDE_NMT
       
   332   // record thread's native stack, stack grows downward
       
   333   MemTracker::record_thread_stack(stack_end(), stack_size());
       
   334 #endif // INCLUDE_NMT
       
   335   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
       
   336     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
       
   337     os::current_thread_id(), p2i(stack_base() - stack_size()),
       
   338     p2i(stack_base()), stack_size()/1024);
       
   339 }
       
   340 
       
   341 
       
   342 Thread::~Thread() {
       
   343   EVENT_THREAD_DESTRUCT(this);
       
   344 
       
   345   // stack_base can be NULL if the thread is never started or exited before
       
   346   // record_stack_base_and_size called. Although, we would like to ensure
       
   347   // that all started threads do call record_stack_base_and_size(), there is
       
   348   // not proper way to enforce that.
       
   349 #if INCLUDE_NMT
       
   350   if (_stack_base != NULL) {
       
   351     MemTracker::release_thread_stack(stack_end(), stack_size());
       
   352 #ifdef ASSERT
       
   353     set_stack_base(NULL);
       
   354 #endif
       
   355   }
       
   356 #endif // INCLUDE_NMT
       
   357 
       
   358   // deallocate data structures
       
   359   delete resource_area();
       
   360   // since the handle marks are using the handle area, we have to deallocated the root
       
   361   // handle mark before deallocating the thread's handle area,
       
   362   assert(last_handle_mark() != NULL, "check we have an element");
       
   363   delete last_handle_mark();
       
   364   assert(last_handle_mark() == NULL, "check we have reached the end");
       
   365 
       
   366   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
       
   367   // We NULL out the fields for good hygiene.
       
   368   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
       
   369   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
       
   370   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
       
   371   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
       
   372 
       
   373   delete handle_area();
       
   374   delete metadata_handles();
       
   375 
       
   376   // SR_handler uses this as a termination indicator -
       
   377   // needs to happen before os::free_thread()
       
   378   delete _SR_lock;
       
   379   _SR_lock = NULL;
       
   380 
       
   381   // osthread() can be NULL, if creation of thread failed.
       
   382   if (osthread() != NULL) os::free_thread(osthread());
       
   383 
       
   384   // clear Thread::current if thread is deleting itself.
       
   385   // Needed to ensure JNI correctly detects non-attached threads.
       
   386   if (this == Thread::current()) {
       
   387     clear_thread_current();
       
   388   }
       
   389 
       
   390   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
       
   391 }
       
   392 
       
   393 // NOTE: dummy function for assertion purpose.
       
   394 void Thread::run() {
       
   395   ShouldNotReachHere();
       
   396 }
       
   397 
       
   398 #ifdef ASSERT
       
   399 // Private method to check for dangling thread pointer
       
   400 void check_for_dangling_thread_pointer(Thread *thread) {
       
   401   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
       
   402          "possibility of dangling Thread pointer");
       
   403 }
       
   404 #endif
       
   405 
       
   406 ThreadPriority Thread::get_priority(const Thread* const thread) {
       
   407   ThreadPriority priority;
       
   408   // Can return an error!
       
   409   (void)os::get_priority(thread, priority);
       
   410   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
       
   411   return priority;
       
   412 }
       
   413 
       
   414 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
       
   415   debug_only(check_for_dangling_thread_pointer(thread);)
       
   416   // Can return an error!
       
   417   (void)os::set_priority(thread, priority);
       
   418 }
       
   419 
       
   420 
       
   421 void Thread::start(Thread* thread) {
       
   422   // Start is different from resume in that its safety is guaranteed by context or
       
   423   // being called from a Java method synchronized on the Thread object.
       
   424   if (!DisableStartThread) {
       
   425     if (thread->is_Java_thread()) {
       
   426       // Initialize the thread state to RUNNABLE before starting this thread.
       
   427       // Can not set it after the thread started because we do not know the
       
   428       // exact thread state at that time. It could be in MONITOR_WAIT or
       
   429       // in SLEEPING or some other state.
       
   430       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
       
   431                                           java_lang_Thread::RUNNABLE);
       
   432     }
       
   433     os::start_thread(thread);
       
   434   }
       
   435 }
       
   436 
       
   437 // Enqueue a VM_Operation to do the job for us - sometime later
       
   438 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
       
   439   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
       
   440   VMThread::execute(vm_stop);
       
   441 }
       
   442 
       
   443 
       
   444 // Check if an external suspend request has completed (or has been
       
   445 // cancelled). Returns true if the thread is externally suspended and
       
   446 // false otherwise.
       
   447 //
       
   448 // The bits parameter returns information about the code path through
       
   449 // the routine. Useful for debugging:
       
   450 //
       
   451 // set in is_ext_suspend_completed():
       
   452 // 0x00000001 - routine was entered
       
   453 // 0x00000010 - routine return false at end
       
   454 // 0x00000100 - thread exited (return false)
       
   455 // 0x00000200 - suspend request cancelled (return false)
       
   456 // 0x00000400 - thread suspended (return true)
       
   457 // 0x00001000 - thread is in a suspend equivalent state (return true)
       
   458 // 0x00002000 - thread is native and walkable (return true)
       
   459 // 0x00004000 - thread is native_trans and walkable (needed retry)
       
   460 //
       
   461 // set in wait_for_ext_suspend_completion():
       
   462 // 0x00010000 - routine was entered
       
   463 // 0x00020000 - suspend request cancelled before loop (return false)
       
   464 // 0x00040000 - thread suspended before loop (return true)
       
   465 // 0x00080000 - suspend request cancelled in loop (return false)
       
   466 // 0x00100000 - thread suspended in loop (return true)
       
   467 // 0x00200000 - suspend not completed during retry loop (return false)
       
   468 
       
   469 // Helper class for tracing suspend wait debug bits.
       
   470 //
       
   471 // 0x00000100 indicates that the target thread exited before it could
       
   472 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
       
   473 // 0x00080000 each indicate a cancelled suspend request so they don't
       
   474 // count as wait failures either.
       
   475 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
       
   476 
       
   477 class TraceSuspendDebugBits : public StackObj {
       
   478  private:
       
   479   JavaThread * jt;
       
   480   bool         is_wait;
       
   481   bool         called_by_wait;  // meaningful when !is_wait
       
   482   uint32_t *   bits;
       
   483 
       
   484  public:
       
   485   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
       
   486                         uint32_t *_bits) {
       
   487     jt             = _jt;
       
   488     is_wait        = _is_wait;
       
   489     called_by_wait = _called_by_wait;
       
   490     bits           = _bits;
       
   491   }
       
   492 
       
   493   ~TraceSuspendDebugBits() {
       
   494     if (!is_wait) {
       
   495 #if 1
       
   496       // By default, don't trace bits for is_ext_suspend_completed() calls.
       
   497       // That trace is very chatty.
       
   498       return;
       
   499 #else
       
   500       if (!called_by_wait) {
       
   501         // If tracing for is_ext_suspend_completed() is enabled, then only
       
   502         // trace calls to it from wait_for_ext_suspend_completion()
       
   503         return;
       
   504       }
       
   505 #endif
       
   506     }
       
   507 
       
   508     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
       
   509       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
       
   510         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
       
   511         ResourceMark rm;
       
   512 
       
   513         tty->print_cr(
       
   514                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
       
   515                       jt->get_thread_name(), *bits);
       
   516 
       
   517         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
       
   518       }
       
   519     }
       
   520   }
       
   521 };
       
   522 #undef DEBUG_FALSE_BITS
       
   523 
       
   524 
       
   525 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
       
   526                                           uint32_t *bits) {
       
   527   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
       
   528 
       
   529   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
       
   530   bool do_trans_retry;           // flag to force the retry
       
   531 
       
   532   *bits |= 0x00000001;
       
   533 
       
   534   do {
       
   535     do_trans_retry = false;
       
   536 
       
   537     if (is_exiting()) {
       
   538       // Thread is in the process of exiting. This is always checked
       
   539       // first to reduce the risk of dereferencing a freed JavaThread.
       
   540       *bits |= 0x00000100;
       
   541       return false;
       
   542     }
       
   543 
       
   544     if (!is_external_suspend()) {
       
   545       // Suspend request is cancelled. This is always checked before
       
   546       // is_ext_suspended() to reduce the risk of a rogue resume
       
   547       // confusing the thread that made the suspend request.
       
   548       *bits |= 0x00000200;
       
   549       return false;
       
   550     }
       
   551 
       
   552     if (is_ext_suspended()) {
       
   553       // thread is suspended
       
   554       *bits |= 0x00000400;
       
   555       return true;
       
   556     }
       
   557 
       
   558     // Now that we no longer do hard suspends of threads running
       
   559     // native code, the target thread can be changing thread state
       
   560     // while we are in this routine:
       
   561     //
       
   562     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
       
   563     //
       
   564     // We save a copy of the thread state as observed at this moment
       
   565     // and make our decision about suspend completeness based on the
       
   566     // copy. This closes the race where the thread state is seen as
       
   567     // _thread_in_native_trans in the if-thread_blocked check, but is
       
   568     // seen as _thread_blocked in if-thread_in_native_trans check.
       
   569     JavaThreadState save_state = thread_state();
       
   570 
       
   571     if (save_state == _thread_blocked && is_suspend_equivalent()) {
       
   572       // If the thread's state is _thread_blocked and this blocking
       
   573       // condition is known to be equivalent to a suspend, then we can
       
   574       // consider the thread to be externally suspended. This means that
       
   575       // the code that sets _thread_blocked has been modified to do
       
   576       // self-suspension if the blocking condition releases. We also
       
   577       // used to check for CONDVAR_WAIT here, but that is now covered by
       
   578       // the _thread_blocked with self-suspension check.
       
   579       //
       
   580       // Return true since we wouldn't be here unless there was still an
       
   581       // external suspend request.
       
   582       *bits |= 0x00001000;
       
   583       return true;
       
   584     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
       
   585       // Threads running native code will self-suspend on native==>VM/Java
       
   586       // transitions. If its stack is walkable (should always be the case
       
   587       // unless this function is called before the actual java_suspend()
       
   588       // call), then the wait is done.
       
   589       *bits |= 0x00002000;
       
   590       return true;
       
   591     } else if (!called_by_wait && !did_trans_retry &&
       
   592                save_state == _thread_in_native_trans &&
       
   593                frame_anchor()->walkable()) {
       
   594       // The thread is transitioning from thread_in_native to another
       
   595       // thread state. check_safepoint_and_suspend_for_native_trans()
       
   596       // will force the thread to self-suspend. If it hasn't gotten
       
   597       // there yet we may have caught the thread in-between the native
       
   598       // code check above and the self-suspend. Lucky us. If we were
       
   599       // called by wait_for_ext_suspend_completion(), then it
       
   600       // will be doing the retries so we don't have to.
       
   601       //
       
   602       // Since we use the saved thread state in the if-statement above,
       
   603       // there is a chance that the thread has already transitioned to
       
   604       // _thread_blocked by the time we get here. In that case, we will
       
   605       // make a single unnecessary pass through the logic below. This
       
   606       // doesn't hurt anything since we still do the trans retry.
       
   607 
       
   608       *bits |= 0x00004000;
       
   609 
       
   610       // Once the thread leaves thread_in_native_trans for another
       
   611       // thread state, we break out of this retry loop. We shouldn't
       
   612       // need this flag to prevent us from getting back here, but
       
   613       // sometimes paranoia is good.
       
   614       did_trans_retry = true;
       
   615 
       
   616       // We wait for the thread to transition to a more usable state.
       
   617       for (int i = 1; i <= SuspendRetryCount; i++) {
       
   618         // We used to do an "os::yield_all(i)" call here with the intention
       
   619         // that yielding would increase on each retry. However, the parameter
       
   620         // is ignored on Linux which means the yield didn't scale up. Waiting
       
   621         // on the SR_lock below provides a much more predictable scale up for
       
   622         // the delay. It also provides a simple/direct point to check for any
       
   623         // safepoint requests from the VMThread
       
   624 
       
   625         // temporarily drops SR_lock while doing wait with safepoint check
       
   626         // (if we're a JavaThread - the WatcherThread can also call this)
       
   627         // and increase delay with each retry
       
   628         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
       
   629 
       
   630         // check the actual thread state instead of what we saved above
       
   631         if (thread_state() != _thread_in_native_trans) {
       
   632           // the thread has transitioned to another thread state so
       
   633           // try all the checks (except this one) one more time.
       
   634           do_trans_retry = true;
       
   635           break;
       
   636         }
       
   637       } // end retry loop
       
   638 
       
   639 
       
   640     }
       
   641   } while (do_trans_retry);
       
   642 
       
   643   *bits |= 0x00000010;
       
   644   return false;
       
   645 }
       
   646 
       
   647 // Wait for an external suspend request to complete (or be cancelled).
       
   648 // Returns true if the thread is externally suspended and false otherwise.
       
   649 //
       
   650 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
       
   651                                                  uint32_t *bits) {
       
   652   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
       
   653                              false /* !called_by_wait */, bits);
       
   654 
       
   655   // local flag copies to minimize SR_lock hold time
       
   656   bool is_suspended;
       
   657   bool pending;
       
   658   uint32_t reset_bits;
       
   659 
       
   660   // set a marker so is_ext_suspend_completed() knows we are the caller
       
   661   *bits |= 0x00010000;
       
   662 
       
   663   // We use reset_bits to reinitialize the bits value at the top of
       
   664   // each retry loop. This allows the caller to make use of any
       
   665   // unused bits for their own marking purposes.
       
   666   reset_bits = *bits;
       
   667 
       
   668   {
       
   669     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
       
   670     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
       
   671                                             delay, bits);
       
   672     pending = is_external_suspend();
       
   673   }
       
   674   // must release SR_lock to allow suspension to complete
       
   675 
       
   676   if (!pending) {
       
   677     // A cancelled suspend request is the only false return from
       
   678     // is_ext_suspend_completed() that keeps us from entering the
       
   679     // retry loop.
       
   680     *bits |= 0x00020000;
       
   681     return false;
       
   682   }
       
   683 
       
   684   if (is_suspended) {
       
   685     *bits |= 0x00040000;
       
   686     return true;
       
   687   }
       
   688 
       
   689   for (int i = 1; i <= retries; i++) {
       
   690     *bits = reset_bits;  // reinit to only track last retry
       
   691 
       
   692     // We used to do an "os::yield_all(i)" call here with the intention
       
   693     // that yielding would increase on each retry. However, the parameter
       
   694     // is ignored on Linux which means the yield didn't scale up. Waiting
       
   695     // on the SR_lock below provides a much more predictable scale up for
       
   696     // the delay. It also provides a simple/direct point to check for any
       
   697     // safepoint requests from the VMThread
       
   698 
       
   699     {
       
   700       MutexLocker ml(SR_lock());
       
   701       // wait with safepoint check (if we're a JavaThread - the WatcherThread
       
   702       // can also call this)  and increase delay with each retry
       
   703       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
       
   704 
       
   705       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
       
   706                                               delay, bits);
       
   707 
       
   708       // It is possible for the external suspend request to be cancelled
       
   709       // (by a resume) before the actual suspend operation is completed.
       
   710       // Refresh our local copy to see if we still need to wait.
       
   711       pending = is_external_suspend();
       
   712     }
       
   713 
       
   714     if (!pending) {
       
   715       // A cancelled suspend request is the only false return from
       
   716       // is_ext_suspend_completed() that keeps us from staying in the
       
   717       // retry loop.
       
   718       *bits |= 0x00080000;
       
   719       return false;
       
   720     }
       
   721 
       
   722     if (is_suspended) {
       
   723       *bits |= 0x00100000;
       
   724       return true;
       
   725     }
       
   726   } // end retry loop
       
   727 
       
   728   // thread did not suspend after all our retries
       
   729   *bits |= 0x00200000;
       
   730   return false;
       
   731 }
       
   732 
       
   733 #ifndef PRODUCT
       
   734 void JavaThread::record_jump(address target, address instr, const char* file,
       
   735                              int line) {
       
   736 
       
   737   // This should not need to be atomic as the only way for simultaneous
       
   738   // updates is via interrupts. Even then this should be rare or non-existent
       
   739   // and we don't care that much anyway.
       
   740 
       
   741   int index = _jmp_ring_index;
       
   742   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
       
   743   _jmp_ring[index]._target = (intptr_t) target;
       
   744   _jmp_ring[index]._instruction = (intptr_t) instr;
       
   745   _jmp_ring[index]._file = file;
       
   746   _jmp_ring[index]._line = line;
       
   747 }
       
   748 #endif // PRODUCT
       
   749 
       
   750 void Thread::interrupt(Thread* thread) {
       
   751   debug_only(check_for_dangling_thread_pointer(thread);)
       
   752   os::interrupt(thread);
       
   753 }
       
   754 
       
   755 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
       
   756   debug_only(check_for_dangling_thread_pointer(thread);)
       
   757   // Note:  If clear_interrupted==false, this simply fetches and
       
   758   // returns the value of the field osthread()->interrupted().
       
   759   return os::is_interrupted(thread, clear_interrupted);
       
   760 }
       
   761 
       
   762 
       
   763 // GC Support
       
   764 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
       
   765   jint thread_parity = _oops_do_parity;
       
   766   if (thread_parity != strong_roots_parity) {
       
   767     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
       
   768     if (res == thread_parity) {
       
   769       return true;
       
   770     } else {
       
   771       guarantee(res == strong_roots_parity, "Or else what?");
       
   772       return false;
       
   773     }
       
   774   }
       
   775   return false;
       
   776 }
       
   777 
       
   778 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
       
   779   active_handles()->oops_do(f);
       
   780   // Do oop for ThreadShadow
       
   781   f->do_oop((oop*)&_pending_exception);
       
   782   handle_area()->oops_do(f);
       
   783 
       
   784   if (MonitorInUseLists) {
       
   785     // When using thread local monitor lists, we scan them here,
       
   786     // and the remaining global monitors in ObjectSynchronizer::oops_do().
       
   787     ObjectSynchronizer::thread_local_used_oops_do(this, f);
       
   788   }
       
   789 }
       
   790 
       
   791 void Thread::metadata_handles_do(void f(Metadata*)) {
       
   792   // Only walk the Handles in Thread.
       
   793   if (metadata_handles() != NULL) {
       
   794     for (int i = 0; i< metadata_handles()->length(); i++) {
       
   795       f(metadata_handles()->at(i));
       
   796     }
       
   797   }
       
   798 }
       
   799 
       
   800 void Thread::print_on(outputStream* st) const {
       
   801   // get_priority assumes osthread initialized
       
   802   if (osthread() != NULL) {
       
   803     int os_prio;
       
   804     if (os::get_native_priority(this, &os_prio) == OS_OK) {
       
   805       st->print("os_prio=%d ", os_prio);
       
   806     }
       
   807     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
       
   808     ext().print_on(st);
       
   809     osthread()->print_on(st);
       
   810   }
       
   811   debug_only(if (WizardMode) print_owned_locks_on(st);)
       
   812 }
       
   813 
       
   814 // Thread::print_on_error() is called by fatal error handler. Don't use
       
   815 // any lock or allocate memory.
       
   816 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
       
   817   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
       
   818 
       
   819   if (is_VM_thread())                 { st->print("VMThread"); }
       
   820   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
       
   821   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
       
   822   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
       
   823   else                                { st->print("Thread"); }
       
   824 
       
   825   if (is_Named_thread()) {
       
   826     st->print(" \"%s\"", name());
       
   827   }
       
   828 
       
   829   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
       
   830             p2i(stack_end()), p2i(stack_base()));
       
   831 
       
   832   if (osthread()) {
       
   833     st->print(" [id=%d]", osthread()->thread_id());
       
   834   }
       
   835 }
       
   836 
       
   837 void Thread::print_value_on(outputStream* st) const {
       
   838   if (is_Named_thread()) {
       
   839     st->print(" \"%s\" ", name());
       
   840   }
       
   841   st->print(INTPTR_FORMAT, p2i(this));   // print address
       
   842 }
       
   843 
       
   844 #ifdef ASSERT
       
   845 void Thread::print_owned_locks_on(outputStream* st) const {
       
   846   Monitor *cur = _owned_locks;
       
   847   if (cur == NULL) {
       
   848     st->print(" (no locks) ");
       
   849   } else {
       
   850     st->print_cr(" Locks owned:");
       
   851     while (cur) {
       
   852       cur->print_on(st);
       
   853       cur = cur->next();
       
   854     }
       
   855   }
       
   856 }
       
   857 
       
   858 static int ref_use_count  = 0;
       
   859 
       
   860 bool Thread::owns_locks_but_compiled_lock() const {
       
   861   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
       
   862     if (cur != Compile_lock) return true;
       
   863   }
       
   864   return false;
       
   865 }
       
   866 
       
   867 
       
   868 #endif
       
   869 
       
   870 #ifndef PRODUCT
       
   871 
       
   872 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
       
   873 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
       
   874 // no threads which allow_vm_block's are held
       
   875 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
       
   876   // Check if current thread is allowed to block at a safepoint
       
   877   if (!(_allow_safepoint_count == 0)) {
       
   878     fatal("Possible safepoint reached by thread that does not allow it");
       
   879   }
       
   880   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
       
   881     fatal("LEAF method calling lock?");
       
   882   }
       
   883 
       
   884 #ifdef ASSERT
       
   885   if (potential_vm_operation && is_Java_thread()
       
   886       && !Universe::is_bootstrapping()) {
       
   887     // Make sure we do not hold any locks that the VM thread also uses.
       
   888     // This could potentially lead to deadlocks
       
   889     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
       
   890       // Threads_lock is special, since the safepoint synchronization will not start before this is
       
   891       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
       
   892       // since it is used to transfer control between JavaThreads and the VMThread
       
   893       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
       
   894       if ((cur->allow_vm_block() &&
       
   895            cur != Threads_lock &&
       
   896            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
       
   897            cur != VMOperationRequest_lock &&
       
   898            cur != VMOperationQueue_lock) ||
       
   899            cur->rank() == Mutex::special) {
       
   900         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
       
   901       }
       
   902     }
       
   903   }
       
   904 
       
   905   if (GCALotAtAllSafepoints) {
       
   906     // We could enter a safepoint here and thus have a gc
       
   907     InterfaceSupport::check_gc_alot();
       
   908   }
       
   909 #endif
       
   910 }
       
   911 #endif
       
   912 
       
   913 bool Thread::is_in_stack(address adr) const {
       
   914   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
       
   915   address end = os::current_stack_pointer();
       
   916   // Allow non Java threads to call this without stack_base
       
   917   if (_stack_base == NULL) return true;
       
   918   if (stack_base() >= adr && adr >= end) return true;
       
   919 
       
   920   return false;
       
   921 }
       
   922 
       
   923 bool Thread::is_in_usable_stack(address adr) const {
       
   924   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
       
   925   size_t usable_stack_size = _stack_size - stack_guard_size;
       
   926 
       
   927   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
       
   928 }
       
   929 
       
   930 
       
   931 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
       
   932 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
       
   933 // used for compilation in the future. If that change is made, the need for these methods
       
   934 // should be revisited, and they should be removed if possible.
       
   935 
       
   936 bool Thread::is_lock_owned(address adr) const {
       
   937   return on_local_stack(adr);
       
   938 }
       
   939 
       
   940 bool Thread::set_as_starting_thread() {
       
   941   // NOTE: this must be called inside the main thread.
       
   942   return os::create_main_thread((JavaThread*)this);
       
   943 }
       
   944 
       
   945 static void initialize_class(Symbol* class_name, TRAPS) {
       
   946   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
       
   947   InstanceKlass::cast(klass)->initialize(CHECK);
       
   948 }
       
   949 
       
   950 
       
   951 // Creates the initial ThreadGroup
       
   952 static Handle create_initial_thread_group(TRAPS) {
       
   953   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
       
   954   InstanceKlass* ik = InstanceKlass::cast(k);
       
   955 
       
   956   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
       
   957   {
       
   958     JavaValue result(T_VOID);
       
   959     JavaCalls::call_special(&result,
       
   960                             system_instance,
       
   961                             ik,
       
   962                             vmSymbols::object_initializer_name(),
       
   963                             vmSymbols::void_method_signature(),
       
   964                             CHECK_NH);
       
   965   }
       
   966   Universe::set_system_thread_group(system_instance());
       
   967 
       
   968   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
       
   969   {
       
   970     JavaValue result(T_VOID);
       
   971     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
       
   972     JavaCalls::call_special(&result,
       
   973                             main_instance,
       
   974                             ik,
       
   975                             vmSymbols::object_initializer_name(),
       
   976                             vmSymbols::threadgroup_string_void_signature(),
       
   977                             system_instance,
       
   978                             string,
       
   979                             CHECK_NH);
       
   980   }
       
   981   return main_instance;
       
   982 }
       
   983 
       
   984 // Creates the initial Thread
       
   985 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
       
   986                                  TRAPS) {
       
   987   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
       
   988   InstanceKlass* ik = InstanceKlass::cast(k);
       
   989   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
       
   990 
       
   991   java_lang_Thread::set_thread(thread_oop(), thread);
       
   992   java_lang_Thread::set_priority(thread_oop(), NormPriority);
       
   993   thread->set_threadObj(thread_oop());
       
   994 
       
   995   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
       
   996 
       
   997   JavaValue result(T_VOID);
       
   998   JavaCalls::call_special(&result, thread_oop,
       
   999                           ik,
       
  1000                           vmSymbols::object_initializer_name(),
       
  1001                           vmSymbols::threadgroup_string_void_signature(),
       
  1002                           thread_group,
       
  1003                           string,
       
  1004                           CHECK_NULL);
       
  1005   return thread_oop();
       
  1006 }
       
  1007 
       
  1008 char java_runtime_name[128] = "";
       
  1009 char java_runtime_version[128] = "";
       
  1010 
       
  1011 // extract the JRE name from java.lang.VersionProps.java_runtime_name
       
  1012 static const char* get_java_runtime_name(TRAPS) {
       
  1013   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
       
  1014                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
       
  1015   fieldDescriptor fd;
       
  1016   bool found = k != NULL &&
       
  1017                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
       
  1018                                                         vmSymbols::string_signature(), &fd);
       
  1019   if (found) {
       
  1020     oop name_oop = k->java_mirror()->obj_field(fd.offset());
       
  1021     if (name_oop == NULL) {
       
  1022       return NULL;
       
  1023     }
       
  1024     const char* name = java_lang_String::as_utf8_string(name_oop,
       
  1025                                                         java_runtime_name,
       
  1026                                                         sizeof(java_runtime_name));
       
  1027     return name;
       
  1028   } else {
       
  1029     return NULL;
       
  1030   }
       
  1031 }
       
  1032 
       
  1033 // extract the JRE version from java.lang.VersionProps.java_runtime_version
       
  1034 static const char* get_java_runtime_version(TRAPS) {
       
  1035   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
       
  1036                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
       
  1037   fieldDescriptor fd;
       
  1038   bool found = k != NULL &&
       
  1039                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
       
  1040                                                         vmSymbols::string_signature(), &fd);
       
  1041   if (found) {
       
  1042     oop name_oop = k->java_mirror()->obj_field(fd.offset());
       
  1043     if (name_oop == NULL) {
       
  1044       return NULL;
       
  1045     }
       
  1046     const char* name = java_lang_String::as_utf8_string(name_oop,
       
  1047                                                         java_runtime_version,
       
  1048                                                         sizeof(java_runtime_version));
       
  1049     return name;
       
  1050   } else {
       
  1051     return NULL;
       
  1052   }
       
  1053 }
       
  1054 
       
  1055 // General purpose hook into Java code, run once when the VM is initialized.
       
  1056 // The Java library method itself may be changed independently from the VM.
       
  1057 static void call_postVMInitHook(TRAPS) {
       
  1058   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
       
  1059   if (klass != NULL) {
       
  1060     JavaValue result(T_VOID);
       
  1061     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
       
  1062                            vmSymbols::void_method_signature(),
       
  1063                            CHECK);
       
  1064   }
       
  1065 }
       
  1066 
       
  1067 static void reset_vm_info_property(TRAPS) {
       
  1068   // the vm info string
       
  1069   ResourceMark rm(THREAD);
       
  1070   const char *vm_info = VM_Version::vm_info_string();
       
  1071 
       
  1072   // java.lang.System class
       
  1073   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
       
  1074 
       
  1075   // setProperty arguments
       
  1076   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
       
  1077   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
       
  1078 
       
  1079   // return value
       
  1080   JavaValue r(T_OBJECT);
       
  1081 
       
  1082   // public static String setProperty(String key, String value);
       
  1083   JavaCalls::call_static(&r,
       
  1084                          klass,
       
  1085                          vmSymbols::setProperty_name(),
       
  1086                          vmSymbols::string_string_string_signature(),
       
  1087                          key_str,
       
  1088                          value_str,
       
  1089                          CHECK);
       
  1090 }
       
  1091 
       
  1092 
       
  1093 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
       
  1094                                     bool daemon, TRAPS) {
       
  1095   assert(thread_group.not_null(), "thread group should be specified");
       
  1096   assert(threadObj() == NULL, "should only create Java thread object once");
       
  1097 
       
  1098   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
       
  1099   InstanceKlass* ik = InstanceKlass::cast(k);
       
  1100   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
       
  1101 
       
  1102   java_lang_Thread::set_thread(thread_oop(), this);
       
  1103   java_lang_Thread::set_priority(thread_oop(), NormPriority);
       
  1104   set_threadObj(thread_oop());
       
  1105 
       
  1106   JavaValue result(T_VOID);
       
  1107   if (thread_name != NULL) {
       
  1108     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
       
  1109     // Thread gets assigned specified name and null target
       
  1110     JavaCalls::call_special(&result,
       
  1111                             thread_oop,
       
  1112                             ik,
       
  1113                             vmSymbols::object_initializer_name(),
       
  1114                             vmSymbols::threadgroup_string_void_signature(),
       
  1115                             thread_group, // Argument 1
       
  1116                             name,         // Argument 2
       
  1117                             THREAD);
       
  1118   } else {
       
  1119     // Thread gets assigned name "Thread-nnn" and null target
       
  1120     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
       
  1121     JavaCalls::call_special(&result,
       
  1122                             thread_oop,
       
  1123                             ik,
       
  1124                             vmSymbols::object_initializer_name(),
       
  1125                             vmSymbols::threadgroup_runnable_void_signature(),
       
  1126                             thread_group, // Argument 1
       
  1127                             Handle(),     // Argument 2
       
  1128                             THREAD);
       
  1129   }
       
  1130 
       
  1131 
       
  1132   if (daemon) {
       
  1133     java_lang_Thread::set_daemon(thread_oop());
       
  1134   }
       
  1135 
       
  1136   if (HAS_PENDING_EXCEPTION) {
       
  1137     return;
       
  1138   }
       
  1139 
       
  1140   Klass* group =  SystemDictionary::ThreadGroup_klass();
       
  1141   Handle threadObj(THREAD, this->threadObj());
       
  1142 
       
  1143   JavaCalls::call_special(&result,
       
  1144                           thread_group,
       
  1145                           group,
       
  1146                           vmSymbols::add_method_name(),
       
  1147                           vmSymbols::thread_void_signature(),
       
  1148                           threadObj,          // Arg 1
       
  1149                           THREAD);
       
  1150 }
       
  1151 
       
  1152 // NamedThread --  non-JavaThread subclasses with multiple
       
  1153 // uniquely named instances should derive from this.
       
  1154 NamedThread::NamedThread() : Thread() {
       
  1155   _name = NULL;
       
  1156   _processed_thread = NULL;
       
  1157   _gc_id = GCId::undefined();
       
  1158 }
       
  1159 
       
  1160 NamedThread::~NamedThread() {
       
  1161   if (_name != NULL) {
       
  1162     FREE_C_HEAP_ARRAY(char, _name);
       
  1163     _name = NULL;
       
  1164   }
       
  1165 }
       
  1166 
       
  1167 void NamedThread::set_name(const char* format, ...) {
       
  1168   guarantee(_name == NULL, "Only get to set name once.");
       
  1169   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
       
  1170   guarantee(_name != NULL, "alloc failure");
       
  1171   va_list ap;
       
  1172   va_start(ap, format);
       
  1173   jio_vsnprintf(_name, max_name_len, format, ap);
       
  1174   va_end(ap);
       
  1175 }
       
  1176 
       
  1177 void NamedThread::initialize_named_thread() {
       
  1178   set_native_thread_name(name());
       
  1179 }
       
  1180 
       
  1181 void NamedThread::print_on(outputStream* st) const {
       
  1182   st->print("\"%s\" ", name());
       
  1183   Thread::print_on(st);
       
  1184   st->cr();
       
  1185 }
       
  1186 
       
  1187 
       
  1188 // ======= WatcherThread ========
       
  1189 
       
  1190 // The watcher thread exists to simulate timer interrupts.  It should
       
  1191 // be replaced by an abstraction over whatever native support for
       
  1192 // timer interrupts exists on the platform.
       
  1193 
       
  1194 WatcherThread* WatcherThread::_watcher_thread   = NULL;
       
  1195 bool WatcherThread::_startable = false;
       
  1196 volatile bool  WatcherThread::_should_terminate = false;
       
  1197 
       
  1198 WatcherThread::WatcherThread() : Thread() {
       
  1199   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
       
  1200   if (os::create_thread(this, os::watcher_thread)) {
       
  1201     _watcher_thread = this;
       
  1202 
       
  1203     // Set the watcher thread to the highest OS priority which should not be
       
  1204     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
       
  1205     // is created. The only normal thread using this priority is the reference
       
  1206     // handler thread, which runs for very short intervals only.
       
  1207     // If the VMThread's priority is not lower than the WatcherThread profiling
       
  1208     // will be inaccurate.
       
  1209     os::set_priority(this, MaxPriority);
       
  1210     if (!DisableStartThread) {
       
  1211       os::start_thread(this);
       
  1212     }
       
  1213   }
       
  1214 }
       
  1215 
       
  1216 int WatcherThread::sleep() const {
       
  1217   // The WatcherThread does not participate in the safepoint protocol
       
  1218   // for the PeriodicTask_lock because it is not a JavaThread.
       
  1219   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
       
  1220 
       
  1221   if (_should_terminate) {
       
  1222     // check for termination before we do any housekeeping or wait
       
  1223     return 0;  // we did not sleep.
       
  1224   }
       
  1225 
       
  1226   // remaining will be zero if there are no tasks,
       
  1227   // causing the WatcherThread to sleep until a task is
       
  1228   // enrolled
       
  1229   int remaining = PeriodicTask::time_to_wait();
       
  1230   int time_slept = 0;
       
  1231 
       
  1232   // we expect this to timeout - we only ever get unparked when
       
  1233   // we should terminate or when a new task has been enrolled
       
  1234   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
       
  1235 
       
  1236   jlong time_before_loop = os::javaTimeNanos();
       
  1237 
       
  1238   while (true) {
       
  1239     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
       
  1240                                             remaining);
       
  1241     jlong now = os::javaTimeNanos();
       
  1242 
       
  1243     if (remaining == 0) {
       
  1244       // if we didn't have any tasks we could have waited for a long time
       
  1245       // consider the time_slept zero and reset time_before_loop
       
  1246       time_slept = 0;
       
  1247       time_before_loop = now;
       
  1248     } else {
       
  1249       // need to recalculate since we might have new tasks in _tasks
       
  1250       time_slept = (int) ((now - time_before_loop) / 1000000);
       
  1251     }
       
  1252 
       
  1253     // Change to task list or spurious wakeup of some kind
       
  1254     if (timedout || _should_terminate) {
       
  1255       break;
       
  1256     }
       
  1257 
       
  1258     remaining = PeriodicTask::time_to_wait();
       
  1259     if (remaining == 0) {
       
  1260       // Last task was just disenrolled so loop around and wait until
       
  1261       // another task gets enrolled
       
  1262       continue;
       
  1263     }
       
  1264 
       
  1265     remaining -= time_slept;
       
  1266     if (remaining <= 0) {
       
  1267       break;
       
  1268     }
       
  1269   }
       
  1270 
       
  1271   return time_slept;
       
  1272 }
       
  1273 
       
  1274 void WatcherThread::run() {
       
  1275   assert(this == watcher_thread(), "just checking");
       
  1276 
       
  1277   this->record_stack_base_and_size();
       
  1278   this->set_native_thread_name(this->name());
       
  1279   this->set_active_handles(JNIHandleBlock::allocate_block());
       
  1280   while (true) {
       
  1281     assert(watcher_thread() == Thread::current(), "thread consistency check");
       
  1282     assert(watcher_thread() == this, "thread consistency check");
       
  1283 
       
  1284     // Calculate how long it'll be until the next PeriodicTask work
       
  1285     // should be done, and sleep that amount of time.
       
  1286     int time_waited = sleep();
       
  1287 
       
  1288     if (VMError::is_error_reported()) {
       
  1289       // A fatal error has happened, the error handler(VMError::report_and_die)
       
  1290       // should abort JVM after creating an error log file. However in some
       
  1291       // rare cases, the error handler itself might deadlock. Here periodically
       
  1292       // check for error reporting timeouts, and if it happens, just proceed to
       
  1293       // abort the VM.
       
  1294 
       
  1295       // This code is in WatcherThread because WatcherThread wakes up
       
  1296       // periodically so the fatal error handler doesn't need to do anything;
       
  1297       // also because the WatcherThread is less likely to crash than other
       
  1298       // threads.
       
  1299 
       
  1300       for (;;) {
       
  1301         // Note: we use naked sleep in this loop because we want to avoid using
       
  1302         // any kind of VM infrastructure which may be broken at this point.
       
  1303         if (VMError::check_timeout()) {
       
  1304           // We hit error reporting timeout. Error reporting was interrupted and
       
  1305           // will be wrapping things up now (closing files etc). Give it some more
       
  1306           // time, then quit the VM.
       
  1307           os::naked_short_sleep(200);
       
  1308           // Print a message to stderr.
       
  1309           fdStream err(defaultStream::output_fd());
       
  1310           err.print_raw_cr("# [ timer expired, abort... ]");
       
  1311           // skip atexit/vm_exit/vm_abort hooks
       
  1312           os::die();
       
  1313         }
       
  1314 
       
  1315         // Wait a second, then recheck for timeout.
       
  1316         os::naked_short_sleep(999);
       
  1317       }
       
  1318     }
       
  1319 
       
  1320     if (_should_terminate) {
       
  1321       // check for termination before posting the next tick
       
  1322       break;
       
  1323     }
       
  1324 
       
  1325     PeriodicTask::real_time_tick(time_waited);
       
  1326   }
       
  1327 
       
  1328   // Signal that it is terminated
       
  1329   {
       
  1330     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
       
  1331     _watcher_thread = NULL;
       
  1332     Terminator_lock->notify();
       
  1333   }
       
  1334 }
       
  1335 
       
  1336 void WatcherThread::start() {
       
  1337   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
       
  1338 
       
  1339   if (watcher_thread() == NULL && _startable) {
       
  1340     _should_terminate = false;
       
  1341     // Create the single instance of WatcherThread
       
  1342     new WatcherThread();
       
  1343   }
       
  1344 }
       
  1345 
       
  1346 void WatcherThread::make_startable() {
       
  1347   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
       
  1348   _startable = true;
       
  1349 }
       
  1350 
       
  1351 void WatcherThread::stop() {
       
  1352   {
       
  1353     // Follow normal safepoint aware lock enter protocol since the
       
  1354     // WatcherThread is stopped by another JavaThread.
       
  1355     MutexLocker ml(PeriodicTask_lock);
       
  1356     _should_terminate = true;
       
  1357 
       
  1358     WatcherThread* watcher = watcher_thread();
       
  1359     if (watcher != NULL) {
       
  1360       // unpark the WatcherThread so it can see that it should terminate
       
  1361       watcher->unpark();
       
  1362     }
       
  1363   }
       
  1364 
       
  1365   MutexLocker mu(Terminator_lock);
       
  1366 
       
  1367   while (watcher_thread() != NULL) {
       
  1368     // This wait should make safepoint checks, wait without a timeout,
       
  1369     // and wait as a suspend-equivalent condition.
       
  1370     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
       
  1371                           Mutex::_as_suspend_equivalent_flag);
       
  1372   }
       
  1373 }
       
  1374 
       
  1375 void WatcherThread::unpark() {
       
  1376   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
       
  1377   PeriodicTask_lock->notify();
       
  1378 }
       
  1379 
       
  1380 void WatcherThread::print_on(outputStream* st) const {
       
  1381   st->print("\"%s\" ", name());
       
  1382   Thread::print_on(st);
       
  1383   st->cr();
       
  1384 }
       
  1385 
       
  1386 // ======= JavaThread ========
       
  1387 
       
  1388 #if INCLUDE_JVMCI
       
  1389 
       
  1390 jlong* JavaThread::_jvmci_old_thread_counters;
       
  1391 
       
  1392 bool jvmci_counters_include(JavaThread* thread) {
       
  1393   oop threadObj = thread->threadObj();
       
  1394   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
       
  1395 }
       
  1396 
       
  1397 void JavaThread::collect_counters(typeArrayOop array) {
       
  1398   if (JVMCICounterSize > 0) {
       
  1399     MutexLocker tl(Threads_lock);
       
  1400     for (int i = 0; i < array->length(); i++) {
       
  1401       array->long_at_put(i, _jvmci_old_thread_counters[i]);
       
  1402     }
       
  1403     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
       
  1404       if (jvmci_counters_include(tp)) {
       
  1405         for (int i = 0; i < array->length(); i++) {
       
  1406           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
       
  1407         }
       
  1408       }
       
  1409     }
       
  1410   }
       
  1411 }
       
  1412 
       
  1413 #endif // INCLUDE_JVMCI
       
  1414 
       
  1415 // A JavaThread is a normal Java thread
       
  1416 
       
  1417 void JavaThread::initialize() {
       
  1418   // Initialize fields
       
  1419 
       
  1420   set_saved_exception_pc(NULL);
       
  1421   set_threadObj(NULL);
       
  1422   _anchor.clear();
       
  1423   set_entry_point(NULL);
       
  1424   set_jni_functions(jni_functions());
       
  1425   set_callee_target(NULL);
       
  1426   set_vm_result(NULL);
       
  1427   set_vm_result_2(NULL);
       
  1428   set_vframe_array_head(NULL);
       
  1429   set_vframe_array_last(NULL);
       
  1430   set_deferred_locals(NULL);
       
  1431   set_deopt_mark(NULL);
       
  1432   set_deopt_compiled_method(NULL);
       
  1433   clear_must_deopt_id();
       
  1434   set_monitor_chunks(NULL);
       
  1435   set_next(NULL);
       
  1436   set_thread_state(_thread_new);
       
  1437   _terminated = _not_terminated;
       
  1438   _privileged_stack_top = NULL;
       
  1439   _array_for_gc = NULL;
       
  1440   _suspend_equivalent = false;
       
  1441   _in_deopt_handler = 0;
       
  1442   _doing_unsafe_access = false;
       
  1443   _stack_guard_state = stack_guard_unused;
       
  1444 #if INCLUDE_JVMCI
       
  1445   _pending_monitorenter = false;
       
  1446   _pending_deoptimization = -1;
       
  1447   _pending_failed_speculation = NULL;
       
  1448   _pending_transfer_to_interpreter = false;
       
  1449   _adjusting_comp_level = false;
       
  1450   _jvmci._alternate_call_target = NULL;
       
  1451   assert(_jvmci._implicit_exception_pc == NULL, "must be");
       
  1452   if (JVMCICounterSize > 0) {
       
  1453     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
       
  1454     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
       
  1455   } else {
       
  1456     _jvmci_counters = NULL;
       
  1457   }
       
  1458 #endif // INCLUDE_JVMCI
       
  1459   _reserved_stack_activation = NULL;  // stack base not known yet
       
  1460   (void)const_cast<oop&>(_exception_oop = oop(NULL));
       
  1461   _exception_pc  = 0;
       
  1462   _exception_handler_pc = 0;
       
  1463   _is_method_handle_return = 0;
       
  1464   _jvmti_thread_state= NULL;
       
  1465   _should_post_on_exceptions_flag = JNI_FALSE;
       
  1466   _jvmti_get_loaded_classes_closure = NULL;
       
  1467   _interp_only_mode    = 0;
       
  1468   _special_runtime_exit_condition = _no_async_condition;
       
  1469   _pending_async_exception = NULL;
       
  1470   _thread_stat = NULL;
       
  1471   _thread_stat = new ThreadStatistics();
       
  1472   _blocked_on_compilation = false;
       
  1473   _jni_active_critical = 0;
       
  1474   _pending_jni_exception_check_fn = NULL;
       
  1475   _do_not_unlock_if_synchronized = false;
       
  1476   _cached_monitor_info = NULL;
       
  1477   _parker = Parker::Allocate(this);
       
  1478 
       
  1479 #ifndef PRODUCT
       
  1480   _jmp_ring_index = 0;
       
  1481   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
       
  1482     record_jump(NULL, NULL, NULL, 0);
       
  1483   }
       
  1484 #endif // PRODUCT
       
  1485 
       
  1486   // Setup safepoint state info for this thread
       
  1487   ThreadSafepointState::create(this);
       
  1488 
       
  1489   debug_only(_java_call_counter = 0);
       
  1490 
       
  1491   // JVMTI PopFrame support
       
  1492   _popframe_condition = popframe_inactive;
       
  1493   _popframe_preserved_args = NULL;
       
  1494   _popframe_preserved_args_size = 0;
       
  1495   _frames_to_pop_failed_realloc = 0;
       
  1496 
       
  1497   pd_initialize();
       
  1498 }
       
  1499 
       
  1500 #if INCLUDE_ALL_GCS
       
  1501 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
       
  1502 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
       
  1503 #endif // INCLUDE_ALL_GCS
       
  1504 
       
  1505 JavaThread::JavaThread(bool is_attaching_via_jni) :
       
  1506                        Thread()
       
  1507 #if INCLUDE_ALL_GCS
       
  1508                        , _satb_mark_queue(&_satb_mark_queue_set),
       
  1509                        _dirty_card_queue(&_dirty_card_queue_set)
       
  1510 #endif // INCLUDE_ALL_GCS
       
  1511 {
       
  1512   initialize();
       
  1513   if (is_attaching_via_jni) {
       
  1514     _jni_attach_state = _attaching_via_jni;
       
  1515   } else {
       
  1516     _jni_attach_state = _not_attaching_via_jni;
       
  1517   }
       
  1518   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
       
  1519 }
       
  1520 
       
  1521 bool JavaThread::reguard_stack(address cur_sp) {
       
  1522   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
       
  1523       && _stack_guard_state != stack_guard_reserved_disabled) {
       
  1524     return true; // Stack already guarded or guard pages not needed.
       
  1525   }
       
  1526 
       
  1527   if (register_stack_overflow()) {
       
  1528     // For those architectures which have separate register and
       
  1529     // memory stacks, we must check the register stack to see if
       
  1530     // it has overflowed.
       
  1531     return false;
       
  1532   }
       
  1533 
       
  1534   // Java code never executes within the yellow zone: the latter is only
       
  1535   // there to provoke an exception during stack banging.  If java code
       
  1536   // is executing there, either StackShadowPages should be larger, or
       
  1537   // some exception code in c1, c2 or the interpreter isn't unwinding
       
  1538   // when it should.
       
  1539   guarantee(cur_sp > stack_reserved_zone_base(),
       
  1540             "not enough space to reguard - increase StackShadowPages");
       
  1541   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
       
  1542     enable_stack_yellow_reserved_zone();
       
  1543     if (reserved_stack_activation() != stack_base()) {
       
  1544       set_reserved_stack_activation(stack_base());
       
  1545     }
       
  1546   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
       
  1547     set_reserved_stack_activation(stack_base());
       
  1548     enable_stack_reserved_zone();
       
  1549   }
       
  1550   return true;
       
  1551 }
       
  1552 
       
  1553 bool JavaThread::reguard_stack(void) {
       
  1554   return reguard_stack(os::current_stack_pointer());
       
  1555 }
       
  1556 
       
  1557 
       
  1558 void JavaThread::block_if_vm_exited() {
       
  1559   if (_terminated == _vm_exited) {
       
  1560     // _vm_exited is set at safepoint, and Threads_lock is never released
       
  1561     // we will block here forever
       
  1562     Threads_lock->lock_without_safepoint_check();
       
  1563     ShouldNotReachHere();
       
  1564   }
       
  1565 }
       
  1566 
       
  1567 
       
  1568 // Remove this ifdef when C1 is ported to the compiler interface.
       
  1569 static void compiler_thread_entry(JavaThread* thread, TRAPS);
       
  1570 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
       
  1571 
       
  1572 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
       
  1573                        Thread()
       
  1574 #if INCLUDE_ALL_GCS
       
  1575                        , _satb_mark_queue(&_satb_mark_queue_set),
       
  1576                        _dirty_card_queue(&_dirty_card_queue_set)
       
  1577 #endif // INCLUDE_ALL_GCS
       
  1578 {
       
  1579   initialize();
       
  1580   _jni_attach_state = _not_attaching_via_jni;
       
  1581   set_entry_point(entry_point);
       
  1582   // Create the native thread itself.
       
  1583   // %note runtime_23
       
  1584   os::ThreadType thr_type = os::java_thread;
       
  1585   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
       
  1586                                                      os::java_thread;
       
  1587   os::create_thread(this, thr_type, stack_sz);
       
  1588   // The _osthread may be NULL here because we ran out of memory (too many threads active).
       
  1589   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
       
  1590   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
       
  1591   // the exception consists of creating the exception object & initializing it, initialization
       
  1592   // will leave the VM via a JavaCall and then all locks must be unlocked).
       
  1593   //
       
  1594   // The thread is still suspended when we reach here. Thread must be explicit started
       
  1595   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
       
  1596   // by calling Threads:add. The reason why this is not done here, is because the thread
       
  1597   // object must be fully initialized (take a look at JVM_Start)
       
  1598 }
       
  1599 
       
  1600 JavaThread::~JavaThread() {
       
  1601 
       
  1602   // JSR166 -- return the parker to the free list
       
  1603   Parker::Release(_parker);
       
  1604   _parker = NULL;
       
  1605 
       
  1606   // Free any remaining  previous UnrollBlock
       
  1607   vframeArray* old_array = vframe_array_last();
       
  1608 
       
  1609   if (old_array != NULL) {
       
  1610     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
       
  1611     old_array->set_unroll_block(NULL);
       
  1612     delete old_info;
       
  1613     delete old_array;
       
  1614   }
       
  1615 
       
  1616   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
       
  1617   if (deferred != NULL) {
       
  1618     // This can only happen if thread is destroyed before deoptimization occurs.
       
  1619     assert(deferred->length() != 0, "empty array!");
       
  1620     do {
       
  1621       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
       
  1622       deferred->remove_at(0);
       
  1623       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
       
  1624       delete dlv;
       
  1625     } while (deferred->length() != 0);
       
  1626     delete deferred;
       
  1627   }
       
  1628 
       
  1629   // All Java related clean up happens in exit
       
  1630   ThreadSafepointState::destroy(this);
       
  1631   if (_thread_stat != NULL) delete _thread_stat;
       
  1632 
       
  1633 #if INCLUDE_JVMCI
       
  1634   if (JVMCICounterSize > 0) {
       
  1635     if (jvmci_counters_include(this)) {
       
  1636       for (int i = 0; i < JVMCICounterSize; i++) {
       
  1637         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
       
  1638       }
       
  1639     }
       
  1640     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
       
  1641   }
       
  1642 #endif // INCLUDE_JVMCI
       
  1643 }
       
  1644 
       
  1645 
       
  1646 // The first routine called by a new Java thread
       
  1647 void JavaThread::run() {
       
  1648   // initialize thread-local alloc buffer related fields
       
  1649   this->initialize_tlab();
       
  1650 
       
  1651   // used to test validity of stack trace backs
       
  1652   this->record_base_of_stack_pointer();
       
  1653 
       
  1654   // Record real stack base and size.
       
  1655   this->record_stack_base_and_size();
       
  1656 
       
  1657   this->create_stack_guard_pages();
       
  1658 
       
  1659   this->cache_global_variables();
       
  1660 
       
  1661   // Thread is now sufficient initialized to be handled by the safepoint code as being
       
  1662   // in the VM. Change thread state from _thread_new to _thread_in_vm
       
  1663   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
       
  1664 
       
  1665   assert(JavaThread::current() == this, "sanity check");
       
  1666   assert(!Thread::current()->owns_locks(), "sanity check");
       
  1667 
       
  1668   DTRACE_THREAD_PROBE(start, this);
       
  1669 
       
  1670   // This operation might block. We call that after all safepoint checks for a new thread has
       
  1671   // been completed.
       
  1672   this->set_active_handles(JNIHandleBlock::allocate_block());
       
  1673 
       
  1674   if (JvmtiExport::should_post_thread_life()) {
       
  1675     JvmtiExport::post_thread_start(this);
       
  1676   }
       
  1677 
       
  1678   EventThreadStart event;
       
  1679   if (event.should_commit()) {
       
  1680     event.set_thread(THREAD_TRACE_ID(this));
       
  1681     event.commit();
       
  1682   }
       
  1683 
       
  1684   // We call another function to do the rest so we are sure that the stack addresses used
       
  1685   // from there will be lower than the stack base just computed
       
  1686   thread_main_inner();
       
  1687 
       
  1688   // Note, thread is no longer valid at this point!
       
  1689 }
       
  1690 
       
  1691 
       
  1692 void JavaThread::thread_main_inner() {
       
  1693   assert(JavaThread::current() == this, "sanity check");
       
  1694   assert(this->threadObj() != NULL, "just checking");
       
  1695 
       
  1696   // Execute thread entry point unless this thread has a pending exception
       
  1697   // or has been stopped before starting.
       
  1698   // Note: Due to JVM_StopThread we can have pending exceptions already!
       
  1699   if (!this->has_pending_exception() &&
       
  1700       !java_lang_Thread::is_stillborn(this->threadObj())) {
       
  1701     {
       
  1702       ResourceMark rm(this);
       
  1703       this->set_native_thread_name(this->get_thread_name());
       
  1704     }
       
  1705     HandleMark hm(this);
       
  1706     this->entry_point()(this, this);
       
  1707   }
       
  1708 
       
  1709   DTRACE_THREAD_PROBE(stop, this);
       
  1710 
       
  1711   this->exit(false);
       
  1712   delete this;
       
  1713 }
       
  1714 
       
  1715 
       
  1716 static void ensure_join(JavaThread* thread) {
       
  1717   // We do not need to grap the Threads_lock, since we are operating on ourself.
       
  1718   Handle threadObj(thread, thread->threadObj());
       
  1719   assert(threadObj.not_null(), "java thread object must exist");
       
  1720   ObjectLocker lock(threadObj, thread);
       
  1721   // Ignore pending exception (ThreadDeath), since we are exiting anyway
       
  1722   thread->clear_pending_exception();
       
  1723   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
       
  1724   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
       
  1725   // Clear the native thread instance - this makes isAlive return false and allows the join()
       
  1726   // to complete once we've done the notify_all below
       
  1727   java_lang_Thread::set_thread(threadObj(), NULL);
       
  1728   lock.notify_all(thread);
       
  1729   // Ignore pending exception (ThreadDeath), since we are exiting anyway
       
  1730   thread->clear_pending_exception();
       
  1731 }
       
  1732 
       
  1733 
       
  1734 // For any new cleanup additions, please check to see if they need to be applied to
       
  1735 // cleanup_failed_attach_current_thread as well.
       
  1736 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
       
  1737   assert(this == JavaThread::current(), "thread consistency check");
       
  1738 
       
  1739   HandleMark hm(this);
       
  1740   Handle uncaught_exception(this, this->pending_exception());
       
  1741   this->clear_pending_exception();
       
  1742   Handle threadObj(this, this->threadObj());
       
  1743   assert(threadObj.not_null(), "Java thread object should be created");
       
  1744 
       
  1745   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
       
  1746   {
       
  1747     EXCEPTION_MARK;
       
  1748 
       
  1749     CLEAR_PENDING_EXCEPTION;
       
  1750   }
       
  1751   if (!destroy_vm) {
       
  1752     if (uncaught_exception.not_null()) {
       
  1753       EXCEPTION_MARK;
       
  1754       // Call method Thread.dispatchUncaughtException().
       
  1755       Klass* thread_klass = SystemDictionary::Thread_klass();
       
  1756       JavaValue result(T_VOID);
       
  1757       JavaCalls::call_virtual(&result,
       
  1758                               threadObj, thread_klass,
       
  1759                               vmSymbols::dispatchUncaughtException_name(),
       
  1760                               vmSymbols::throwable_void_signature(),
       
  1761                               uncaught_exception,
       
  1762                               THREAD);
       
  1763       if (HAS_PENDING_EXCEPTION) {
       
  1764         ResourceMark rm(this);
       
  1765         jio_fprintf(defaultStream::error_stream(),
       
  1766                     "\nException: %s thrown from the UncaughtExceptionHandler"
       
  1767                     " in thread \"%s\"\n",
       
  1768                     pending_exception()->klass()->external_name(),
       
  1769                     get_thread_name());
       
  1770         CLEAR_PENDING_EXCEPTION;
       
  1771       }
       
  1772     }
       
  1773 
       
  1774     // Called before the java thread exit since we want to read info
       
  1775     // from java_lang_Thread object
       
  1776     EventThreadEnd event;
       
  1777     if (event.should_commit()) {
       
  1778       event.set_thread(THREAD_TRACE_ID(this));
       
  1779       event.commit();
       
  1780     }
       
  1781 
       
  1782     // Call after last event on thread
       
  1783     EVENT_THREAD_EXIT(this);
       
  1784 
       
  1785     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
       
  1786     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
       
  1787     // is deprecated anyhow.
       
  1788     if (!is_Compiler_thread()) {
       
  1789       int count = 3;
       
  1790       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
       
  1791         EXCEPTION_MARK;
       
  1792         JavaValue result(T_VOID);
       
  1793         Klass* thread_klass = SystemDictionary::Thread_klass();
       
  1794         JavaCalls::call_virtual(&result,
       
  1795                                 threadObj, thread_klass,
       
  1796                                 vmSymbols::exit_method_name(),
       
  1797                                 vmSymbols::void_method_signature(),
       
  1798                                 THREAD);
       
  1799         CLEAR_PENDING_EXCEPTION;
       
  1800       }
       
  1801     }
       
  1802     // notify JVMTI
       
  1803     if (JvmtiExport::should_post_thread_life()) {
       
  1804       JvmtiExport::post_thread_end(this);
       
  1805     }
       
  1806 
       
  1807     // We have notified the agents that we are exiting, before we go on,
       
  1808     // we must check for a pending external suspend request and honor it
       
  1809     // in order to not surprise the thread that made the suspend request.
       
  1810     while (true) {
       
  1811       {
       
  1812         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
       
  1813         if (!is_external_suspend()) {
       
  1814           set_terminated(_thread_exiting);
       
  1815           ThreadService::current_thread_exiting(this);
       
  1816           break;
       
  1817         }
       
  1818         // Implied else:
       
  1819         // Things get a little tricky here. We have a pending external
       
  1820         // suspend request, but we are holding the SR_lock so we
       
  1821         // can't just self-suspend. So we temporarily drop the lock
       
  1822         // and then self-suspend.
       
  1823       }
       
  1824 
       
  1825       ThreadBlockInVM tbivm(this);
       
  1826       java_suspend_self();
       
  1827 
       
  1828       // We're done with this suspend request, but we have to loop around
       
  1829       // and check again. Eventually we will get SR_lock without a pending
       
  1830       // external suspend request and will be able to mark ourselves as
       
  1831       // exiting.
       
  1832     }
       
  1833     // no more external suspends are allowed at this point
       
  1834   } else {
       
  1835     // before_exit() has already posted JVMTI THREAD_END events
       
  1836   }
       
  1837 
       
  1838   // Notify waiters on thread object. This has to be done after exit() is called
       
  1839   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
       
  1840   // group should have the destroyed bit set before waiters are notified).
       
  1841   ensure_join(this);
       
  1842   assert(!this->has_pending_exception(), "ensure_join should have cleared");
       
  1843 
       
  1844   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
       
  1845   // held by this thread must be released. The spec does not distinguish
       
  1846   // between JNI-acquired and regular Java monitors. We can only see
       
  1847   // regular Java monitors here if monitor enter-exit matching is broken.
       
  1848   //
       
  1849   // Optionally release any monitors for regular JavaThread exits. This
       
  1850   // is provided as a work around for any bugs in monitor enter-exit
       
  1851   // matching. This can be expensive so it is not enabled by default.
       
  1852   //
       
  1853   // ensure_join() ignores IllegalThreadStateExceptions, and so does
       
  1854   // ObjectSynchronizer::release_monitors_owned_by_thread().
       
  1855   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
       
  1856     // Sanity check even though JNI DetachCurrentThread() would have
       
  1857     // returned JNI_ERR if there was a Java frame. JavaThread exit
       
  1858     // should be done executing Java code by the time we get here.
       
  1859     assert(!this->has_last_Java_frame(),
       
  1860            "should not have a Java frame when detaching or exiting");
       
  1861     ObjectSynchronizer::release_monitors_owned_by_thread(this);
       
  1862     assert(!this->has_pending_exception(), "release_monitors should have cleared");
       
  1863   }
       
  1864 
       
  1865   // These things needs to be done while we are still a Java Thread. Make sure that thread
       
  1866   // is in a consistent state, in case GC happens
       
  1867   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
       
  1868 
       
  1869   if (active_handles() != NULL) {
       
  1870     JNIHandleBlock* block = active_handles();
       
  1871     set_active_handles(NULL);
       
  1872     JNIHandleBlock::release_block(block);
       
  1873   }
       
  1874 
       
  1875   if (free_handle_block() != NULL) {
       
  1876     JNIHandleBlock* block = free_handle_block();
       
  1877     set_free_handle_block(NULL);
       
  1878     JNIHandleBlock::release_block(block);
       
  1879   }
       
  1880 
       
  1881   // These have to be removed while this is still a valid thread.
       
  1882   remove_stack_guard_pages();
       
  1883 
       
  1884   if (UseTLAB) {
       
  1885     tlab().make_parsable(true);  // retire TLAB
       
  1886   }
       
  1887 
       
  1888   if (JvmtiEnv::environments_might_exist()) {
       
  1889     JvmtiExport::cleanup_thread(this);
       
  1890   }
       
  1891 
       
  1892   // We must flush any deferred card marks before removing a thread from
       
  1893   // the list of active threads.
       
  1894   Universe::heap()->flush_deferred_store_barrier(this);
       
  1895   assert(deferred_card_mark().is_empty(), "Should have been flushed");
       
  1896 
       
  1897 #if INCLUDE_ALL_GCS
       
  1898   // We must flush the G1-related buffers before removing a thread
       
  1899   // from the list of active threads. We must do this after any deferred
       
  1900   // card marks have been flushed (above) so that any entries that are
       
  1901   // added to the thread's dirty card queue as a result are not lost.
       
  1902   if (UseG1GC) {
       
  1903     flush_barrier_queues();
       
  1904   }
       
  1905 #endif // INCLUDE_ALL_GCS
       
  1906 
       
  1907   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
       
  1908     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
       
  1909     os::current_thread_id());
       
  1910 
       
  1911   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
       
  1912   Threads::remove(this);
       
  1913 }
       
  1914 
       
  1915 #if INCLUDE_ALL_GCS
       
  1916 // Flush G1-related queues.
       
  1917 void JavaThread::flush_barrier_queues() {
       
  1918   satb_mark_queue().flush();
       
  1919   dirty_card_queue().flush();
       
  1920 }
       
  1921 
       
  1922 void JavaThread::initialize_queues() {
       
  1923   assert(!SafepointSynchronize::is_at_safepoint(),
       
  1924          "we should not be at a safepoint");
       
  1925 
       
  1926   SATBMarkQueue& satb_queue = satb_mark_queue();
       
  1927   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
       
  1928   // The SATB queue should have been constructed with its active
       
  1929   // field set to false.
       
  1930   assert(!satb_queue.is_active(), "SATB queue should not be active");
       
  1931   assert(satb_queue.is_empty(), "SATB queue should be empty");
       
  1932   // If we are creating the thread during a marking cycle, we should
       
  1933   // set the active field of the SATB queue to true.
       
  1934   if (satb_queue_set.is_active()) {
       
  1935     satb_queue.set_active(true);
       
  1936   }
       
  1937 
       
  1938   DirtyCardQueue& dirty_queue = dirty_card_queue();
       
  1939   // The dirty card queue should have been constructed with its
       
  1940   // active field set to true.
       
  1941   assert(dirty_queue.is_active(), "dirty card queue should be active");
       
  1942 }
       
  1943 #endif // INCLUDE_ALL_GCS
       
  1944 
       
  1945 void JavaThread::cleanup_failed_attach_current_thread() {
       
  1946   if (active_handles() != NULL) {
       
  1947     JNIHandleBlock* block = active_handles();
       
  1948     set_active_handles(NULL);
       
  1949     JNIHandleBlock::release_block(block);
       
  1950   }
       
  1951 
       
  1952   if (free_handle_block() != NULL) {
       
  1953     JNIHandleBlock* block = free_handle_block();
       
  1954     set_free_handle_block(NULL);
       
  1955     JNIHandleBlock::release_block(block);
       
  1956   }
       
  1957 
       
  1958   // These have to be removed while this is still a valid thread.
       
  1959   remove_stack_guard_pages();
       
  1960 
       
  1961   if (UseTLAB) {
       
  1962     tlab().make_parsable(true);  // retire TLAB, if any
       
  1963   }
       
  1964 
       
  1965 #if INCLUDE_ALL_GCS
       
  1966   if (UseG1GC) {
       
  1967     flush_barrier_queues();
       
  1968   }
       
  1969 #endif // INCLUDE_ALL_GCS
       
  1970 
       
  1971   Threads::remove(this);
       
  1972   delete this;
       
  1973 }
       
  1974 
       
  1975 
       
  1976 
       
  1977 
       
  1978 JavaThread* JavaThread::active() {
       
  1979   Thread* thread = Thread::current();
       
  1980   if (thread->is_Java_thread()) {
       
  1981     return (JavaThread*) thread;
       
  1982   } else {
       
  1983     assert(thread->is_VM_thread(), "this must be a vm thread");
       
  1984     VM_Operation* op = ((VMThread*) thread)->vm_operation();
       
  1985     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
       
  1986     assert(ret->is_Java_thread(), "must be a Java thread");
       
  1987     return ret;
       
  1988   }
       
  1989 }
       
  1990 
       
  1991 bool JavaThread::is_lock_owned(address adr) const {
       
  1992   if (Thread::is_lock_owned(adr)) return true;
       
  1993 
       
  1994   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
       
  1995     if (chunk->contains(adr)) return true;
       
  1996   }
       
  1997 
       
  1998   return false;
       
  1999 }
       
  2000 
       
  2001 
       
  2002 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
       
  2003   chunk->set_next(monitor_chunks());
       
  2004   set_monitor_chunks(chunk);
       
  2005 }
       
  2006 
       
  2007 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
       
  2008   guarantee(monitor_chunks() != NULL, "must be non empty");
       
  2009   if (monitor_chunks() == chunk) {
       
  2010     set_monitor_chunks(chunk->next());
       
  2011   } else {
       
  2012     MonitorChunk* prev = monitor_chunks();
       
  2013     while (prev->next() != chunk) prev = prev->next();
       
  2014     prev->set_next(chunk->next());
       
  2015   }
       
  2016 }
       
  2017 
       
  2018 // JVM support.
       
  2019 
       
  2020 // Note: this function shouldn't block if it's called in
       
  2021 // _thread_in_native_trans state (such as from
       
  2022 // check_special_condition_for_native_trans()).
       
  2023 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
       
  2024 
       
  2025   if (has_last_Java_frame() && has_async_condition()) {
       
  2026     // If we are at a polling page safepoint (not a poll return)
       
  2027     // then we must defer async exception because live registers
       
  2028     // will be clobbered by the exception path. Poll return is
       
  2029     // ok because the call we a returning from already collides
       
  2030     // with exception handling registers and so there is no issue.
       
  2031     // (The exception handling path kills call result registers but
       
  2032     //  this is ok since the exception kills the result anyway).
       
  2033 
       
  2034     if (is_at_poll_safepoint()) {
       
  2035       // if the code we are returning to has deoptimized we must defer
       
  2036       // the exception otherwise live registers get clobbered on the
       
  2037       // exception path before deoptimization is able to retrieve them.
       
  2038       //
       
  2039       RegisterMap map(this, false);
       
  2040       frame caller_fr = last_frame().sender(&map);
       
  2041       assert(caller_fr.is_compiled_frame(), "what?");
       
  2042       if (caller_fr.is_deoptimized_frame()) {
       
  2043         log_info(exceptions)("deferred async exception at compiled safepoint");
       
  2044         return;
       
  2045       }
       
  2046     }
       
  2047   }
       
  2048 
       
  2049   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
       
  2050   if (condition == _no_async_condition) {
       
  2051     // Conditions have changed since has_special_runtime_exit_condition()
       
  2052     // was called:
       
  2053     // - if we were here only because of an external suspend request,
       
  2054     //   then that was taken care of above (or cancelled) so we are done
       
  2055     // - if we were here because of another async request, then it has
       
  2056     //   been cleared between the has_special_runtime_exit_condition()
       
  2057     //   and now so again we are done
       
  2058     return;
       
  2059   }
       
  2060 
       
  2061   // Check for pending async. exception
       
  2062   if (_pending_async_exception != NULL) {
       
  2063     // Only overwrite an already pending exception, if it is not a threadDeath.
       
  2064     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
       
  2065 
       
  2066       // We cannot call Exceptions::_throw(...) here because we cannot block
       
  2067       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
       
  2068 
       
  2069       LogTarget(Info, exceptions) lt;
       
  2070       if (lt.is_enabled()) {
       
  2071         ResourceMark rm;
       
  2072         LogStream ls(lt);
       
  2073         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
       
  2074           if (has_last_Java_frame()) {
       
  2075             frame f = last_frame();
       
  2076            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
       
  2077           }
       
  2078         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
       
  2079       }
       
  2080       _pending_async_exception = NULL;
       
  2081       clear_has_async_exception();
       
  2082     }
       
  2083   }
       
  2084 
       
  2085   if (check_unsafe_error &&
       
  2086       condition == _async_unsafe_access_error && !has_pending_exception()) {
       
  2087     condition = _no_async_condition;  // done
       
  2088     switch (thread_state()) {
       
  2089     case _thread_in_vm: {
       
  2090       JavaThread* THREAD = this;
       
  2091       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
       
  2092     }
       
  2093     case _thread_in_native: {
       
  2094       ThreadInVMfromNative tiv(this);
       
  2095       JavaThread* THREAD = this;
       
  2096       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
       
  2097     }
       
  2098     case _thread_in_Java: {
       
  2099       ThreadInVMfromJava tiv(this);
       
  2100       JavaThread* THREAD = this;
       
  2101       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
       
  2102     }
       
  2103     default:
       
  2104       ShouldNotReachHere();
       
  2105     }
       
  2106   }
       
  2107 
       
  2108   assert(condition == _no_async_condition || has_pending_exception() ||
       
  2109          (!check_unsafe_error && condition == _async_unsafe_access_error),
       
  2110          "must have handled the async condition, if no exception");
       
  2111 }
       
  2112 
       
  2113 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
       
  2114   //
       
  2115   // Check for pending external suspend. Internal suspend requests do
       
  2116   // not use handle_special_runtime_exit_condition().
       
  2117   // If JNIEnv proxies are allowed, don't self-suspend if the target
       
  2118   // thread is not the current thread. In older versions of jdbx, jdbx
       
  2119   // threads could call into the VM with another thread's JNIEnv so we
       
  2120   // can be here operating on behalf of a suspended thread (4432884).
       
  2121   bool do_self_suspend = is_external_suspend_with_lock();
       
  2122   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
       
  2123     //
       
  2124     // Because thread is external suspended the safepoint code will count
       
  2125     // thread as at a safepoint. This can be odd because we can be here
       
  2126     // as _thread_in_Java which would normally transition to _thread_blocked
       
  2127     // at a safepoint. We would like to mark the thread as _thread_blocked
       
  2128     // before calling java_suspend_self like all other callers of it but
       
  2129     // we must then observe proper safepoint protocol. (We can't leave
       
  2130     // _thread_blocked with a safepoint in progress). However we can be
       
  2131     // here as _thread_in_native_trans so we can't use a normal transition
       
  2132     // constructor/destructor pair because they assert on that type of
       
  2133     // transition. We could do something like:
       
  2134     //
       
  2135     // JavaThreadState state = thread_state();
       
  2136     // set_thread_state(_thread_in_vm);
       
  2137     // {
       
  2138     //   ThreadBlockInVM tbivm(this);
       
  2139     //   java_suspend_self()
       
  2140     // }
       
  2141     // set_thread_state(_thread_in_vm_trans);
       
  2142     // if (safepoint) block;
       
  2143     // set_thread_state(state);
       
  2144     //
       
  2145     // but that is pretty messy. Instead we just go with the way the
       
  2146     // code has worked before and note that this is the only path to
       
  2147     // java_suspend_self that doesn't put the thread in _thread_blocked
       
  2148     // mode.
       
  2149 
       
  2150     frame_anchor()->make_walkable(this);
       
  2151     java_suspend_self();
       
  2152 
       
  2153     // We might be here for reasons in addition to the self-suspend request
       
  2154     // so check for other async requests.
       
  2155   }
       
  2156 
       
  2157   if (check_asyncs) {
       
  2158     check_and_handle_async_exceptions();
       
  2159   }
       
  2160 #if INCLUDE_TRACE
       
  2161   if (is_trace_suspend()) {
       
  2162     TRACE_SUSPEND_THREAD(this);
       
  2163   }
       
  2164 #endif
       
  2165 }
       
  2166 
       
  2167 void JavaThread::send_thread_stop(oop java_throwable)  {
       
  2168   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
       
  2169   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
       
  2170   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
       
  2171 
       
  2172   // Do not throw asynchronous exceptions against the compiler thread
       
  2173   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
       
  2174   if (!can_call_java()) return;
       
  2175 
       
  2176   {
       
  2177     // Actually throw the Throwable against the target Thread - however
       
  2178     // only if there is no thread death exception installed already.
       
  2179     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
       
  2180       // If the topmost frame is a runtime stub, then we are calling into
       
  2181       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
       
  2182       // must deoptimize the caller before continuing, as the compiled  exception handler table
       
  2183       // may not be valid
       
  2184       if (has_last_Java_frame()) {
       
  2185         frame f = last_frame();
       
  2186         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
       
  2187           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
       
  2188           RegisterMap reg_map(this, UseBiasedLocking);
       
  2189           frame compiled_frame = f.sender(&reg_map);
       
  2190           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
       
  2191             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
       
  2192           }
       
  2193         }
       
  2194       }
       
  2195 
       
  2196       // Set async. pending exception in thread.
       
  2197       set_pending_async_exception(java_throwable);
       
  2198 
       
  2199       if (log_is_enabled(Info, exceptions)) {
       
  2200          ResourceMark rm;
       
  2201         log_info(exceptions)("Pending Async. exception installed of type: %s",
       
  2202                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
       
  2203       }
       
  2204       // for AbortVMOnException flag
       
  2205       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
       
  2206     }
       
  2207   }
       
  2208 
       
  2209 
       
  2210   // Interrupt thread so it will wake up from a potential wait()
       
  2211   Thread::interrupt(this);
       
  2212 }
       
  2213 
       
  2214 // External suspension mechanism.
       
  2215 //
       
  2216 // Tell the VM to suspend a thread when ever it knows that it does not hold on
       
  2217 // to any VM_locks and it is at a transition
       
  2218 // Self-suspension will happen on the transition out of the vm.
       
  2219 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
       
  2220 //
       
  2221 // Guarantees on return:
       
  2222 //   + Target thread will not execute any new bytecode (that's why we need to
       
  2223 //     force a safepoint)
       
  2224 //   + Target thread will not enter any new monitors
       
  2225 //
       
  2226 void JavaThread::java_suspend() {
       
  2227   { MutexLocker mu(Threads_lock);
       
  2228     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
       
  2229       return;
       
  2230     }
       
  2231   }
       
  2232 
       
  2233   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
       
  2234     if (!is_external_suspend()) {
       
  2235       // a racing resume has cancelled us; bail out now
       
  2236       return;
       
  2237     }
       
  2238 
       
  2239     // suspend is done
       
  2240     uint32_t debug_bits = 0;
       
  2241     // Warning: is_ext_suspend_completed() may temporarily drop the
       
  2242     // SR_lock to allow the thread to reach a stable thread state if
       
  2243     // it is currently in a transient thread state.
       
  2244     if (is_ext_suspend_completed(false /* !called_by_wait */,
       
  2245                                  SuspendRetryDelay, &debug_bits)) {
       
  2246       return;
       
  2247     }
       
  2248   }
       
  2249 
       
  2250   VM_ThreadSuspend vm_suspend;
       
  2251   VMThread::execute(&vm_suspend);
       
  2252 }
       
  2253 
       
  2254 // Part II of external suspension.
       
  2255 // A JavaThread self suspends when it detects a pending external suspend
       
  2256 // request. This is usually on transitions. It is also done in places
       
  2257 // where continuing to the next transition would surprise the caller,
       
  2258 // e.g., monitor entry.
       
  2259 //
       
  2260 // Returns the number of times that the thread self-suspended.
       
  2261 //
       
  2262 // Note: DO NOT call java_suspend_self() when you just want to block current
       
  2263 //       thread. java_suspend_self() is the second stage of cooperative
       
  2264 //       suspension for external suspend requests and should only be used
       
  2265 //       to complete an external suspend request.
       
  2266 //
       
  2267 int JavaThread::java_suspend_self() {
       
  2268   int ret = 0;
       
  2269 
       
  2270   // we are in the process of exiting so don't suspend
       
  2271   if (is_exiting()) {
       
  2272     clear_external_suspend();
       
  2273     return ret;
       
  2274   }
       
  2275 
       
  2276   assert(_anchor.walkable() ||
       
  2277          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
       
  2278          "must have walkable stack");
       
  2279 
       
  2280   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
       
  2281 
       
  2282   assert(!this->is_ext_suspended(),
       
  2283          "a thread trying to self-suspend should not already be suspended");
       
  2284 
       
  2285   if (this->is_suspend_equivalent()) {
       
  2286     // If we are self-suspending as a result of the lifting of a
       
  2287     // suspend equivalent condition, then the suspend_equivalent
       
  2288     // flag is not cleared until we set the ext_suspended flag so
       
  2289     // that wait_for_ext_suspend_completion() returns consistent
       
  2290     // results.
       
  2291     this->clear_suspend_equivalent();
       
  2292   }
       
  2293 
       
  2294   // A racing resume may have cancelled us before we grabbed SR_lock
       
  2295   // above. Or another external suspend request could be waiting for us
       
  2296   // by the time we return from SR_lock()->wait(). The thread
       
  2297   // that requested the suspension may already be trying to walk our
       
  2298   // stack and if we return now, we can change the stack out from under
       
  2299   // it. This would be a "bad thing (TM)" and cause the stack walker
       
  2300   // to crash. We stay self-suspended until there are no more pending
       
  2301   // external suspend requests.
       
  2302   while (is_external_suspend()) {
       
  2303     ret++;
       
  2304     this->set_ext_suspended();
       
  2305 
       
  2306     // _ext_suspended flag is cleared by java_resume()
       
  2307     while (is_ext_suspended()) {
       
  2308       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
       
  2309     }
       
  2310   }
       
  2311 
       
  2312   return ret;
       
  2313 }
       
  2314 
       
  2315 #ifdef ASSERT
       
  2316 // verify the JavaThread has not yet been published in the Threads::list, and
       
  2317 // hence doesn't need protection from concurrent access at this stage
       
  2318 void JavaThread::verify_not_published() {
       
  2319   if (!Threads_lock->owned_by_self()) {
       
  2320     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
       
  2321     assert(!Threads::includes(this),
       
  2322            "java thread shouldn't have been published yet!");
       
  2323   } else {
       
  2324     assert(!Threads::includes(this),
       
  2325            "java thread shouldn't have been published yet!");
       
  2326   }
       
  2327 }
       
  2328 #endif
       
  2329 
       
  2330 // Slow path when the native==>VM/Java barriers detect a safepoint is in
       
  2331 // progress or when _suspend_flags is non-zero.
       
  2332 // Current thread needs to self-suspend if there is a suspend request and/or
       
  2333 // block if a safepoint is in progress.
       
  2334 // Async exception ISN'T checked.
       
  2335 // Note only the ThreadInVMfromNative transition can call this function
       
  2336 // directly and when thread state is _thread_in_native_trans
       
  2337 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
       
  2338   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
       
  2339 
       
  2340   JavaThread *curJT = JavaThread::current();
       
  2341   bool do_self_suspend = thread->is_external_suspend();
       
  2342 
       
  2343   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
       
  2344 
       
  2345   // If JNIEnv proxies are allowed, don't self-suspend if the target
       
  2346   // thread is not the current thread. In older versions of jdbx, jdbx
       
  2347   // threads could call into the VM with another thread's JNIEnv so we
       
  2348   // can be here operating on behalf of a suspended thread (4432884).
       
  2349   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
       
  2350     JavaThreadState state = thread->thread_state();
       
  2351 
       
  2352     // We mark this thread_blocked state as a suspend-equivalent so
       
  2353     // that a caller to is_ext_suspend_completed() won't be confused.
       
  2354     // The suspend-equivalent state is cleared by java_suspend_self().
       
  2355     thread->set_suspend_equivalent();
       
  2356 
       
  2357     // If the safepoint code sees the _thread_in_native_trans state, it will
       
  2358     // wait until the thread changes to other thread state. There is no
       
  2359     // guarantee on how soon we can obtain the SR_lock and complete the
       
  2360     // self-suspend request. It would be a bad idea to let safepoint wait for
       
  2361     // too long. Temporarily change the state to _thread_blocked to
       
  2362     // let the VM thread know that this thread is ready for GC. The problem
       
  2363     // of changing thread state is that safepoint could happen just after
       
  2364     // java_suspend_self() returns after being resumed, and VM thread will
       
  2365     // see the _thread_blocked state. We must check for safepoint
       
  2366     // after restoring the state and make sure we won't leave while a safepoint
       
  2367     // is in progress.
       
  2368     thread->set_thread_state(_thread_blocked);
       
  2369     thread->java_suspend_self();
       
  2370     thread->set_thread_state(state);
       
  2371 
       
  2372     InterfaceSupport::serialize_thread_state_with_handler(thread);
       
  2373   }
       
  2374 
       
  2375   if (SafepointSynchronize::do_call_back()) {
       
  2376     // If we are safepointing, then block the caller which may not be
       
  2377     // the same as the target thread (see above).
       
  2378     SafepointSynchronize::block(curJT);
       
  2379   }
       
  2380 
       
  2381   if (thread->is_deopt_suspend()) {
       
  2382     thread->clear_deopt_suspend();
       
  2383     RegisterMap map(thread, false);
       
  2384     frame f = thread->last_frame();
       
  2385     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
       
  2386       f = f.sender(&map);
       
  2387     }
       
  2388     if (f.id() == thread->must_deopt_id()) {
       
  2389       thread->clear_must_deopt_id();
       
  2390       f.deoptimize(thread);
       
  2391     } else {
       
  2392       fatal("missed deoptimization!");
       
  2393     }
       
  2394   }
       
  2395 #if INCLUDE_TRACE
       
  2396   if (thread->is_trace_suspend()) {
       
  2397     TRACE_SUSPEND_THREAD(thread);
       
  2398   }
       
  2399 #endif
       
  2400 }
       
  2401 
       
  2402 // Slow path when the native==>VM/Java barriers detect a safepoint is in
       
  2403 // progress or when _suspend_flags is non-zero.
       
  2404 // Current thread needs to self-suspend if there is a suspend request and/or
       
  2405 // block if a safepoint is in progress.
       
  2406 // Also check for pending async exception (not including unsafe access error).
       
  2407 // Note only the native==>VM/Java barriers can call this function and when
       
  2408 // thread state is _thread_in_native_trans.
       
  2409 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
       
  2410   check_safepoint_and_suspend_for_native_trans(thread);
       
  2411 
       
  2412   if (thread->has_async_exception()) {
       
  2413     // We are in _thread_in_native_trans state, don't handle unsafe
       
  2414     // access error since that may block.
       
  2415     thread->check_and_handle_async_exceptions(false);
       
  2416   }
       
  2417 }
       
  2418 
       
  2419 // This is a variant of the normal
       
  2420 // check_special_condition_for_native_trans with slightly different
       
  2421 // semantics for use by critical native wrappers.  It does all the
       
  2422 // normal checks but also performs the transition back into
       
  2423 // thread_in_Java state.  This is required so that critical natives
       
  2424 // can potentially block and perform a GC if they are the last thread
       
  2425 // exiting the GCLocker.
       
  2426 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
       
  2427   check_special_condition_for_native_trans(thread);
       
  2428 
       
  2429   // Finish the transition
       
  2430   thread->set_thread_state(_thread_in_Java);
       
  2431 
       
  2432   if (thread->do_critical_native_unlock()) {
       
  2433     ThreadInVMfromJavaNoAsyncException tiv(thread);
       
  2434     GCLocker::unlock_critical(thread);
       
  2435     thread->clear_critical_native_unlock();
       
  2436   }
       
  2437 }
       
  2438 
       
  2439 // We need to guarantee the Threads_lock here, since resumes are not
       
  2440 // allowed during safepoint synchronization
       
  2441 // Can only resume from an external suspension
       
  2442 void JavaThread::java_resume() {
       
  2443   assert_locked_or_safepoint(Threads_lock);
       
  2444 
       
  2445   // Sanity check: thread is gone, has started exiting or the thread
       
  2446   // was not externally suspended.
       
  2447   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
       
  2448     return;
       
  2449   }
       
  2450 
       
  2451   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
       
  2452 
       
  2453   clear_external_suspend();
       
  2454 
       
  2455   if (is_ext_suspended()) {
       
  2456     clear_ext_suspended();
       
  2457     SR_lock()->notify_all();
       
  2458   }
       
  2459 }
       
  2460 
       
  2461 size_t JavaThread::_stack_red_zone_size = 0;
       
  2462 size_t JavaThread::_stack_yellow_zone_size = 0;
       
  2463 size_t JavaThread::_stack_reserved_zone_size = 0;
       
  2464 size_t JavaThread::_stack_shadow_zone_size = 0;
       
  2465 
       
  2466 void JavaThread::create_stack_guard_pages() {
       
  2467   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
       
  2468   address low_addr = stack_end();
       
  2469   size_t len = stack_guard_zone_size();
       
  2470 
       
  2471   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
       
  2472   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
       
  2473 
       
  2474   int must_commit = os::must_commit_stack_guard_pages();
       
  2475   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
       
  2476 
       
  2477   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
       
  2478     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
       
  2479     return;
       
  2480   }
       
  2481 
       
  2482   if (os::guard_memory((char *) low_addr, len)) {
       
  2483     _stack_guard_state = stack_guard_enabled;
       
  2484   } else {
       
  2485     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
       
  2486       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
       
  2487     if (os::uncommit_memory((char *) low_addr, len)) {
       
  2488       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
       
  2489     }
       
  2490     return;
       
  2491   }
       
  2492 
       
  2493   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
       
  2494     PTR_FORMAT "-" PTR_FORMAT ".",
       
  2495     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
       
  2496 }
       
  2497 
       
  2498 void JavaThread::remove_stack_guard_pages() {
       
  2499   assert(Thread::current() == this, "from different thread");
       
  2500   if (_stack_guard_state == stack_guard_unused) return;
       
  2501   address low_addr = stack_end();
       
  2502   size_t len = stack_guard_zone_size();
       
  2503 
       
  2504   if (os::must_commit_stack_guard_pages()) {
       
  2505     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
       
  2506       _stack_guard_state = stack_guard_unused;
       
  2507     } else {
       
  2508       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
       
  2509         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
       
  2510       return;
       
  2511     }
       
  2512   } else {
       
  2513     if (_stack_guard_state == stack_guard_unused) return;
       
  2514     if (os::unguard_memory((char *) low_addr, len)) {
       
  2515       _stack_guard_state = stack_guard_unused;
       
  2516     } else {
       
  2517       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
       
  2518         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
       
  2519       return;
       
  2520     }
       
  2521   }
       
  2522 
       
  2523   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
       
  2524     PTR_FORMAT "-" PTR_FORMAT ".",
       
  2525     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
       
  2526 }
       
  2527 
       
  2528 void JavaThread::enable_stack_reserved_zone() {
       
  2529   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
       
  2530   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
       
  2531 
       
  2532   // The base notation is from the stack's point of view, growing downward.
       
  2533   // We need to adjust it to work correctly with guard_memory()
       
  2534   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
       
  2535 
       
  2536   guarantee(base < stack_base(),"Error calculating stack reserved zone");
       
  2537   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
       
  2538 
       
  2539   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
       
  2540     _stack_guard_state = stack_guard_enabled;
       
  2541   } else {
       
  2542     warning("Attempt to guard stack reserved zone failed.");
       
  2543   }
       
  2544   enable_register_stack_guard();
       
  2545 }
       
  2546 
       
  2547 void JavaThread::disable_stack_reserved_zone() {
       
  2548   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
       
  2549   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
       
  2550 
       
  2551   // Simply return if called for a thread that does not use guard pages.
       
  2552   if (_stack_guard_state == stack_guard_unused) return;
       
  2553 
       
  2554   // The base notation is from the stack's point of view, growing downward.
       
  2555   // We need to adjust it to work correctly with guard_memory()
       
  2556   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
       
  2557 
       
  2558   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
       
  2559     _stack_guard_state = stack_guard_reserved_disabled;
       
  2560   } else {
       
  2561     warning("Attempt to unguard stack reserved zone failed.");
       
  2562   }
       
  2563   disable_register_stack_guard();
       
  2564 }
       
  2565 
       
  2566 void JavaThread::enable_stack_yellow_reserved_zone() {
       
  2567   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
       
  2568   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
       
  2569 
       
  2570   // The base notation is from the stacks point of view, growing downward.
       
  2571   // We need to adjust it to work correctly with guard_memory()
       
  2572   address base = stack_red_zone_base();
       
  2573 
       
  2574   guarantee(base < stack_base(), "Error calculating stack yellow zone");
       
  2575   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
       
  2576 
       
  2577   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
       
  2578     _stack_guard_state = stack_guard_enabled;
       
  2579   } else {
       
  2580     warning("Attempt to guard stack yellow zone failed.");
       
  2581   }
       
  2582   enable_register_stack_guard();
       
  2583 }
       
  2584 
       
  2585 void JavaThread::disable_stack_yellow_reserved_zone() {
       
  2586   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
       
  2587   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
       
  2588 
       
  2589   // Simply return if called for a thread that does not use guard pages.
       
  2590   if (_stack_guard_state == stack_guard_unused) return;
       
  2591 
       
  2592   // The base notation is from the stacks point of view, growing downward.
       
  2593   // We need to adjust it to work correctly with guard_memory()
       
  2594   address base = stack_red_zone_base();
       
  2595 
       
  2596   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
       
  2597     _stack_guard_state = stack_guard_yellow_reserved_disabled;
       
  2598   } else {
       
  2599     warning("Attempt to unguard stack yellow zone failed.");
       
  2600   }
       
  2601   disable_register_stack_guard();
       
  2602 }
       
  2603 
       
  2604 void JavaThread::enable_stack_red_zone() {
       
  2605   // The base notation is from the stacks point of view, growing downward.
       
  2606   // We need to adjust it to work correctly with guard_memory()
       
  2607   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
       
  2608   address base = stack_red_zone_base() - stack_red_zone_size();
       
  2609 
       
  2610   guarantee(base < stack_base(), "Error calculating stack red zone");
       
  2611   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
       
  2612 
       
  2613   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
       
  2614     warning("Attempt to guard stack red zone failed.");
       
  2615   }
       
  2616 }
       
  2617 
       
  2618 void JavaThread::disable_stack_red_zone() {
       
  2619   // The base notation is from the stacks point of view, growing downward.
       
  2620   // We need to adjust it to work correctly with guard_memory()
       
  2621   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
       
  2622   address base = stack_red_zone_base() - stack_red_zone_size();
       
  2623   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
       
  2624     warning("Attempt to unguard stack red zone failed.");
       
  2625   }
       
  2626 }
       
  2627 
       
  2628 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
       
  2629   // ignore is there is no stack
       
  2630   if (!has_last_Java_frame()) return;
       
  2631   // traverse the stack frames. Starts from top frame.
       
  2632   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
       
  2633     frame* fr = fst.current();
       
  2634     f(fr, fst.register_map());
       
  2635   }
       
  2636 }
       
  2637 
       
  2638 
       
  2639 #ifndef PRODUCT
       
  2640 // Deoptimization
       
  2641 // Function for testing deoptimization
       
  2642 void JavaThread::deoptimize() {
       
  2643   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
       
  2644   StackFrameStream fst(this, UseBiasedLocking);
       
  2645   bool deopt = false;           // Dump stack only if a deopt actually happens.
       
  2646   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
       
  2647   // Iterate over all frames in the thread and deoptimize
       
  2648   for (; !fst.is_done(); fst.next()) {
       
  2649     if (fst.current()->can_be_deoptimized()) {
       
  2650 
       
  2651       if (only_at) {
       
  2652         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
       
  2653         // consists of comma or carriage return separated numbers so
       
  2654         // search for the current bci in that string.
       
  2655         address pc = fst.current()->pc();
       
  2656         nmethod* nm =  (nmethod*) fst.current()->cb();
       
  2657         ScopeDesc* sd = nm->scope_desc_at(pc);
       
  2658         char buffer[8];
       
  2659         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
       
  2660         size_t len = strlen(buffer);
       
  2661         const char * found = strstr(DeoptimizeOnlyAt, buffer);
       
  2662         while (found != NULL) {
       
  2663           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
       
  2664               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
       
  2665             // Check that the bci found is bracketed by terminators.
       
  2666             break;
       
  2667           }
       
  2668           found = strstr(found + 1, buffer);
       
  2669         }
       
  2670         if (!found) {
       
  2671           continue;
       
  2672         }
       
  2673       }
       
  2674 
       
  2675       if (DebugDeoptimization && !deopt) {
       
  2676         deopt = true; // One-time only print before deopt
       
  2677         tty->print_cr("[BEFORE Deoptimization]");
       
  2678         trace_frames();
       
  2679         trace_stack();
       
  2680       }
       
  2681       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
       
  2682     }
       
  2683   }
       
  2684 
       
  2685   if (DebugDeoptimization && deopt) {
       
  2686     tty->print_cr("[AFTER Deoptimization]");
       
  2687     trace_frames();
       
  2688   }
       
  2689 }
       
  2690 
       
  2691 
       
  2692 // Make zombies
       
  2693 void JavaThread::make_zombies() {
       
  2694   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
       
  2695     if (fst.current()->can_be_deoptimized()) {
       
  2696       // it is a Java nmethod
       
  2697       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
       
  2698       nm->make_not_entrant();
       
  2699     }
       
  2700   }
       
  2701 }
       
  2702 #endif // PRODUCT
       
  2703 
       
  2704 
       
  2705 void JavaThread::deoptimized_wrt_marked_nmethods() {
       
  2706   if (!has_last_Java_frame()) return;
       
  2707   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
       
  2708   StackFrameStream fst(this, UseBiasedLocking);
       
  2709   for (; !fst.is_done(); fst.next()) {
       
  2710     if (fst.current()->should_be_deoptimized()) {
       
  2711       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
       
  2712     }
       
  2713   }
       
  2714 }
       
  2715 
       
  2716 
       
  2717 // If the caller is a NamedThread, then remember, in the current scope,
       
  2718 // the given JavaThread in its _processed_thread field.
       
  2719 class RememberProcessedThread: public StackObj {
       
  2720   NamedThread* _cur_thr;
       
  2721  public:
       
  2722   RememberProcessedThread(JavaThread* jthr) {
       
  2723     Thread* thread = Thread::current();
       
  2724     if (thread->is_Named_thread()) {
       
  2725       _cur_thr = (NamedThread *)thread;
       
  2726       _cur_thr->set_processed_thread(jthr);
       
  2727     } else {
       
  2728       _cur_thr = NULL;
       
  2729     }
       
  2730   }
       
  2731 
       
  2732   ~RememberProcessedThread() {
       
  2733     if (_cur_thr) {
       
  2734       _cur_thr->set_processed_thread(NULL);
       
  2735     }
       
  2736   }
       
  2737 };
       
  2738 
       
  2739 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
       
  2740   // Verify that the deferred card marks have been flushed.
       
  2741   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
       
  2742 
       
  2743   // Traverse the GCHandles
       
  2744   Thread::oops_do(f, cf);
       
  2745 
       
  2746   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
       
  2747 
       
  2748   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
       
  2749          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
       
  2750 
       
  2751   if (has_last_Java_frame()) {
       
  2752     // Record JavaThread to GC thread
       
  2753     RememberProcessedThread rpt(this);
       
  2754 
       
  2755     // Traverse the privileged stack
       
  2756     if (_privileged_stack_top != NULL) {
       
  2757       _privileged_stack_top->oops_do(f);
       
  2758     }
       
  2759 
       
  2760     // traverse the registered growable array
       
  2761     if (_array_for_gc != NULL) {
       
  2762       for (int index = 0; index < _array_for_gc->length(); index++) {
       
  2763         f->do_oop(_array_for_gc->adr_at(index));
       
  2764       }
       
  2765     }
       
  2766 
       
  2767     // Traverse the monitor chunks
       
  2768     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
       
  2769       chunk->oops_do(f);
       
  2770     }
       
  2771 
       
  2772     // Traverse the execution stack
       
  2773     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
       
  2774       fst.current()->oops_do(f, cf, fst.register_map());
       
  2775     }
       
  2776   }
       
  2777 
       
  2778   // callee_target is never live across a gc point so NULL it here should
       
  2779   // it still contain a methdOop.
       
  2780 
       
  2781   set_callee_target(NULL);
       
  2782 
       
  2783   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
       
  2784   // If we have deferred set_locals there might be oops waiting to be
       
  2785   // written
       
  2786   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
       
  2787   if (list != NULL) {
       
  2788     for (int i = 0; i < list->length(); i++) {
       
  2789       list->at(i)->oops_do(f);
       
  2790     }
       
  2791   }
       
  2792 
       
  2793   // Traverse instance variables at the end since the GC may be moving things
       
  2794   // around using this function
       
  2795   f->do_oop((oop*) &_threadObj);
       
  2796   f->do_oop((oop*) &_vm_result);
       
  2797   f->do_oop((oop*) &_exception_oop);
       
  2798   f->do_oop((oop*) &_pending_async_exception);
       
  2799 
       
  2800   if (jvmti_thread_state() != NULL) {
       
  2801     jvmti_thread_state()->oops_do(f);
       
  2802   }
       
  2803 }
       
  2804 
       
  2805 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
       
  2806   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
       
  2807          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
       
  2808 
       
  2809   if (has_last_Java_frame()) {
       
  2810     // Traverse the execution stack
       
  2811     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
       
  2812       fst.current()->nmethods_do(cf);
       
  2813     }
       
  2814   }
       
  2815 }
       
  2816 
       
  2817 void JavaThread::metadata_do(void f(Metadata*)) {
       
  2818   if (has_last_Java_frame()) {
       
  2819     // Traverse the execution stack to call f() on the methods in the stack
       
  2820     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
       
  2821       fst.current()->metadata_do(f);
       
  2822     }
       
  2823   } else if (is_Compiler_thread()) {
       
  2824     // need to walk ciMetadata in current compile tasks to keep alive.
       
  2825     CompilerThread* ct = (CompilerThread*)this;
       
  2826     if (ct->env() != NULL) {
       
  2827       ct->env()->metadata_do(f);
       
  2828     }
       
  2829     if (ct->task() != NULL) {
       
  2830       ct->task()->metadata_do(f);
       
  2831     }
       
  2832   }
       
  2833 }
       
  2834 
       
  2835 // Printing
       
  2836 const char* _get_thread_state_name(JavaThreadState _thread_state) {
       
  2837   switch (_thread_state) {
       
  2838   case _thread_uninitialized:     return "_thread_uninitialized";
       
  2839   case _thread_new:               return "_thread_new";
       
  2840   case _thread_new_trans:         return "_thread_new_trans";
       
  2841   case _thread_in_native:         return "_thread_in_native";
       
  2842   case _thread_in_native_trans:   return "_thread_in_native_trans";
       
  2843   case _thread_in_vm:             return "_thread_in_vm";
       
  2844   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
       
  2845   case _thread_in_Java:           return "_thread_in_Java";
       
  2846   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
       
  2847   case _thread_blocked:           return "_thread_blocked";
       
  2848   case _thread_blocked_trans:     return "_thread_blocked_trans";
       
  2849   default:                        return "unknown thread state";
       
  2850   }
       
  2851 }
       
  2852 
       
  2853 #ifndef PRODUCT
       
  2854 void JavaThread::print_thread_state_on(outputStream *st) const {
       
  2855   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
       
  2856 };
       
  2857 void JavaThread::print_thread_state() const {
       
  2858   print_thread_state_on(tty);
       
  2859 }
       
  2860 #endif // PRODUCT
       
  2861 
       
  2862 // Called by Threads::print() for VM_PrintThreads operation
       
  2863 void JavaThread::print_on(outputStream *st) const {
       
  2864   st->print_raw("\"");
       
  2865   st->print_raw(get_thread_name());
       
  2866   st->print_raw("\" ");
       
  2867   oop thread_oop = threadObj();
       
  2868   if (thread_oop != NULL) {
       
  2869     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
       
  2870     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
       
  2871     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
       
  2872   }
       
  2873   Thread::print_on(st);
       
  2874   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
       
  2875   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
       
  2876   if (thread_oop != NULL) {
       
  2877     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
       
  2878   }
       
  2879 #ifndef PRODUCT
       
  2880   print_thread_state_on(st);
       
  2881   _safepoint_state->print_on(st);
       
  2882 #endif // PRODUCT
       
  2883   if (is_Compiler_thread()) {
       
  2884     CompilerThread* ct = (CompilerThread*)this;
       
  2885     if (ct->task() != NULL) {
       
  2886       st->print("   Compiling: ");
       
  2887       ct->task()->print(st, NULL, true, false);
       
  2888     } else {
       
  2889       st->print("   No compile task");
       
  2890     }
       
  2891     st->cr();
       
  2892   }
       
  2893 }
       
  2894 
       
  2895 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
       
  2896   st->print("%s", get_thread_name_string(buf, buflen));
       
  2897 }
       
  2898 
       
  2899 // Called by fatal error handler. The difference between this and
       
  2900 // JavaThread::print() is that we can't grab lock or allocate memory.
       
  2901 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
       
  2902   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
       
  2903   oop thread_obj = threadObj();
       
  2904   if (thread_obj != NULL) {
       
  2905     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
       
  2906   }
       
  2907   st->print(" [");
       
  2908   st->print("%s", _get_thread_state_name(_thread_state));
       
  2909   if (osthread()) {
       
  2910     st->print(", id=%d", osthread()->thread_id());
       
  2911   }
       
  2912   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
       
  2913             p2i(stack_end()), p2i(stack_base()));
       
  2914   st->print("]");
       
  2915   return;
       
  2916 }
       
  2917 
       
  2918 // Verification
       
  2919 
       
  2920 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
       
  2921 
       
  2922 void JavaThread::verify() {
       
  2923   // Verify oops in the thread.
       
  2924   oops_do(&VerifyOopClosure::verify_oop, NULL);
       
  2925 
       
  2926   // Verify the stack frames.
       
  2927   frames_do(frame_verify);
       
  2928 }
       
  2929 
       
  2930 // CR 6300358 (sub-CR 2137150)
       
  2931 // Most callers of this method assume that it can't return NULL but a
       
  2932 // thread may not have a name whilst it is in the process of attaching to
       
  2933 // the VM - see CR 6412693, and there are places where a JavaThread can be
       
  2934 // seen prior to having it's threadObj set (eg JNI attaching threads and
       
  2935 // if vm exit occurs during initialization). These cases can all be accounted
       
  2936 // for such that this method never returns NULL.
       
  2937 const char* JavaThread::get_thread_name() const {
       
  2938 #ifdef ASSERT
       
  2939   // early safepoints can hit while current thread does not yet have TLS
       
  2940   if (!SafepointSynchronize::is_at_safepoint()) {
       
  2941     Thread *cur = Thread::current();
       
  2942     if (!(cur->is_Java_thread() && cur == this)) {
       
  2943       // Current JavaThreads are allowed to get their own name without
       
  2944       // the Threads_lock.
       
  2945       assert_locked_or_safepoint(Threads_lock);
       
  2946     }
       
  2947   }
       
  2948 #endif // ASSERT
       
  2949   return get_thread_name_string();
       
  2950 }
       
  2951 
       
  2952 // Returns a non-NULL representation of this thread's name, or a suitable
       
  2953 // descriptive string if there is no set name
       
  2954 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
       
  2955   const char* name_str;
       
  2956   oop thread_obj = threadObj();
       
  2957   if (thread_obj != NULL) {
       
  2958     oop name = java_lang_Thread::name(thread_obj);
       
  2959     if (name != NULL) {
       
  2960       if (buf == NULL) {
       
  2961         name_str = java_lang_String::as_utf8_string(name);
       
  2962       } else {
       
  2963         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
       
  2964       }
       
  2965     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
       
  2966       name_str = "<no-name - thread is attaching>";
       
  2967     } else {
       
  2968       name_str = Thread::name();
       
  2969     }
       
  2970   } else {
       
  2971     name_str = Thread::name();
       
  2972   }
       
  2973   assert(name_str != NULL, "unexpected NULL thread name");
       
  2974   return name_str;
       
  2975 }
       
  2976 
       
  2977 
       
  2978 const char* JavaThread::get_threadgroup_name() const {
       
  2979   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
       
  2980   oop thread_obj = threadObj();
       
  2981   if (thread_obj != NULL) {
       
  2982     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
       
  2983     if (thread_group != NULL) {
       
  2984       // ThreadGroup.name can be null
       
  2985       return java_lang_ThreadGroup::name(thread_group);
       
  2986     }
       
  2987   }
       
  2988   return NULL;
       
  2989 }
       
  2990 
       
  2991 const char* JavaThread::get_parent_name() const {
       
  2992   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
       
  2993   oop thread_obj = threadObj();
       
  2994   if (thread_obj != NULL) {
       
  2995     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
       
  2996     if (thread_group != NULL) {
       
  2997       oop parent = java_lang_ThreadGroup::parent(thread_group);
       
  2998       if (parent != NULL) {
       
  2999         // ThreadGroup.name can be null
       
  3000         return java_lang_ThreadGroup::name(parent);
       
  3001       }
       
  3002     }
       
  3003   }
       
  3004   return NULL;
       
  3005 }
       
  3006 
       
  3007 ThreadPriority JavaThread::java_priority() const {
       
  3008   oop thr_oop = threadObj();
       
  3009   if (thr_oop == NULL) return NormPriority; // Bootstrapping
       
  3010   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
       
  3011   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
       
  3012   return priority;
       
  3013 }
       
  3014 
       
  3015 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
       
  3016 
       
  3017   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
       
  3018   // Link Java Thread object <-> C++ Thread
       
  3019 
       
  3020   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
       
  3021   // and put it into a new Handle.  The Handle "thread_oop" can then
       
  3022   // be used to pass the C++ thread object to other methods.
       
  3023 
       
  3024   // Set the Java level thread object (jthread) field of the
       
  3025   // new thread (a JavaThread *) to C++ thread object using the
       
  3026   // "thread_oop" handle.
       
  3027 
       
  3028   // Set the thread field (a JavaThread *) of the
       
  3029   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
       
  3030 
       
  3031   Handle thread_oop(Thread::current(),
       
  3032                     JNIHandles::resolve_non_null(jni_thread));
       
  3033   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
       
  3034          "must be initialized");
       
  3035   set_threadObj(thread_oop());
       
  3036   java_lang_Thread::set_thread(thread_oop(), this);
       
  3037 
       
  3038   if (prio == NoPriority) {
       
  3039     prio = java_lang_Thread::priority(thread_oop());
       
  3040     assert(prio != NoPriority, "A valid priority should be present");
       
  3041   }
       
  3042 
       
  3043   // Push the Java priority down to the native thread; needs Threads_lock
       
  3044   Thread::set_priority(this, prio);
       
  3045 
       
  3046   prepare_ext();
       
  3047 
       
  3048   // Add the new thread to the Threads list and set it in motion.
       
  3049   // We must have threads lock in order to call Threads::add.
       
  3050   // It is crucial that we do not block before the thread is
       
  3051   // added to the Threads list for if a GC happens, then the java_thread oop
       
  3052   // will not be visited by GC.
       
  3053   Threads::add(this);
       
  3054 }
       
  3055 
       
  3056 oop JavaThread::current_park_blocker() {
       
  3057   // Support for JSR-166 locks
       
  3058   oop thread_oop = threadObj();
       
  3059   if (thread_oop != NULL &&
       
  3060       JDK_Version::current().supports_thread_park_blocker()) {
       
  3061     return java_lang_Thread::park_blocker(thread_oop);
       
  3062   }
       
  3063   return NULL;
       
  3064 }
       
  3065 
       
  3066 
       
  3067 void JavaThread::print_stack_on(outputStream* st) {
       
  3068   if (!has_last_Java_frame()) return;
       
  3069   ResourceMark rm;
       
  3070   HandleMark   hm;
       
  3071 
       
  3072   RegisterMap reg_map(this);
       
  3073   vframe* start_vf = last_java_vframe(&reg_map);
       
  3074   int count = 0;
       
  3075   for (vframe* f = start_vf; f; f = f->sender()) {
       
  3076     if (f->is_java_frame()) {
       
  3077       javaVFrame* jvf = javaVFrame::cast(f);
       
  3078       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
       
  3079 
       
  3080       // Print out lock information
       
  3081       if (JavaMonitorsInStackTrace) {
       
  3082         jvf->print_lock_info_on(st, count);
       
  3083       }
       
  3084     } else {
       
  3085       // Ignore non-Java frames
       
  3086     }
       
  3087 
       
  3088     // Bail-out case for too deep stacks
       
  3089     count++;
       
  3090     if (MaxJavaStackTraceDepth == count) return;
       
  3091   }
       
  3092 }
       
  3093 
       
  3094 
       
  3095 // JVMTI PopFrame support
       
  3096 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
       
  3097   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
       
  3098   if (in_bytes(size_in_bytes) != 0) {
       
  3099     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
       
  3100     _popframe_preserved_args_size = in_bytes(size_in_bytes);
       
  3101     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
       
  3102   }
       
  3103 }
       
  3104 
       
  3105 void* JavaThread::popframe_preserved_args() {
       
  3106   return _popframe_preserved_args;
       
  3107 }
       
  3108 
       
  3109 ByteSize JavaThread::popframe_preserved_args_size() {
       
  3110   return in_ByteSize(_popframe_preserved_args_size);
       
  3111 }
       
  3112 
       
  3113 WordSize JavaThread::popframe_preserved_args_size_in_words() {
       
  3114   int sz = in_bytes(popframe_preserved_args_size());
       
  3115   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
       
  3116   return in_WordSize(sz / wordSize);
       
  3117 }
       
  3118 
       
  3119 void JavaThread::popframe_free_preserved_args() {
       
  3120   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
       
  3121   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
       
  3122   _popframe_preserved_args = NULL;
       
  3123   _popframe_preserved_args_size = 0;
       
  3124 }
       
  3125 
       
  3126 #ifndef PRODUCT
       
  3127 
       
  3128 void JavaThread::trace_frames() {
       
  3129   tty->print_cr("[Describe stack]");
       
  3130   int frame_no = 1;
       
  3131   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
       
  3132     tty->print("  %d. ", frame_no++);
       
  3133     fst.current()->print_value_on(tty, this);
       
  3134     tty->cr();
       
  3135   }
       
  3136 }
       
  3137 
       
  3138 class PrintAndVerifyOopClosure: public OopClosure {
       
  3139  protected:
       
  3140   template <class T> inline void do_oop_work(T* p) {
       
  3141     oop obj = oopDesc::load_decode_heap_oop(p);
       
  3142     if (obj == NULL) return;
       
  3143     tty->print(INTPTR_FORMAT ": ", p2i(p));
       
  3144     if (oopDesc::is_oop_or_null(obj)) {
       
  3145       if (obj->is_objArray()) {
       
  3146         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
       
  3147       } else {
       
  3148         obj->print();
       
  3149       }
       
  3150     } else {
       
  3151       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
       
  3152     }
       
  3153     tty->cr();
       
  3154   }
       
  3155  public:
       
  3156   virtual void do_oop(oop* p) { do_oop_work(p); }
       
  3157   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
       
  3158 };
       
  3159 
       
  3160 
       
  3161 static void oops_print(frame* f, const RegisterMap *map) {
       
  3162   PrintAndVerifyOopClosure print;
       
  3163   f->print_value();
       
  3164   f->oops_do(&print, NULL, (RegisterMap*)map);
       
  3165 }
       
  3166 
       
  3167 // Print our all the locations that contain oops and whether they are
       
  3168 // valid or not.  This useful when trying to find the oldest frame
       
  3169 // where an oop has gone bad since the frame walk is from youngest to
       
  3170 // oldest.
       
  3171 void JavaThread::trace_oops() {
       
  3172   tty->print_cr("[Trace oops]");
       
  3173   frames_do(oops_print);
       
  3174 }
       
  3175 
       
  3176 
       
  3177 #ifdef ASSERT
       
  3178 // Print or validate the layout of stack frames
       
  3179 void JavaThread::print_frame_layout(int depth, bool validate_only) {
       
  3180   ResourceMark rm;
       
  3181   PRESERVE_EXCEPTION_MARK;
       
  3182   FrameValues values;
       
  3183   int frame_no = 0;
       
  3184   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
       
  3185     fst.current()->describe(values, ++frame_no);
       
  3186     if (depth == frame_no) break;
       
  3187   }
       
  3188   if (validate_only) {
       
  3189     values.validate();
       
  3190   } else {
       
  3191     tty->print_cr("[Describe stack layout]");
       
  3192     values.print(this);
       
  3193   }
       
  3194 }
       
  3195 #endif
       
  3196 
       
  3197 void JavaThread::trace_stack_from(vframe* start_vf) {
       
  3198   ResourceMark rm;
       
  3199   int vframe_no = 1;
       
  3200   for (vframe* f = start_vf; f; f = f->sender()) {
       
  3201     if (f->is_java_frame()) {
       
  3202       javaVFrame::cast(f)->print_activation(vframe_no++);
       
  3203     } else {
       
  3204       f->print();
       
  3205     }
       
  3206     if (vframe_no > StackPrintLimit) {
       
  3207       tty->print_cr("...<more frames>...");
       
  3208       return;
       
  3209     }
       
  3210   }
       
  3211 }
       
  3212 
       
  3213 
       
  3214 void JavaThread::trace_stack() {
       
  3215   if (!has_last_Java_frame()) return;
       
  3216   ResourceMark rm;
       
  3217   HandleMark   hm;
       
  3218   RegisterMap reg_map(this);
       
  3219   trace_stack_from(last_java_vframe(&reg_map));
       
  3220 }
       
  3221 
       
  3222 
       
  3223 #endif // PRODUCT
       
  3224 
       
  3225 
       
  3226 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
       
  3227   assert(reg_map != NULL, "a map must be given");
       
  3228   frame f = last_frame();
       
  3229   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
       
  3230     if (vf->is_java_frame()) return javaVFrame::cast(vf);
       
  3231   }
       
  3232   return NULL;
       
  3233 }
       
  3234 
       
  3235 
       
  3236 Klass* JavaThread::security_get_caller_class(int depth) {
       
  3237   vframeStream vfst(this);
       
  3238   vfst.security_get_caller_frame(depth);
       
  3239   if (!vfst.at_end()) {
       
  3240     return vfst.method()->method_holder();
       
  3241   }
       
  3242   return NULL;
       
  3243 }
       
  3244 
       
  3245 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
       
  3246   assert(thread->is_Compiler_thread(), "must be compiler thread");
       
  3247   CompileBroker::compiler_thread_loop();
       
  3248 }
       
  3249 
       
  3250 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
       
  3251   NMethodSweeper::sweeper_loop();
       
  3252 }
       
  3253 
       
  3254 // Create a CompilerThread
       
  3255 CompilerThread::CompilerThread(CompileQueue* queue,
       
  3256                                CompilerCounters* counters)
       
  3257                                : JavaThread(&compiler_thread_entry) {
       
  3258   _env   = NULL;
       
  3259   _log   = NULL;
       
  3260   _task  = NULL;
       
  3261   _queue = queue;
       
  3262   _counters = counters;
       
  3263   _buffer_blob = NULL;
       
  3264   _compiler = NULL;
       
  3265 
       
  3266 #ifndef PRODUCT
       
  3267   _ideal_graph_printer = NULL;
       
  3268 #endif
       
  3269 }
       
  3270 
       
  3271 bool CompilerThread::can_call_java() const {
       
  3272   return _compiler != NULL && _compiler->is_jvmci();
       
  3273 }
       
  3274 
       
  3275 // Create sweeper thread
       
  3276 CodeCacheSweeperThread::CodeCacheSweeperThread()
       
  3277 : JavaThread(&sweeper_thread_entry) {
       
  3278   _scanned_compiled_method = NULL;
       
  3279 }
       
  3280 
       
  3281 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
       
  3282   JavaThread::oops_do(f, cf);
       
  3283   if (_scanned_compiled_method != NULL && cf != NULL) {
       
  3284     // Safepoints can occur when the sweeper is scanning an nmethod so
       
  3285     // process it here to make sure it isn't unloaded in the middle of
       
  3286     // a scan.
       
  3287     cf->do_code_blob(_scanned_compiled_method);
       
  3288   }
       
  3289 }
       
  3290 
       
  3291 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
       
  3292   JavaThread::nmethods_do(cf);
       
  3293   if (_scanned_compiled_method != NULL && cf != NULL) {
       
  3294     // Safepoints can occur when the sweeper is scanning an nmethod so
       
  3295     // process it here to make sure it isn't unloaded in the middle of
       
  3296     // a scan.
       
  3297     cf->do_code_blob(_scanned_compiled_method);
       
  3298   }
       
  3299 }
       
  3300 
       
  3301 
       
  3302 // ======= Threads ========
       
  3303 
       
  3304 // The Threads class links together all active threads, and provides
       
  3305 // operations over all threads.  It is protected by its own Mutex
       
  3306 // lock, which is also used in other contexts to protect thread
       
  3307 // operations from having the thread being operated on from exiting
       
  3308 // and going away unexpectedly (e.g., safepoint synchronization)
       
  3309 
       
  3310 JavaThread* Threads::_thread_list = NULL;
       
  3311 int         Threads::_number_of_threads = 0;
       
  3312 int         Threads::_number_of_non_daemon_threads = 0;
       
  3313 int         Threads::_return_code = 0;
       
  3314 int         Threads::_thread_claim_parity = 0;
       
  3315 size_t      JavaThread::_stack_size_at_create = 0;
       
  3316 #ifdef ASSERT
       
  3317 bool        Threads::_vm_complete = false;
       
  3318 #endif
       
  3319 
       
  3320 // All JavaThreads
       
  3321 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
       
  3322 
       
  3323 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
       
  3324 void Threads::threads_do(ThreadClosure* tc) {
       
  3325   assert_locked_or_safepoint(Threads_lock);
       
  3326   // ALL_JAVA_THREADS iterates through all JavaThreads
       
  3327   ALL_JAVA_THREADS(p) {
       
  3328     tc->do_thread(p);
       
  3329   }
       
  3330   // Someday we could have a table or list of all non-JavaThreads.
       
  3331   // For now, just manually iterate through them.
       
  3332   tc->do_thread(VMThread::vm_thread());
       
  3333   Universe::heap()->gc_threads_do(tc);
       
  3334   WatcherThread *wt = WatcherThread::watcher_thread();
       
  3335   // Strictly speaking, the following NULL check isn't sufficient to make sure
       
  3336   // the data for WatcherThread is still valid upon being examined. However,
       
  3337   // considering that WatchThread terminates when the VM is on the way to
       
  3338   // exit at safepoint, the chance of the above is extremely small. The right
       
  3339   // way to prevent termination of WatcherThread would be to acquire
       
  3340   // Terminator_lock, but we can't do that without violating the lock rank
       
  3341   // checking in some cases.
       
  3342   if (wt != NULL) {
       
  3343     tc->do_thread(wt);
       
  3344   }
       
  3345 
       
  3346   // If CompilerThreads ever become non-JavaThreads, add them here
       
  3347 }
       
  3348 
       
  3349 void Threads::parallel_java_threads_do(ThreadClosure* tc) {
       
  3350   int cp = Threads::thread_claim_parity();
       
  3351   ALL_JAVA_THREADS(p) {
       
  3352     if (p->claim_oops_do(true, cp)) {
       
  3353       tc->do_thread(p);
       
  3354     }
       
  3355   }
       
  3356   // Thread claiming protocol requires us to claim the same interesting
       
  3357   // threads on all paths. Notably, Threads::possibly_parallel_threads_do
       
  3358   // claims all Java threads *and* the VMThread. To avoid breaking the
       
  3359   // claiming protocol, we have to claim VMThread on this path too, even
       
  3360   // if we do not apply the closure to the VMThread.
       
  3361   VMThread* vmt = VMThread::vm_thread();
       
  3362   (void)vmt->claim_oops_do(true, cp);
       
  3363 }
       
  3364 
       
  3365 // The system initialization in the library has three phases.
       
  3366 //
       
  3367 // Phase 1: java.lang.System class initialization
       
  3368 //     java.lang.System is a primordial class loaded and initialized
       
  3369 //     by the VM early during startup.  java.lang.System.<clinit>
       
  3370 //     only does registerNatives and keeps the rest of the class
       
  3371 //     initialization work later until thread initialization completes.
       
  3372 //
       
  3373 //     System.initPhase1 initializes the system properties, the static
       
  3374 //     fields in, out, and err. Set up java signal handlers, OS-specific
       
  3375 //     system settings, and thread group of the main thread.
       
  3376 static void call_initPhase1(TRAPS) {
       
  3377   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
       
  3378   JavaValue result(T_VOID);
       
  3379   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
       
  3380                                          vmSymbols::void_method_signature(), CHECK);
       
  3381 }
       
  3382 
       
  3383 // Phase 2. Module system initialization
       
  3384 //     This will initialize the module system.  Only java.base classes
       
  3385 //     can be loaded until phase 2 completes.
       
  3386 //
       
  3387 //     Call System.initPhase2 after the compiler initialization and jsr292
       
  3388 //     classes get initialized because module initialization runs a lot of java
       
  3389 //     code, that for performance reasons, should be compiled.  Also, this will
       
  3390 //     enable the startup code to use lambda and other language features in this
       
  3391 //     phase and onward.
       
  3392 //
       
  3393 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
       
  3394 static void call_initPhase2(TRAPS) {
       
  3395   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
       
  3396 
       
  3397   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
       
  3398 
       
  3399   JavaValue result(T_INT);
       
  3400   JavaCallArguments args;
       
  3401   args.push_int(DisplayVMOutputToStderr);
       
  3402   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
       
  3403   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
       
  3404                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
       
  3405   if (result.get_jint() != JNI_OK) {
       
  3406     vm_exit_during_initialization(); // no message or exception
       
  3407   }
       
  3408 
       
  3409   universe_post_module_init();
       
  3410 }
       
  3411 
       
  3412 // Phase 3. final setup - set security manager, system class loader and TCCL
       
  3413 //
       
  3414 //     This will instantiate and set the security manager, set the system class
       
  3415 //     loader as well as the thread context class loader.  The security manager
       
  3416 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
       
  3417 //     other modules or the application's classpath.
       
  3418 static void call_initPhase3(TRAPS) {
       
  3419   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
       
  3420   JavaValue result(T_VOID);
       
  3421   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
       
  3422                                          vmSymbols::void_method_signature(), CHECK);
       
  3423 }
       
  3424 
       
  3425 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
       
  3426   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
       
  3427 
       
  3428   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
       
  3429     create_vm_init_libraries();
       
  3430   }
       
  3431 
       
  3432   initialize_class(vmSymbols::java_lang_String(), CHECK);
       
  3433 
       
  3434   // Inject CompactStrings value after the static initializers for String ran.
       
  3435   java_lang_String::set_compact_strings(CompactStrings);
       
  3436 
       
  3437   // Initialize java_lang.System (needed before creating the thread)
       
  3438   initialize_class(vmSymbols::java_lang_System(), CHECK);
       
  3439   // The VM creates & returns objects of this class. Make sure it's initialized.
       
  3440   initialize_class(vmSymbols::java_lang_Class(), CHECK);
       
  3441   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
       
  3442   Handle thread_group = create_initial_thread_group(CHECK);
       
  3443   Universe::set_main_thread_group(thread_group());
       
  3444   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
       
  3445   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
       
  3446   main_thread->set_threadObj(thread_object);
       
  3447   // Set thread status to running since main thread has
       
  3448   // been started and running.
       
  3449   java_lang_Thread::set_thread_status(thread_object,
       
  3450                                       java_lang_Thread::RUNNABLE);
       
  3451 
       
  3452   // The VM creates objects of this class.
       
  3453   initialize_class(vmSymbols::java_lang_Module(), CHECK);
       
  3454 
       
  3455   // The VM preresolves methods to these classes. Make sure that they get initialized
       
  3456   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
       
  3457   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
       
  3458 
       
  3459   // Phase 1 of the system initialization in the library, java.lang.System class initialization
       
  3460   call_initPhase1(CHECK);
       
  3461 
       
  3462   // get the Java runtime name after java.lang.System is initialized
       
  3463   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
       
  3464   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
       
  3465 
       
  3466   // an instance of OutOfMemory exception has been allocated earlier
       
  3467   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
       
  3468   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
       
  3469   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
       
  3470   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
       
  3471   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
       
  3472   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
       
  3473   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
       
  3474   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
       
  3475 }
       
  3476 
       
  3477 void Threads::initialize_jsr292_core_classes(TRAPS) {
       
  3478   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
       
  3479 
       
  3480   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
       
  3481   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
       
  3482   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
       
  3483   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
       
  3484 }
       
  3485 
       
  3486 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
       
  3487   extern void JDK_Version_init();
       
  3488 
       
  3489   // Preinitialize version info.
       
  3490   VM_Version::early_initialize();
       
  3491 
       
  3492   // Check version
       
  3493   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
       
  3494 
       
  3495   // Initialize library-based TLS
       
  3496   ThreadLocalStorage::init();
       
  3497 
       
  3498   // Initialize the output stream module
       
  3499   ostream_init();
       
  3500 
       
  3501   // Process java launcher properties.
       
  3502   Arguments::process_sun_java_launcher_properties(args);
       
  3503 
       
  3504   // Initialize the os module
       
  3505   os::init();
       
  3506 
       
  3507   // Record VM creation timing statistics
       
  3508   TraceVmCreationTime create_vm_timer;
       
  3509   create_vm_timer.start();
       
  3510 
       
  3511   // Initialize system properties.
       
  3512   Arguments::init_system_properties();
       
  3513 
       
  3514   // So that JDK version can be used as a discriminator when parsing arguments
       
  3515   JDK_Version_init();
       
  3516 
       
  3517   // Update/Initialize System properties after JDK version number is known
       
  3518   Arguments::init_version_specific_system_properties();
       
  3519 
       
  3520   // Make sure to initialize log configuration *before* parsing arguments
       
  3521   LogConfiguration::initialize(create_vm_timer.begin_time());
       
  3522 
       
  3523   // Parse arguments
       
  3524   jint parse_result = Arguments::parse(args);
       
  3525   if (parse_result != JNI_OK) return parse_result;
       
  3526 
       
  3527   os::init_before_ergo();
       
  3528 
       
  3529   jint ergo_result = Arguments::apply_ergo();
       
  3530   if (ergo_result != JNI_OK) return ergo_result;
       
  3531 
       
  3532   // Final check of all ranges after ergonomics which may change values.
       
  3533   if (!CommandLineFlagRangeList::check_ranges()) {
       
  3534     return JNI_EINVAL;
       
  3535   }
       
  3536 
       
  3537   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
       
  3538   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
       
  3539   if (!constraint_result) {
       
  3540     return JNI_EINVAL;
       
  3541   }
       
  3542 
       
  3543   CommandLineFlagWriteableList::mark_startup();
       
  3544 
       
  3545   if (PauseAtStartup) {
       
  3546     os::pause();
       
  3547   }
       
  3548 
       
  3549   HOTSPOT_VM_INIT_BEGIN();
       
  3550 
       
  3551   // Timing (must come after argument parsing)
       
  3552   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
       
  3553 
       
  3554   // Initialize the os module after parsing the args
       
  3555   jint os_init_2_result = os::init_2();
       
  3556   if (os_init_2_result != JNI_OK) return os_init_2_result;
       
  3557 
       
  3558   jint adjust_after_os_result = Arguments::adjust_after_os();
       
  3559   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
       
  3560 
       
  3561   // Initialize output stream logging
       
  3562   ostream_init_log();
       
  3563 
       
  3564   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
       
  3565   // Must be before create_vm_init_agents()
       
  3566   if (Arguments::init_libraries_at_startup()) {
       
  3567     convert_vm_init_libraries_to_agents();
       
  3568   }
       
  3569 
       
  3570   // Launch -agentlib/-agentpath and converted -Xrun agents
       
  3571   if (Arguments::init_agents_at_startup()) {
       
  3572     create_vm_init_agents();
       
  3573   }
       
  3574 
       
  3575   // Initialize Threads state
       
  3576   _thread_list = NULL;
       
  3577   _number_of_threads = 0;
       
  3578   _number_of_non_daemon_threads = 0;
       
  3579 
       
  3580   // Initialize global data structures and create system classes in heap
       
  3581   vm_init_globals();
       
  3582 
       
  3583 #if INCLUDE_JVMCI
       
  3584   if (JVMCICounterSize > 0) {
       
  3585     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
       
  3586     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
       
  3587   } else {
       
  3588     JavaThread::_jvmci_old_thread_counters = NULL;
       
  3589   }
       
  3590 #endif // INCLUDE_JVMCI
       
  3591 
       
  3592   // Attach the main thread to this os thread
       
  3593   JavaThread* main_thread = new JavaThread();
       
  3594   main_thread->set_thread_state(_thread_in_vm);
       
  3595   main_thread->initialize_thread_current();
       
  3596   // must do this before set_active_handles
       
  3597   main_thread->record_stack_base_and_size();
       
  3598   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
       
  3599 
       
  3600   if (!main_thread->set_as_starting_thread()) {
       
  3601     vm_shutdown_during_initialization(
       
  3602                                       "Failed necessary internal allocation. Out of swap space");
       
  3603     delete main_thread;
       
  3604     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
       
  3605     return JNI_ENOMEM;
       
  3606   }
       
  3607 
       
  3608   // Enable guard page *after* os::create_main_thread(), otherwise it would
       
  3609   // crash Linux VM, see notes in os_linux.cpp.
       
  3610   main_thread->create_stack_guard_pages();
       
  3611 
       
  3612   // Initialize Java-Level synchronization subsystem
       
  3613   ObjectMonitor::Initialize();
       
  3614 
       
  3615   // Initialize global modules
       
  3616   jint status = init_globals();
       
  3617   if (status != JNI_OK) {
       
  3618     delete main_thread;
       
  3619     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
       
  3620     return status;
       
  3621   }
       
  3622 
       
  3623   if (TRACE_INITIALIZE() != JNI_OK) {
       
  3624     vm_exit_during_initialization("Failed to initialize tracing backend");
       
  3625   }
       
  3626 
       
  3627   // Should be done after the heap is fully created
       
  3628   main_thread->cache_global_variables();
       
  3629 
       
  3630   HandleMark hm;
       
  3631 
       
  3632   { MutexLocker mu(Threads_lock);
       
  3633     Threads::add(main_thread);
       
  3634   }
       
  3635 
       
  3636   // Any JVMTI raw monitors entered in onload will transition into
       
  3637   // real raw monitor. VM is setup enough here for raw monitor enter.
       
  3638   JvmtiExport::transition_pending_onload_raw_monitors();
       
  3639 
       
  3640   // Create the VMThread
       
  3641   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
       
  3642 
       
  3643   VMThread::create();
       
  3644     Thread* vmthread = VMThread::vm_thread();
       
  3645 
       
  3646     if (!os::create_thread(vmthread, os::vm_thread)) {
       
  3647       vm_exit_during_initialization("Cannot create VM thread. "
       
  3648                                     "Out of system resources.");
       
  3649     }
       
  3650 
       
  3651     // Wait for the VM thread to become ready, and VMThread::run to initialize
       
  3652     // Monitors can have spurious returns, must always check another state flag
       
  3653     {
       
  3654       MutexLocker ml(Notify_lock);
       
  3655       os::start_thread(vmthread);
       
  3656       while (vmthread->active_handles() == NULL) {
       
  3657         Notify_lock->wait();
       
  3658       }
       
  3659     }
       
  3660   }
       
  3661 
       
  3662   assert(Universe::is_fully_initialized(), "not initialized");
       
  3663   if (VerifyDuringStartup) {
       
  3664     // Make sure we're starting with a clean slate.
       
  3665     VM_Verify verify_op;
       
  3666     VMThread::execute(&verify_op);
       
  3667   }
       
  3668 
       
  3669   Thread* THREAD = Thread::current();
       
  3670 
       
  3671   // Always call even when there are not JVMTI environments yet, since environments
       
  3672   // may be attached late and JVMTI must track phases of VM execution
       
  3673   JvmtiExport::enter_early_start_phase();
       
  3674 
       
  3675   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
       
  3676   JvmtiExport::post_early_vm_start();
       
  3677 
       
  3678   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
       
  3679 
       
  3680   // We need this for ClassDataSharing - the initial vm.info property is set
       
  3681   // with the default value of CDS "sharing" which may be reset through
       
  3682   // command line options.
       
  3683   reset_vm_info_property(CHECK_JNI_ERR);
       
  3684 
       
  3685   quicken_jni_functions();
       
  3686 
       
  3687   // No more stub generation allowed after that point.
       
  3688   StubCodeDesc::freeze();
       
  3689 
       
  3690   // Set flag that basic initialization has completed. Used by exceptions and various
       
  3691   // debug stuff, that does not work until all basic classes have been initialized.
       
  3692   set_init_completed();
       
  3693 
       
  3694   LogConfiguration::post_initialize();
       
  3695   Metaspace::post_initialize();
       
  3696 
       
  3697   HOTSPOT_VM_INIT_END();
       
  3698 
       
  3699   // record VM initialization completion time
       
  3700 #if INCLUDE_MANAGEMENT
       
  3701   Management::record_vm_init_completed();
       
  3702 #endif // INCLUDE_MANAGEMENT
       
  3703 
       
  3704   // Signal Dispatcher needs to be started before VMInit event is posted
       
  3705   os::signal_init(CHECK_JNI_ERR);
       
  3706 
       
  3707   // Start Attach Listener if +StartAttachListener or it can't be started lazily
       
  3708   if (!DisableAttachMechanism) {
       
  3709     AttachListener::vm_start();
       
  3710     if (StartAttachListener || AttachListener::init_at_startup()) {
       
  3711       AttachListener::init();
       
  3712     }
       
  3713   }
       
  3714 
       
  3715   // Launch -Xrun agents
       
  3716   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
       
  3717   // back-end can launch with -Xdebug -Xrunjdwp.
       
  3718   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
       
  3719     create_vm_init_libraries();
       
  3720   }
       
  3721 
       
  3722   if (CleanChunkPoolAsync) {
       
  3723     Chunk::start_chunk_pool_cleaner_task();
       
  3724   }
       
  3725 
       
  3726   // initialize compiler(s)
       
  3727 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
       
  3728   CompileBroker::compilation_init(CHECK_JNI_ERR);
       
  3729 #endif
       
  3730 
       
  3731   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
       
  3732   // It is done after compilers are initialized, because otherwise compilations of
       
  3733   // signature polymorphic MH intrinsics can be missed
       
  3734   // (see SystemDictionary::find_method_handle_intrinsic).
       
  3735   initialize_jsr292_core_classes(CHECK_JNI_ERR);
       
  3736 
       
  3737   // This will initialize the module system.  Only java.base classes can be
       
  3738   // loaded until phase 2 completes
       
  3739   call_initPhase2(CHECK_JNI_ERR);
       
  3740 
       
  3741   // Always call even when there are not JVMTI environments yet, since environments
       
  3742   // may be attached late and JVMTI must track phases of VM execution
       
  3743   JvmtiExport::enter_start_phase();
       
  3744 
       
  3745   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
       
  3746   JvmtiExport::post_vm_start();
       
  3747 
       
  3748   // Final system initialization including security manager and system class loader
       
  3749   call_initPhase3(CHECK_JNI_ERR);
       
  3750 
       
  3751   // cache the system class loader
       
  3752   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
       
  3753 
       
  3754 #if INCLUDE_JVMCI
       
  3755   if (EnableJVMCI) {
       
  3756     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
       
  3757     // The JVMCI Java initialization code will read this flag and
       
  3758     // do the printing if it's set.
       
  3759     bool init = JVMCIPrintProperties;
       
  3760 
       
  3761     if (!init) {
       
  3762       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
       
  3763       // compilations via JVMCI will not actually block until JVMCI is initialized.
       
  3764       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
       
  3765     }
       
  3766 
       
  3767     if (init) {
       
  3768       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
       
  3769     }
       
  3770   }
       
  3771 #endif
       
  3772 
       
  3773   // Always call even when there are not JVMTI environments yet, since environments
       
  3774   // may be attached late and JVMTI must track phases of VM execution
       
  3775   JvmtiExport::enter_live_phase();
       
  3776 
       
  3777   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
       
  3778   JvmtiExport::post_vm_initialized();
       
  3779 
       
  3780   if (TRACE_START() != JNI_OK) {
       
  3781     vm_exit_during_initialization("Failed to start tracing backend.");
       
  3782   }
       
  3783 
       
  3784 #if INCLUDE_MANAGEMENT
       
  3785   Management::initialize(THREAD);
       
  3786 
       
  3787   if (HAS_PENDING_EXCEPTION) {
       
  3788     // management agent fails to start possibly due to
       
  3789     // configuration problem and is responsible for printing
       
  3790     // stack trace if appropriate. Simply exit VM.
       
  3791     vm_exit(1);
       
  3792   }
       
  3793 #endif // INCLUDE_MANAGEMENT
       
  3794 
       
  3795   if (MemProfiling)                   MemProfiler::engage();
       
  3796   StatSampler::engage();
       
  3797   if (CheckJNICalls)                  JniPeriodicChecker::engage();
       
  3798 
       
  3799   BiasedLocking::init();
       
  3800 
       
  3801 #if INCLUDE_RTM_OPT
       
  3802   RTMLockingCounters::init();
       
  3803 #endif
       
  3804 
       
  3805   if (JDK_Version::current().post_vm_init_hook_enabled()) {
       
  3806     call_postVMInitHook(THREAD);
       
  3807     // The Java side of PostVMInitHook.run must deal with all
       
  3808     // exceptions and provide means of diagnosis.
       
  3809     if (HAS_PENDING_EXCEPTION) {
       
  3810       CLEAR_PENDING_EXCEPTION;
       
  3811     }
       
  3812   }
       
  3813 
       
  3814   {
       
  3815     MutexLocker ml(PeriodicTask_lock);
       
  3816     // Make sure the WatcherThread can be started by WatcherThread::start()
       
  3817     // or by dynamic enrollment.
       
  3818     WatcherThread::make_startable();
       
  3819     // Start up the WatcherThread if there are any periodic tasks
       
  3820     // NOTE:  All PeriodicTasks should be registered by now. If they
       
  3821     //   aren't, late joiners might appear to start slowly (we might
       
  3822     //   take a while to process their first tick).
       
  3823     if (PeriodicTask::num_tasks() > 0) {
       
  3824       WatcherThread::start();
       
  3825     }
       
  3826   }
       
  3827 
       
  3828   create_vm_timer.end();
       
  3829 #ifdef ASSERT
       
  3830   _vm_complete = true;
       
  3831 #endif
       
  3832 
       
  3833   if (DumpSharedSpaces) {
       
  3834     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
       
  3835     ShouldNotReachHere();
       
  3836   }
       
  3837 
       
  3838   return JNI_OK;
       
  3839 }
       
  3840 
       
  3841 // type for the Agent_OnLoad and JVM_OnLoad entry points
       
  3842 extern "C" {
       
  3843   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
       
  3844 }
       
  3845 // Find a command line agent library and return its entry point for
       
  3846 //         -agentlib:  -agentpath:   -Xrun
       
  3847 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
       
  3848 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
       
  3849                                     const char *on_load_symbols[],
       
  3850                                     size_t num_symbol_entries) {
       
  3851   OnLoadEntry_t on_load_entry = NULL;
       
  3852   void *library = NULL;
       
  3853 
       
  3854   if (!agent->valid()) {
       
  3855     char buffer[JVM_MAXPATHLEN];
       
  3856     char ebuf[1024] = "";
       
  3857     const char *name = agent->name();
       
  3858     const char *msg = "Could not find agent library ";
       
  3859 
       
  3860     // First check to see if agent is statically linked into executable
       
  3861     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
       
  3862       library = agent->os_lib();
       
  3863     } else if (agent->is_absolute_path()) {
       
  3864       library = os::dll_load(name, ebuf, sizeof ebuf);
       
  3865       if (library == NULL) {
       
  3866         const char *sub_msg = " in absolute path, with error: ";
       
  3867         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
       
  3868         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
       
  3869         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
       
  3870         // If we can't find the agent, exit.
       
  3871         vm_exit_during_initialization(buf, NULL);
       
  3872         FREE_C_HEAP_ARRAY(char, buf);
       
  3873       }
       
  3874     } else {
       
  3875       // Try to load the agent from the standard dll directory
       
  3876       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
       
  3877                              name)) {
       
  3878         library = os::dll_load(buffer, ebuf, sizeof ebuf);
       
  3879       }
       
  3880       if (library == NULL) { // Try the library path directory.
       
  3881         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
       
  3882           library = os::dll_load(buffer, ebuf, sizeof ebuf);
       
  3883         }
       
  3884         if (library == NULL) {
       
  3885           const char *sub_msg = " on the library path, with error: ";
       
  3886           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
       
  3887           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
       
  3888           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
       
  3889           // If we can't find the agent, exit.
       
  3890           vm_exit_during_initialization(buf, NULL);
       
  3891           FREE_C_HEAP_ARRAY(char, buf);
       
  3892         }
       
  3893       }
       
  3894     }
       
  3895     agent->set_os_lib(library);
       
  3896     agent->set_valid();
       
  3897   }
       
  3898 
       
  3899   // Find the OnLoad function.
       
  3900   on_load_entry =
       
  3901     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
       
  3902                                                           false,
       
  3903                                                           on_load_symbols,
       
  3904                                                           num_symbol_entries));
       
  3905   return on_load_entry;
       
  3906 }
       
  3907 
       
  3908 // Find the JVM_OnLoad entry point
       
  3909 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
       
  3910   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
       
  3911   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
       
  3912 }
       
  3913 
       
  3914 // Find the Agent_OnLoad entry point
       
  3915 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
       
  3916   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
       
  3917   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
       
  3918 }
       
  3919 
       
  3920 // For backwards compatibility with -Xrun
       
  3921 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
       
  3922 // treated like -agentpath:
       
  3923 // Must be called before agent libraries are created
       
  3924 void Threads::convert_vm_init_libraries_to_agents() {
       
  3925   AgentLibrary* agent;
       
  3926   AgentLibrary* next;
       
  3927 
       
  3928   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
       
  3929     next = agent->next();  // cache the next agent now as this agent may get moved off this list
       
  3930     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
       
  3931 
       
  3932     // If there is an JVM_OnLoad function it will get called later,
       
  3933     // otherwise see if there is an Agent_OnLoad
       
  3934     if (on_load_entry == NULL) {
       
  3935       on_load_entry = lookup_agent_on_load(agent);
       
  3936       if (on_load_entry != NULL) {
       
  3937         // switch it to the agent list -- so that Agent_OnLoad will be called,
       
  3938         // JVM_OnLoad won't be attempted and Agent_OnUnload will
       
  3939         Arguments::convert_library_to_agent(agent);
       
  3940       } else {
       
  3941         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
       
  3942       }
       
  3943     }
       
  3944   }
       
  3945 }
       
  3946 
       
  3947 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
       
  3948 // Invokes Agent_OnLoad
       
  3949 // Called very early -- before JavaThreads exist
       
  3950 void Threads::create_vm_init_agents() {
       
  3951   extern struct JavaVM_ main_vm;
       
  3952   AgentLibrary* agent;
       
  3953 
       
  3954   JvmtiExport::enter_onload_phase();
       
  3955 
       
  3956   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
       
  3957     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
       
  3958 
       
  3959     if (on_load_entry != NULL) {
       
  3960       // Invoke the Agent_OnLoad function
       
  3961       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
       
  3962       if (err != JNI_OK) {
       
  3963         vm_exit_during_initialization("agent library failed to init", agent->name());
       
  3964       }
       
  3965     } else {
       
  3966       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
       
  3967     }
       
  3968   }
       
  3969   JvmtiExport::enter_primordial_phase();
       
  3970 }
       
  3971 
       
  3972 extern "C" {
       
  3973   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
       
  3974 }
       
  3975 
       
  3976 void Threads::shutdown_vm_agents() {
       
  3977   // Send any Agent_OnUnload notifications
       
  3978   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
       
  3979   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
       
  3980   extern struct JavaVM_ main_vm;
       
  3981   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
       
  3982 
       
  3983     // Find the Agent_OnUnload function.
       
  3984     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
       
  3985                                                    os::find_agent_function(agent,
       
  3986                                                    false,
       
  3987                                                    on_unload_symbols,
       
  3988                                                    num_symbol_entries));
       
  3989 
       
  3990     // Invoke the Agent_OnUnload function
       
  3991     if (unload_entry != NULL) {
       
  3992       JavaThread* thread = JavaThread::current();
       
  3993       ThreadToNativeFromVM ttn(thread);
       
  3994       HandleMark hm(thread);
       
  3995       (*unload_entry)(&main_vm);
       
  3996     }
       
  3997   }
       
  3998 }
       
  3999 
       
  4000 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
       
  4001 // Invokes JVM_OnLoad
       
  4002 void Threads::create_vm_init_libraries() {
       
  4003   extern struct JavaVM_ main_vm;
       
  4004   AgentLibrary* agent;
       
  4005 
       
  4006   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
       
  4007     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
       
  4008 
       
  4009     if (on_load_entry != NULL) {
       
  4010       // Invoke the JVM_OnLoad function
       
  4011       JavaThread* thread = JavaThread::current();
       
  4012       ThreadToNativeFromVM ttn(thread);
       
  4013       HandleMark hm(thread);
       
  4014       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
       
  4015       if (err != JNI_OK) {
       
  4016         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
       
  4017       }
       
  4018     } else {
       
  4019       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
       
  4020     }
       
  4021   }
       
  4022 }
       
  4023 
       
  4024 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
       
  4025   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
       
  4026 
       
  4027   JavaThread* java_thread = NULL;
       
  4028   // Sequential search for now.  Need to do better optimization later.
       
  4029   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
       
  4030     oop tobj = thread->threadObj();
       
  4031     if (!thread->is_exiting() &&
       
  4032         tobj != NULL &&
       
  4033         java_tid == java_lang_Thread::thread_id(tobj)) {
       
  4034       java_thread = thread;
       
  4035       break;
       
  4036     }
       
  4037   }
       
  4038   return java_thread;
       
  4039 }
       
  4040 
       
  4041 
       
  4042 // Last thread running calls java.lang.Shutdown.shutdown()
       
  4043 void JavaThread::invoke_shutdown_hooks() {
       
  4044   HandleMark hm(this);
       
  4045 
       
  4046   // We could get here with a pending exception, if so clear it now.
       
  4047   if (this->has_pending_exception()) {
       
  4048     this->clear_pending_exception();
       
  4049   }
       
  4050 
       
  4051   EXCEPTION_MARK;
       
  4052   Klass* shutdown_klass =
       
  4053     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
       
  4054                                       THREAD);
       
  4055   if (shutdown_klass != NULL) {
       
  4056     // SystemDictionary::resolve_or_null will return null if there was
       
  4057     // an exception.  If we cannot load the Shutdown class, just don't
       
  4058     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
       
  4059     // and finalizers (if runFinalizersOnExit is set) won't be run.
       
  4060     // Note that if a shutdown hook was registered or runFinalizersOnExit
       
  4061     // was called, the Shutdown class would have already been loaded
       
  4062     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
       
  4063     JavaValue result(T_VOID);
       
  4064     JavaCalls::call_static(&result,
       
  4065                            shutdown_klass,
       
  4066                            vmSymbols::shutdown_method_name(),
       
  4067                            vmSymbols::void_method_signature(),
       
  4068                            THREAD);
       
  4069   }
       
  4070   CLEAR_PENDING_EXCEPTION;
       
  4071 }
       
  4072 
       
  4073 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
       
  4074 // the program falls off the end of main(). Another VM exit path is through
       
  4075 // vm_exit() when the program calls System.exit() to return a value or when
       
  4076 // there is a serious error in VM. The two shutdown paths are not exactly
       
  4077 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
       
  4078 // and VM_Exit op at VM level.
       
  4079 //
       
  4080 // Shutdown sequence:
       
  4081 //   + Shutdown native memory tracking if it is on
       
  4082 //   + Wait until we are the last non-daemon thread to execute
       
  4083 //     <-- every thing is still working at this moment -->
       
  4084 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
       
  4085 //        shutdown hooks, run finalizers if finalization-on-exit
       
  4086 //   + Call before_exit(), prepare for VM exit
       
  4087 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
       
  4088 //        currently the only user of this mechanism is File.deleteOnExit())
       
  4089 //      > stop StatSampler, watcher thread, CMS threads,
       
  4090 //        post thread end and vm death events to JVMTI,
       
  4091 //        stop signal thread
       
  4092 //   + Call JavaThread::exit(), it will:
       
  4093 //      > release JNI handle blocks, remove stack guard pages
       
  4094 //      > remove this thread from Threads list
       
  4095 //     <-- no more Java code from this thread after this point -->
       
  4096 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
       
  4097 //     the compiler threads at safepoint
       
  4098 //     <-- do not use anything that could get blocked by Safepoint -->
       
  4099 //   + Disable tracing at JNI/JVM barriers
       
  4100 //   + Set _vm_exited flag for threads that are still running native code
       
  4101 //   + Delete this thread
       
  4102 //   + Call exit_globals()
       
  4103 //      > deletes tty
       
  4104 //      > deletes PerfMemory resources
       
  4105 //   + Return to caller
       
  4106 
       
  4107 bool Threads::destroy_vm() {
       
  4108   JavaThread* thread = JavaThread::current();
       
  4109 
       
  4110 #ifdef ASSERT
       
  4111   _vm_complete = false;
       
  4112 #endif
       
  4113   // Wait until we are the last non-daemon thread to execute
       
  4114   { MutexLocker nu(Threads_lock);
       
  4115     while (Threads::number_of_non_daemon_threads() > 1)
       
  4116       // This wait should make safepoint checks, wait without a timeout,
       
  4117       // and wait as a suspend-equivalent condition.
       
  4118       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
       
  4119                          Mutex::_as_suspend_equivalent_flag);
       
  4120   }
       
  4121 
       
  4122   // Hang forever on exit if we are reporting an error.
       
  4123   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
       
  4124     os::infinite_sleep();
       
  4125   }
       
  4126   os::wait_for_keypress_at_exit();
       
  4127 
       
  4128   // run Java level shutdown hooks
       
  4129   thread->invoke_shutdown_hooks();
       
  4130 
       
  4131   before_exit(thread);
       
  4132 
       
  4133   thread->exit(true);
       
  4134 
       
  4135   // Stop VM thread.
       
  4136   {
       
  4137     // 4945125 The vm thread comes to a safepoint during exit.
       
  4138     // GC vm_operations can get caught at the safepoint, and the
       
  4139     // heap is unparseable if they are caught. Grab the Heap_lock
       
  4140     // to prevent this. The GC vm_operations will not be able to
       
  4141     // queue until after the vm thread is dead. After this point,
       
  4142     // we'll never emerge out of the safepoint before the VM exits.
       
  4143 
       
  4144     MutexLocker ml(Heap_lock);
       
  4145 
       
  4146     VMThread::wait_for_vm_thread_exit();
       
  4147     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
       
  4148     VMThread::destroy();
       
  4149   }
       
  4150 
       
  4151   // clean up ideal graph printers
       
  4152 #if defined(COMPILER2) && !defined(PRODUCT)
       
  4153   IdealGraphPrinter::clean_up();
       
  4154 #endif
       
  4155 
       
  4156   // Now, all Java threads are gone except daemon threads. Daemon threads
       
  4157   // running Java code or in VM are stopped by the Safepoint. However,
       
  4158   // daemon threads executing native code are still running.  But they
       
  4159   // will be stopped at native=>Java/VM barriers. Note that we can't
       
  4160   // simply kill or suspend them, as it is inherently deadlock-prone.
       
  4161 
       
  4162   VM_Exit::set_vm_exited();
       
  4163 
       
  4164   notify_vm_shutdown();
       
  4165 
       
  4166   delete thread;
       
  4167 
       
  4168 #if INCLUDE_JVMCI
       
  4169   if (JVMCICounterSize > 0) {
       
  4170     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
       
  4171   }
       
  4172 #endif
       
  4173 
       
  4174   // exit_globals() will delete tty
       
  4175   exit_globals();
       
  4176 
       
  4177   LogConfiguration::finalize();
       
  4178 
       
  4179   return true;
       
  4180 }
       
  4181 
       
  4182 
       
  4183 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
       
  4184   if (version == JNI_VERSION_1_1) return JNI_TRUE;
       
  4185   return is_supported_jni_version(version);
       
  4186 }
       
  4187 
       
  4188 
       
  4189 jboolean Threads::is_supported_jni_version(jint version) {
       
  4190   if (version == JNI_VERSION_1_2) return JNI_TRUE;
       
  4191   if (version == JNI_VERSION_1_4) return JNI_TRUE;
       
  4192   if (version == JNI_VERSION_1_6) return JNI_TRUE;
       
  4193   if (version == JNI_VERSION_1_8) return JNI_TRUE;
       
  4194   if (version == JNI_VERSION_9) return JNI_TRUE;
       
  4195   return JNI_FALSE;
       
  4196 }
       
  4197 
       
  4198 
       
  4199 void Threads::add(JavaThread* p, bool force_daemon) {
       
  4200   // The threads lock must be owned at this point
       
  4201   assert_locked_or_safepoint(Threads_lock);
       
  4202 
       
  4203   // See the comment for this method in thread.hpp for its purpose and
       
  4204   // why it is called here.
       
  4205   p->initialize_queues();
       
  4206   p->set_next(_thread_list);
       
  4207   _thread_list = p;
       
  4208   _number_of_threads++;
       
  4209   oop threadObj = p->threadObj();
       
  4210   bool daemon = true;
       
  4211   // Bootstrapping problem: threadObj can be null for initial
       
  4212   // JavaThread (or for threads attached via JNI)
       
  4213   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
       
  4214     _number_of_non_daemon_threads++;
       
  4215     daemon = false;
       
  4216   }
       
  4217 
       
  4218   ThreadService::add_thread(p, daemon);
       
  4219 
       
  4220   // Possible GC point.
       
  4221   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
       
  4222 }
       
  4223 
       
  4224 void Threads::remove(JavaThread* p) {
       
  4225 
       
  4226   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
       
  4227   ObjectSynchronizer::omFlush(p);
       
  4228 
       
  4229   // Extra scope needed for Thread_lock, so we can check
       
  4230   // that we do not remove thread without safepoint code notice
       
  4231   { MutexLocker ml(Threads_lock);
       
  4232 
       
  4233     assert(includes(p), "p must be present");
       
  4234 
       
  4235     JavaThread* current = _thread_list;
       
  4236     JavaThread* prev    = NULL;
       
  4237 
       
  4238     while (current != p) {
       
  4239       prev    = current;
       
  4240       current = current->next();
       
  4241     }
       
  4242 
       
  4243     if (prev) {
       
  4244       prev->set_next(current->next());
       
  4245     } else {
       
  4246       _thread_list = p->next();
       
  4247     }
       
  4248     _number_of_threads--;
       
  4249     oop threadObj = p->threadObj();
       
  4250     bool daemon = true;
       
  4251     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
       
  4252       _number_of_non_daemon_threads--;
       
  4253       daemon = false;
       
  4254 
       
  4255       // Only one thread left, do a notify on the Threads_lock so a thread waiting
       
  4256       // on destroy_vm will wake up.
       
  4257       if (number_of_non_daemon_threads() == 1) {
       
  4258         Threads_lock->notify_all();
       
  4259       }
       
  4260     }
       
  4261     ThreadService::remove_thread(p, daemon);
       
  4262 
       
  4263     // Make sure that safepoint code disregard this thread. This is needed since
       
  4264     // the thread might mess around with locks after this point. This can cause it
       
  4265     // to do callbacks into the safepoint code. However, the safepoint code is not aware
       
  4266     // of this thread since it is removed from the queue.
       
  4267     p->set_terminated_value();
       
  4268   } // unlock Threads_lock
       
  4269 
       
  4270   // Since Events::log uses a lock, we grab it outside the Threads_lock
       
  4271   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
       
  4272 }
       
  4273 
       
  4274 // Threads_lock must be held when this is called (or must be called during a safepoint)
       
  4275 bool Threads::includes(JavaThread* p) {
       
  4276   assert(Threads_lock->is_locked(), "sanity check");
       
  4277   ALL_JAVA_THREADS(q) {
       
  4278     if (q == p) {
       
  4279       return true;
       
  4280     }
       
  4281   }
       
  4282   return false;
       
  4283 }
       
  4284 
       
  4285 // Operations on the Threads list for GC.  These are not explicitly locked,
       
  4286 // but the garbage collector must provide a safe context for them to run.
       
  4287 // In particular, these things should never be called when the Threads_lock
       
  4288 // is held by some other thread. (Note: the Safepoint abstraction also
       
  4289 // uses the Threads_lock to guarantee this property. It also makes sure that
       
  4290 // all threads gets blocked when exiting or starting).
       
  4291 
       
  4292 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
       
  4293   ALL_JAVA_THREADS(p) {
       
  4294     p->oops_do(f, cf);
       
  4295   }
       
  4296   VMThread::vm_thread()->oops_do(f, cf);
       
  4297 }
       
  4298 
       
  4299 void Threads::change_thread_claim_parity() {
       
  4300   // Set the new claim parity.
       
  4301   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
       
  4302          "Not in range.");
       
  4303   _thread_claim_parity++;
       
  4304   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
       
  4305   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
       
  4306          "Not in range.");
       
  4307 }
       
  4308 
       
  4309 #ifdef ASSERT
       
  4310 void Threads::assert_all_threads_claimed() {
       
  4311   ALL_JAVA_THREADS(p) {
       
  4312     const int thread_parity = p->oops_do_parity();
       
  4313     assert((thread_parity == _thread_claim_parity),
       
  4314            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
       
  4315   }
       
  4316   VMThread* vmt = VMThread::vm_thread();
       
  4317   const int thread_parity = vmt->oops_do_parity();
       
  4318   assert((thread_parity == _thread_claim_parity),
       
  4319          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
       
  4320 }
       
  4321 #endif // ASSERT
       
  4322 
       
  4323 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
       
  4324   int cp = Threads::thread_claim_parity();
       
  4325   ALL_JAVA_THREADS(p) {
       
  4326     if (p->claim_oops_do(is_par, cp)) {
       
  4327       p->oops_do(f, cf);
       
  4328     }
       
  4329   }
       
  4330   VMThread* vmt = VMThread::vm_thread();
       
  4331   if (vmt->claim_oops_do(is_par, cp)) {
       
  4332     vmt->oops_do(f, cf);
       
  4333   }
       
  4334 }
       
  4335 
       
  4336 #if INCLUDE_ALL_GCS
       
  4337 // Used by ParallelScavenge
       
  4338 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
       
  4339   ALL_JAVA_THREADS(p) {
       
  4340     q->enqueue(new ThreadRootsTask(p));
       
  4341   }
       
  4342   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
       
  4343 }
       
  4344 
       
  4345 // Used by Parallel Old
       
  4346 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
       
  4347   ALL_JAVA_THREADS(p) {
       
  4348     q->enqueue(new ThreadRootsMarkingTask(p));
       
  4349   }
       
  4350   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
       
  4351 }
       
  4352 #endif // INCLUDE_ALL_GCS
       
  4353 
       
  4354 void Threads::nmethods_do(CodeBlobClosure* cf) {
       
  4355   ALL_JAVA_THREADS(p) {
       
  4356     // This is used by the code cache sweeper to mark nmethods that are active
       
  4357     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
       
  4358     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
       
  4359     if(!p->is_Code_cache_sweeper_thread()) {
       
  4360       p->nmethods_do(cf);
       
  4361     }
       
  4362   }
       
  4363 }
       
  4364 
       
  4365 void Threads::metadata_do(void f(Metadata*)) {
       
  4366   ALL_JAVA_THREADS(p) {
       
  4367     p->metadata_do(f);
       
  4368   }
       
  4369 }
       
  4370 
       
  4371 class ThreadHandlesClosure : public ThreadClosure {
       
  4372   void (*_f)(Metadata*);
       
  4373  public:
       
  4374   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
       
  4375   virtual void do_thread(Thread* thread) {
       
  4376     thread->metadata_handles_do(_f);
       
  4377   }
       
  4378 };
       
  4379 
       
  4380 void Threads::metadata_handles_do(void f(Metadata*)) {
       
  4381   // Only walk the Handles in Thread.
       
  4382   ThreadHandlesClosure handles_closure(f);
       
  4383   threads_do(&handles_closure);
       
  4384 }
       
  4385 
       
  4386 void Threads::deoptimized_wrt_marked_nmethods() {
       
  4387   ALL_JAVA_THREADS(p) {
       
  4388     p->deoptimized_wrt_marked_nmethods();
       
  4389   }
       
  4390 }
       
  4391 
       
  4392 
       
  4393 // Get count Java threads that are waiting to enter the specified monitor.
       
  4394 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
       
  4395                                                          address monitor,
       
  4396                                                          bool doLock) {
       
  4397   assert(doLock || SafepointSynchronize::is_at_safepoint(),
       
  4398          "must grab Threads_lock or be at safepoint");
       
  4399   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
       
  4400 
       
  4401   int i = 0;
       
  4402   {
       
  4403     MutexLockerEx ml(doLock ? Threads_lock : NULL);
       
  4404     ALL_JAVA_THREADS(p) {
       
  4405       if (!p->can_call_java()) continue;
       
  4406 
       
  4407       address pending = (address)p->current_pending_monitor();
       
  4408       if (pending == monitor) {             // found a match
       
  4409         if (i < count) result->append(p);   // save the first count matches
       
  4410         i++;
       
  4411       }
       
  4412     }
       
  4413   }
       
  4414   return result;
       
  4415 }
       
  4416 
       
  4417 
       
  4418 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
       
  4419                                                       bool doLock) {
       
  4420   assert(doLock ||
       
  4421          Threads_lock->owned_by_self() ||
       
  4422          SafepointSynchronize::is_at_safepoint(),
       
  4423          "must grab Threads_lock or be at safepoint");
       
  4424 
       
  4425   // NULL owner means not locked so we can skip the search
       
  4426   if (owner == NULL) return NULL;
       
  4427 
       
  4428   {
       
  4429     MutexLockerEx ml(doLock ? Threads_lock : NULL);
       
  4430     ALL_JAVA_THREADS(p) {
       
  4431       // first, see if owner is the address of a Java thread
       
  4432       if (owner == (address)p) return p;
       
  4433     }
       
  4434   }
       
  4435   // Cannot assert on lack of success here since this function may be
       
  4436   // used by code that is trying to report useful problem information
       
  4437   // like deadlock detection.
       
  4438   if (UseHeavyMonitors) return NULL;
       
  4439 
       
  4440   // If we didn't find a matching Java thread and we didn't force use of
       
  4441   // heavyweight monitors, then the owner is the stack address of the
       
  4442   // Lock Word in the owning Java thread's stack.
       
  4443   //
       
  4444   JavaThread* the_owner = NULL;
       
  4445   {
       
  4446     MutexLockerEx ml(doLock ? Threads_lock : NULL);
       
  4447     ALL_JAVA_THREADS(q) {
       
  4448       if (q->is_lock_owned(owner)) {
       
  4449         the_owner = q;
       
  4450         break;
       
  4451       }
       
  4452     }
       
  4453   }
       
  4454   // cannot assert on lack of success here; see above comment
       
  4455   return the_owner;
       
  4456 }
       
  4457 
       
  4458 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
       
  4459 void Threads::print_on(outputStream* st, bool print_stacks,
       
  4460                        bool internal_format, bool print_concurrent_locks) {
       
  4461   char buf[32];
       
  4462   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
       
  4463 
       
  4464   st->print_cr("Full thread dump %s (%s %s):",
       
  4465                Abstract_VM_Version::vm_name(),
       
  4466                Abstract_VM_Version::vm_release(),
       
  4467                Abstract_VM_Version::vm_info_string());
       
  4468   st->cr();
       
  4469 
       
  4470 #if INCLUDE_SERVICES
       
  4471   // Dump concurrent locks
       
  4472   ConcurrentLocksDump concurrent_locks;
       
  4473   if (print_concurrent_locks) {
       
  4474     concurrent_locks.dump_at_safepoint();
       
  4475   }
       
  4476 #endif // INCLUDE_SERVICES
       
  4477 
       
  4478   ALL_JAVA_THREADS(p) {
       
  4479     ResourceMark rm;
       
  4480     p->print_on(st);
       
  4481     if (print_stacks) {
       
  4482       if (internal_format) {
       
  4483         p->trace_stack();
       
  4484       } else {
       
  4485         p->print_stack_on(st);
       
  4486       }
       
  4487     }
       
  4488     st->cr();
       
  4489 #if INCLUDE_SERVICES
       
  4490     if (print_concurrent_locks) {
       
  4491       concurrent_locks.print_locks_on(p, st);
       
  4492     }
       
  4493 #endif // INCLUDE_SERVICES
       
  4494   }
       
  4495 
       
  4496   VMThread::vm_thread()->print_on(st);
       
  4497   st->cr();
       
  4498   Universe::heap()->print_gc_threads_on(st);
       
  4499   WatcherThread* wt = WatcherThread::watcher_thread();
       
  4500   if (wt != NULL) {
       
  4501     wt->print_on(st);
       
  4502     st->cr();
       
  4503   }
       
  4504   st->flush();
       
  4505 }
       
  4506 
       
  4507 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
       
  4508                              int buflen, bool* found_current) {
       
  4509   if (this_thread != NULL) {
       
  4510     bool is_current = (current == this_thread);
       
  4511     *found_current = *found_current || is_current;
       
  4512     st->print("%s", is_current ? "=>" : "  ");
       
  4513 
       
  4514     st->print(PTR_FORMAT, p2i(this_thread));
       
  4515     st->print(" ");
       
  4516     this_thread->print_on_error(st, buf, buflen);
       
  4517     st->cr();
       
  4518   }
       
  4519 }
       
  4520 
       
  4521 class PrintOnErrorClosure : public ThreadClosure {
       
  4522   outputStream* _st;
       
  4523   Thread* _current;
       
  4524   char* _buf;
       
  4525   int _buflen;
       
  4526   bool* _found_current;
       
  4527  public:
       
  4528   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
       
  4529                       int buflen, bool* found_current) :
       
  4530    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
       
  4531 
       
  4532   virtual void do_thread(Thread* thread) {
       
  4533     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
       
  4534   }
       
  4535 };
       
  4536 
       
  4537 // Threads::print_on_error() is called by fatal error handler. It's possible
       
  4538 // that VM is not at safepoint and/or current thread is inside signal handler.
       
  4539 // Don't print stack trace, as the stack may not be walkable. Don't allocate
       
  4540 // memory (even in resource area), it might deadlock the error handler.
       
  4541 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
       
  4542                              int buflen) {
       
  4543   bool found_current = false;
       
  4544   st->print_cr("Java Threads: ( => current thread )");
       
  4545   ALL_JAVA_THREADS(thread) {
       
  4546     print_on_error(thread, st, current, buf, buflen, &found_current);
       
  4547   }
       
  4548   st->cr();
       
  4549 
       
  4550   st->print_cr("Other Threads:");
       
  4551   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
       
  4552   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
       
  4553 
       
  4554   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
       
  4555   Universe::heap()->gc_threads_do(&print_closure);
       
  4556 
       
  4557   if (!found_current) {
       
  4558     st->cr();
       
  4559     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
       
  4560     current->print_on_error(st, buf, buflen);
       
  4561     st->cr();
       
  4562   }
       
  4563   st->cr();
       
  4564   st->print_cr("Threads with active compile tasks:");
       
  4565   print_threads_compiling(st, buf, buflen);
       
  4566 }
       
  4567 
       
  4568 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
       
  4569   ALL_JAVA_THREADS(thread) {
       
  4570     if (thread->is_Compiler_thread()) {
       
  4571       CompilerThread* ct = (CompilerThread*) thread;
       
  4572       if (ct->task() != NULL) {
       
  4573         thread->print_name_on_error(st, buf, buflen);
       
  4574         ct->task()->print(st, NULL, true, true);
       
  4575       }
       
  4576     }
       
  4577   }
       
  4578 }
       
  4579 
       
  4580 
       
  4581 // Internal SpinLock and Mutex
       
  4582 // Based on ParkEvent
       
  4583 
       
  4584 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
       
  4585 //
       
  4586 // We employ SpinLocks _only for low-contention, fixed-length
       
  4587 // short-duration critical sections where we're concerned
       
  4588 // about native mutex_t or HotSpot Mutex:: latency.
       
  4589 // The mux construct provides a spin-then-block mutual exclusion
       
  4590 // mechanism.
       
  4591 //
       
  4592 // Testing has shown that contention on the ListLock guarding gFreeList
       
  4593 // is common.  If we implement ListLock as a simple SpinLock it's common
       
  4594 // for the JVM to devolve to yielding with little progress.  This is true
       
  4595 // despite the fact that the critical sections protected by ListLock are
       
  4596 // extremely short.
       
  4597 //
       
  4598 // TODO-FIXME: ListLock should be of type SpinLock.
       
  4599 // We should make this a 1st-class type, integrated into the lock
       
  4600 // hierarchy as leaf-locks.  Critically, the SpinLock structure
       
  4601 // should have sufficient padding to avoid false-sharing and excessive
       
  4602 // cache-coherency traffic.
       
  4603 
       
  4604 
       
  4605 typedef volatile int SpinLockT;
       
  4606 
       
  4607 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
       
  4608   if (Atomic::cmpxchg (1, adr, 0) == 0) {
       
  4609     return;   // normal fast-path return
       
  4610   }
       
  4611 
       
  4612   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
       
  4613   TEVENT(SpinAcquire - ctx);
       
  4614   int ctr = 0;
       
  4615   int Yields = 0;
       
  4616   for (;;) {
       
  4617     while (*adr != 0) {
       
  4618       ++ctr;
       
  4619       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
       
  4620         if (Yields > 5) {
       
  4621           os::naked_short_sleep(1);
       
  4622         } else {
       
  4623           os::naked_yield();
       
  4624           ++Yields;
       
  4625         }
       
  4626       } else {
       
  4627         SpinPause();
       
  4628       }
       
  4629     }
       
  4630     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
       
  4631   }
       
  4632 }
       
  4633 
       
  4634 void Thread::SpinRelease(volatile int * adr) {
       
  4635   assert(*adr != 0, "invariant");
       
  4636   OrderAccess::fence();      // guarantee at least release consistency.
       
  4637   // Roach-motel semantics.
       
  4638   // It's safe if subsequent LDs and STs float "up" into the critical section,
       
  4639   // but prior LDs and STs within the critical section can't be allowed
       
  4640   // to reorder or float past the ST that releases the lock.
       
  4641   // Loads and stores in the critical section - which appear in program
       
  4642   // order before the store that releases the lock - must also appear
       
  4643   // before the store that releases the lock in memory visibility order.
       
  4644   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
       
  4645   // the ST of 0 into the lock-word which releases the lock, so fence
       
  4646   // more than covers this on all platforms.
       
  4647   *adr = 0;
       
  4648 }
       
  4649 
       
  4650 // muxAcquire and muxRelease:
       
  4651 //
       
  4652 // *  muxAcquire and muxRelease support a single-word lock-word construct.
       
  4653 //    The LSB of the word is set IFF the lock is held.
       
  4654 //    The remainder of the word points to the head of a singly-linked list
       
  4655 //    of threads blocked on the lock.
       
  4656 //
       
  4657 // *  The current implementation of muxAcquire-muxRelease uses its own
       
  4658 //    dedicated Thread._MuxEvent instance.  If we're interested in
       
  4659 //    minimizing the peak number of extant ParkEvent instances then
       
  4660 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
       
  4661 //    as certain invariants were satisfied.  Specifically, care would need
       
  4662 //    to be taken with regards to consuming unpark() "permits".
       
  4663 //    A safe rule of thumb is that a thread would never call muxAcquire()
       
  4664 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
       
  4665 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
       
  4666 //    consume an unpark() permit intended for monitorenter, for instance.
       
  4667 //    One way around this would be to widen the restricted-range semaphore
       
  4668 //    implemented in park().  Another alternative would be to provide
       
  4669 //    multiple instances of the PlatformEvent() for each thread.  One
       
  4670 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
       
  4671 //
       
  4672 // *  Usage:
       
  4673 //    -- Only as leaf locks
       
  4674 //    -- for short-term locking only as muxAcquire does not perform
       
  4675 //       thread state transitions.
       
  4676 //
       
  4677 // Alternatives:
       
  4678 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
       
  4679 //    but with parking or spin-then-park instead of pure spinning.
       
  4680 // *  Use Taura-Oyama-Yonenzawa locks.
       
  4681 // *  It's possible to construct a 1-0 lock if we encode the lockword as
       
  4682 //    (List,LockByte).  Acquire will CAS the full lockword while Release
       
  4683 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
       
  4684 //    acquiring threads use timers (ParkTimed) to detect and recover from
       
  4685 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
       
  4686 //    boundaries by using placement-new.
       
  4687 // *  Augment MCS with advisory back-link fields maintained with CAS().
       
  4688 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
       
  4689 //    The validity of the backlinks must be ratified before we trust the value.
       
  4690 //    If the backlinks are invalid the exiting thread must back-track through the
       
  4691 //    the forward links, which are always trustworthy.
       
  4692 // *  Add a successor indication.  The LockWord is currently encoded as
       
  4693 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
       
  4694 //    to provide the usual futile-wakeup optimization.
       
  4695 //    See RTStt for details.
       
  4696 // *  Consider schedctl.sc_nopreempt to cover the critical section.
       
  4697 //
       
  4698 
       
  4699 
       
  4700 typedef volatile intptr_t MutexT;      // Mux Lock-word
       
  4701 enum MuxBits { LOCKBIT = 1 };
       
  4702 
       
  4703 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
       
  4704   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
       
  4705   if (w == 0) return;
       
  4706   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
       
  4707     return;
       
  4708   }
       
  4709 
       
  4710   TEVENT(muxAcquire - Contention);
       
  4711   ParkEvent * const Self = Thread::current()->_MuxEvent;
       
  4712   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
       
  4713   for (;;) {
       
  4714     int its = (os::is_MP() ? 100 : 0) + 1;
       
  4715 
       
  4716     // Optional spin phase: spin-then-park strategy
       
  4717     while (--its >= 0) {
       
  4718       w = *Lock;
       
  4719       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
       
  4720         return;
       
  4721       }
       
  4722     }
       
  4723 
       
  4724     Self->reset();
       
  4725     Self->OnList = intptr_t(Lock);
       
  4726     // The following fence() isn't _strictly necessary as the subsequent
       
  4727     // CAS() both serializes execution and ratifies the fetched *Lock value.
       
  4728     OrderAccess::fence();
       
  4729     for (;;) {
       
  4730       w = *Lock;
       
  4731       if ((w & LOCKBIT) == 0) {
       
  4732         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
       
  4733           Self->OnList = 0;   // hygiene - allows stronger asserts
       
  4734           return;
       
  4735         }
       
  4736         continue;      // Interference -- *Lock changed -- Just retry
       
  4737       }
       
  4738       assert(w & LOCKBIT, "invariant");
       
  4739       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
       
  4740       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
       
  4741     }
       
  4742 
       
  4743     while (Self->OnList != 0) {
       
  4744       Self->park();
       
  4745     }
       
  4746   }
       
  4747 }
       
  4748 
       
  4749 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
       
  4750   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
       
  4751   if (w == 0) return;
       
  4752   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
       
  4753     return;
       
  4754   }
       
  4755 
       
  4756   TEVENT(muxAcquire - Contention);
       
  4757   ParkEvent * ReleaseAfter = NULL;
       
  4758   if (ev == NULL) {
       
  4759     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
       
  4760   }
       
  4761   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
       
  4762   for (;;) {
       
  4763     guarantee(ev->OnList == 0, "invariant");
       
  4764     int its = (os::is_MP() ? 100 : 0) + 1;
       
  4765 
       
  4766     // Optional spin phase: spin-then-park strategy
       
  4767     while (--its >= 0) {
       
  4768       w = *Lock;
       
  4769       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
       
  4770         if (ReleaseAfter != NULL) {
       
  4771           ParkEvent::Release(ReleaseAfter);
       
  4772         }
       
  4773         return;
       
  4774       }
       
  4775     }
       
  4776 
       
  4777     ev->reset();
       
  4778     ev->OnList = intptr_t(Lock);
       
  4779     // The following fence() isn't _strictly necessary as the subsequent
       
  4780     // CAS() both serializes execution and ratifies the fetched *Lock value.
       
  4781     OrderAccess::fence();
       
  4782     for (;;) {
       
  4783       w = *Lock;
       
  4784       if ((w & LOCKBIT) == 0) {
       
  4785         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
       
  4786           ev->OnList = 0;
       
  4787           // We call ::Release while holding the outer lock, thus
       
  4788           // artificially lengthening the critical section.
       
  4789           // Consider deferring the ::Release() until the subsequent unlock(),
       
  4790           // after we've dropped the outer lock.
       
  4791           if (ReleaseAfter != NULL) {
       
  4792             ParkEvent::Release(ReleaseAfter);
       
  4793           }
       
  4794           return;
       
  4795         }
       
  4796         continue;      // Interference -- *Lock changed -- Just retry
       
  4797       }
       
  4798       assert(w & LOCKBIT, "invariant");
       
  4799       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
       
  4800       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
       
  4801     }
       
  4802 
       
  4803     while (ev->OnList != 0) {
       
  4804       ev->park();
       
  4805     }
       
  4806   }
       
  4807 }
       
  4808 
       
  4809 // Release() must extract a successor from the list and then wake that thread.
       
  4810 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
       
  4811 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
       
  4812 // Release() would :
       
  4813 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
       
  4814 // (B) Extract a successor from the private list "in-hand"
       
  4815 // (C) attempt to CAS() the residual back into *Lock over null.
       
  4816 //     If there were any newly arrived threads and the CAS() would fail.
       
  4817 //     In that case Release() would detach the RATs, re-merge the list in-hand
       
  4818 //     with the RATs and repeat as needed.  Alternately, Release() might
       
  4819 //     detach and extract a successor, but then pass the residual list to the wakee.
       
  4820 //     The wakee would be responsible for reattaching and remerging before it
       
  4821 //     competed for the lock.
       
  4822 //
       
  4823 // Both "pop" and DMR are immune from ABA corruption -- there can be
       
  4824 // multiple concurrent pushers, but only one popper or detacher.
       
  4825 // This implementation pops from the head of the list.  This is unfair,
       
  4826 // but tends to provide excellent throughput as hot threads remain hot.
       
  4827 // (We wake recently run threads first).
       
  4828 //
       
  4829 // All paths through muxRelease() will execute a CAS.
       
  4830 // Release consistency -- We depend on the CAS in muxRelease() to provide full
       
  4831 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
       
  4832 // executed within the critical section are complete and globally visible before the
       
  4833 // store (CAS) to the lock-word that releases the lock becomes globally visible.
       
  4834 void Thread::muxRelease(volatile intptr_t * Lock)  {
       
  4835   for (;;) {
       
  4836     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
       
  4837     assert(w & LOCKBIT, "invariant");
       
  4838     if (w == LOCKBIT) return;
       
  4839     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
       
  4840     assert(List != NULL, "invariant");
       
  4841     assert(List->OnList == intptr_t(Lock), "invariant");
       
  4842     ParkEvent * const nxt = List->ListNext;
       
  4843     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
       
  4844 
       
  4845     // The following CAS() releases the lock and pops the head element.
       
  4846     // The CAS() also ratifies the previously fetched lock-word value.
       
  4847     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
       
  4848       continue;
       
  4849     }
       
  4850     List->OnList = 0;
       
  4851     OrderAccess::fence();
       
  4852     List->unpark();
       
  4853     return;
       
  4854   }
       
  4855 }
       
  4856 
       
  4857 
       
  4858 void Threads::verify() {
       
  4859   ALL_JAVA_THREADS(p) {
       
  4860     p->verify();
       
  4861   }
       
  4862   VMThread* thread = VMThread::vm_thread();
       
  4863   if (thread != NULL) thread->verify();
       
  4864 }