src/hotspot/share/opto/subnode.hpp
changeset 47216 71c04702a3d5
parent 45965 e29c1363af9a
child 48089 22c9856fc2c2
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/opto/subnode.hpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,485 @@
+/*
+ * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_OPTO_SUBNODE_HPP
+#define SHARE_VM_OPTO_SUBNODE_HPP
+
+#include "opto/node.hpp"
+#include "opto/opcodes.hpp"
+#include "opto/type.hpp"
+
+// Portions of code courtesy of Clifford Click
+
+//------------------------------SUBNode----------------------------------------
+// Class SUBTRACTION functionality.  This covers all the usual 'subtract'
+// behaviors.  Subtract-integer, -float, -double, binary xor, compare-integer,
+// -float, and -double are all inherited from this class.  The compare
+// functions behave like subtract functions, except that all negative answers
+// are compressed into -1, and all positive answers compressed to 1.
+class SubNode : public Node {
+public:
+  SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
+    init_class_id(Class_Sub);
+  }
+
+  // Handle algebraic identities here.  If we have an identity, return the Node
+  // we are equivalent to.  We look for "add of zero" as an identity.
+  virtual Node* Identity(PhaseGVN* phase);
+
+  // Compute a new Type for this node.  Basically we just do the pre-check,
+  // then call the virtual add() to set the type.
+  virtual const Type* Value(PhaseGVN* phase) const;
+  const Type* Value_common( PhaseTransform *phase ) const;
+
+  // Supplied function returns the subtractend of the inputs.
+  // This also type-checks the inputs for sanity.  Guaranteed never to
+  // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
+  virtual const Type *sub( const Type *, const Type * ) const = 0;
+
+  // Supplied function to return the additive identity type.
+  // This is returned whenever the subtracts inputs are the same.
+  virtual const Type *add_id() const = 0;
+};
+
+
+// NOTE: SubINode should be taken away and replaced by add and negate
+//------------------------------SubINode---------------------------------------
+// Subtract 2 integers
+class SubINode : public SubNode {
+public:
+  SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
+  virtual int Opcode() const;
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual const Type *sub( const Type *, const Type * ) const;
+  const Type *add_id() const { return TypeInt::ZERO; }
+  const Type *bottom_type() const { return TypeInt::INT; }
+  virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+//------------------------------SubLNode---------------------------------------
+// Subtract 2 integers
+class SubLNode : public SubNode {
+public:
+  SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
+  virtual int Opcode() const;
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual const Type *sub( const Type *, const Type * ) const;
+  const Type *add_id() const { return TypeLong::ZERO; }
+  const Type *bottom_type() const { return TypeLong::LONG; }
+  virtual uint ideal_reg() const { return Op_RegL; }
+};
+
+// NOTE: SubFPNode should be taken away and replaced by add and negate
+//------------------------------SubFPNode--------------------------------------
+// Subtract 2 floats or doubles
+class SubFPNode : public SubNode {
+protected:
+  SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
+public:
+  const Type* Value(PhaseGVN* phase) const;
+};
+
+// NOTE: SubFNode should be taken away and replaced by add and negate
+//------------------------------SubFNode---------------------------------------
+// Subtract 2 doubles
+class SubFNode : public SubFPNode {
+public:
+  SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
+  virtual int Opcode() const;
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual const Type *sub( const Type *, const Type * ) const;
+  const Type   *add_id() const { return TypeF::ZERO; }
+  const Type   *bottom_type() const { return Type::FLOAT; }
+  virtual uint  ideal_reg() const { return Op_RegF; }
+};
+
+// NOTE: SubDNode should be taken away and replaced by add and negate
+//------------------------------SubDNode---------------------------------------
+// Subtract 2 doubles
+class SubDNode : public SubFPNode {
+public:
+  SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
+  virtual int Opcode() const;
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual const Type *sub( const Type *, const Type * ) const;
+  const Type   *add_id() const { return TypeD::ZERO; }
+  const Type   *bottom_type() const { return Type::DOUBLE; }
+  virtual uint  ideal_reg() const { return Op_RegD; }
+};
+
+//------------------------------CmpNode---------------------------------------
+// Compare 2 values, returning condition codes (-1, 0 or 1).
+class CmpNode : public SubNode {
+public:
+  CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
+    init_class_id(Class_Cmp);
+  }
+  virtual Node* Identity(PhaseGVN* phase);
+  const Type *add_id() const { return TypeInt::ZERO; }
+  const Type *bottom_type() const { return TypeInt::CC; }
+  virtual uint ideal_reg() const { return Op_RegFlags; }
+
+#ifndef PRODUCT
+  // CmpNode and subclasses include all data inputs (until hitting a control
+  // boundary) in their related node set, as well as all outputs until and
+  // including eventual control nodes and their projections.
+  virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
+#endif
+};
+
+//------------------------------CmpINode---------------------------------------
+// Compare 2 signed values, returning condition codes (-1, 0 or 1).
+class CmpINode : public CmpNode {
+public:
+  CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+  virtual int Opcode() const;
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual const Type *sub( const Type *, const Type * ) const;
+};
+
+//------------------------------CmpUNode---------------------------------------
+// Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
+class CmpUNode : public CmpNode {
+public:
+  CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+  virtual int Opcode() const;
+  virtual const Type *sub( const Type *, const Type * ) const;
+  const Type* Value(PhaseGVN* phase) const;
+  bool is_index_range_check() const;
+};
+
+//------------------------------CmpPNode---------------------------------------
+// Compare 2 pointer values, returning condition codes (-1, 0 or 1).
+class CmpPNode : public CmpNode {
+public:
+  CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+  virtual int Opcode() const;
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual const Type *sub( const Type *, const Type * ) const;
+};
+
+//------------------------------CmpNNode--------------------------------------
+// Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
+class CmpNNode : public CmpNode {
+public:
+  CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+  virtual int Opcode() const;
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual const Type *sub( const Type *, const Type * ) const;
+};
+
+//------------------------------CmpLNode---------------------------------------
+// Compare 2 long values, returning condition codes (-1, 0 or 1).
+class CmpLNode : public CmpNode {
+public:
+  CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+  virtual int    Opcode() const;
+  virtual const Type *sub( const Type *, const Type * ) const;
+};
+
+//------------------------------CmpULNode---------------------------------------
+// Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
+class CmpULNode : public CmpNode {
+public:
+  CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
+  virtual int Opcode() const;
+  virtual const Type* sub(const Type*, const Type*) const;
+};
+
+//------------------------------CmpL3Node--------------------------------------
+// Compare 2 long values, returning integer value (-1, 0 or 1).
+class CmpL3Node : public CmpLNode {
+public:
+  CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
+    // Since it is not consumed by Bools, it is not really a Cmp.
+    init_class_id(Class_Sub);
+  }
+  virtual int    Opcode() const;
+  virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+//------------------------------CmpFNode---------------------------------------
+// Compare 2 float values, returning condition codes (-1, 0 or 1).
+// This implements the Java bytecode fcmpl, so unordered returns -1.
+// Operands may not commute.
+class CmpFNode : public CmpNode {
+public:
+  CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+  virtual int Opcode() const;
+  virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
+  const Type* Value(PhaseGVN* phase) const;
+};
+
+//------------------------------CmpF3Node--------------------------------------
+// Compare 2 float values, returning integer value (-1, 0 or 1).
+// This implements the Java bytecode fcmpl, so unordered returns -1.
+// Operands may not commute.
+class CmpF3Node : public CmpFNode {
+public:
+  CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
+    // Since it is not consumed by Bools, it is not really a Cmp.
+    init_class_id(Class_Sub);
+  }
+  virtual int Opcode() const;
+  // Since it is not consumed by Bools, it is not really a Cmp.
+  virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+
+//------------------------------CmpDNode---------------------------------------
+// Compare 2 double values, returning condition codes (-1, 0 or 1).
+// This implements the Java bytecode dcmpl, so unordered returns -1.
+// Operands may not commute.
+class CmpDNode : public CmpNode {
+public:
+  CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+  virtual int Opcode() const;
+  virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
+  const Type* Value(PhaseGVN* phase) const;
+  virtual Node  *Ideal(PhaseGVN *phase, bool can_reshape);
+};
+
+//------------------------------CmpD3Node--------------------------------------
+// Compare 2 double values, returning integer value (-1, 0 or 1).
+// This implements the Java bytecode dcmpl, so unordered returns -1.
+// Operands may not commute.
+class CmpD3Node : public CmpDNode {
+public:
+  CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
+    // Since it is not consumed by Bools, it is not really a Cmp.
+    init_class_id(Class_Sub);
+  }
+  virtual int Opcode() const;
+  virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+
+//------------------------------BoolTest---------------------------------------
+// Convert condition codes to a boolean test value (0 or -1).
+// We pick the values as 3 bits; the low order 2 bits we compare against the
+// condition codes, the high bit flips the sense of the result.
+struct BoolTest VALUE_OBJ_CLASS_SPEC {
+  enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, illegal = 8 };
+  mask _test;
+  BoolTest( mask btm ) : _test(btm) {}
+  const Type *cc2logical( const Type *CC ) const;
+  // Commute the test.  I use a small table lookup.  The table is created as
+  // a simple char array where each element is the ASCII version of a 'mask'
+  // enum from above.
+  mask commute( ) const { return mask("032147658"[_test]-'0'); }
+  mask negate( ) const { return mask(_test^4); }
+  bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
+  bool is_less( )  const { return _test == BoolTest::lt || _test == BoolTest::le; }
+  bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
+  void dump_on(outputStream *st) const;
+};
+
+//------------------------------BoolNode---------------------------------------
+// A Node to convert a Condition Codes to a Logical result.
+class BoolNode : public Node {
+  virtual uint hash() const;
+  virtual uint cmp( const Node &n ) const;
+  virtual uint size_of() const;
+
+  // Try to optimize signed integer comparison
+  Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
+                  int cmp1_op, const TypeInt* cmp2_type);
+public:
+  const BoolTest _test;
+  BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
+    init_class_id(Class_Bool);
+  }
+  // Convert an arbitrary int value to a Bool or other suitable predicate.
+  static Node* make_predicate(Node* test_value, PhaseGVN* phase);
+  // Convert self back to an integer value.
+  Node* as_int_value(PhaseGVN* phase);
+  // Invert sense of self, returning new Bool.
+  BoolNode* negate(PhaseGVN* phase);
+  virtual int Opcode() const;
+  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+  virtual const Type* Value(PhaseGVN* phase) const;
+  virtual const Type *bottom_type() const { return TypeInt::BOOL; }
+  uint match_edge(uint idx) const { return 0; }
+  virtual uint ideal_reg() const { return Op_RegI; }
+
+  bool is_counted_loop_exit_test();
+#ifndef PRODUCT
+  virtual void dump_spec(outputStream *st) const;
+  virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
+#endif
+};
+
+//------------------------------AbsNode----------------------------------------
+// Abstract class for absolute value.  Mostly used to get a handy wrapper
+// for finding this pattern in the graph.
+class AbsNode : public Node {
+public:
+  AbsNode( Node *value ) : Node(0,value) {}
+};
+
+//------------------------------AbsINode---------------------------------------
+// Absolute value an integer.  Since a naive graph involves control flow, we
+// "match" it in the ideal world (so the control flow can be removed).
+class AbsINode : public AbsNode {
+public:
+  AbsINode( Node *in1 ) : AbsNode(in1) {}
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return TypeInt::INT; }
+  virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+//------------------------------AbsFNode---------------------------------------
+// Absolute value a float, a common float-point idiom with a cheap hardware
+// implemention on most chips.  Since a naive graph involves control flow, we
+// "match" it in the ideal world (so the control flow can be removed).
+class AbsFNode : public AbsNode {
+public:
+  AbsFNode( Node *in1 ) : AbsNode(in1) {}
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return Type::FLOAT; }
+  virtual uint ideal_reg() const { return Op_RegF; }
+};
+
+//------------------------------AbsDNode---------------------------------------
+// Absolute value a double, a common float-point idiom with a cheap hardware
+// implemention on most chips.  Since a naive graph involves control flow, we
+// "match" it in the ideal world (so the control flow can be removed).
+class AbsDNode : public AbsNode {
+public:
+  AbsDNode( Node *in1 ) : AbsNode(in1) {}
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return Type::DOUBLE; }
+  virtual uint ideal_reg() const { return Op_RegD; }
+};
+
+
+//------------------------------CmpLTMaskNode----------------------------------
+// If p < q, return -1 else return 0.  Nice for flow-free idioms.
+class CmpLTMaskNode : public Node {
+public:
+  CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return TypeInt::INT; }
+  virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+
+//------------------------------NegNode----------------------------------------
+class NegNode : public Node {
+public:
+  NegNode( Node *in1 ) : Node(0,in1) {}
+};
+
+//------------------------------NegFNode---------------------------------------
+// Negate value a float.  Negating 0.0 returns -0.0, but subtracting from
+// zero returns +0.0 (per JVM spec on 'fneg' bytecode).  As subtraction
+// cannot be used to replace negation we have to implement negation as ideal
+// node; note that negation and addition can replace subtraction.
+class NegFNode : public NegNode {
+public:
+  NegFNode( Node *in1 ) : NegNode(in1) {}
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return Type::FLOAT; }
+  virtual uint ideal_reg() const { return Op_RegF; }
+};
+
+//------------------------------NegDNode---------------------------------------
+// Negate value a double.  Negating 0.0 returns -0.0, but subtracting from
+// zero returns +0.0 (per JVM spec on 'dneg' bytecode).  As subtraction
+// cannot be used to replace negation we have to implement negation as ideal
+// node; note that negation and addition can replace subtraction.
+class NegDNode : public NegNode {
+public:
+  NegDNode( Node *in1 ) : NegNode(in1) {}
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return Type::DOUBLE; }
+  virtual uint ideal_reg() const { return Op_RegD; }
+};
+
+//------------------------------AtanDNode--------------------------------------
+// arcus tangens of a double
+class AtanDNode : public Node {
+public:
+  AtanDNode(Node *c, Node *in1, Node *in2  ) : Node(c, in1, in2) {}
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return Type::DOUBLE; }
+  virtual uint ideal_reg() const { return Op_RegD; }
+};
+
+
+//------------------------------SqrtDNode--------------------------------------
+// square root a double
+class SqrtDNode : public Node {
+public:
+  SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
+    init_flags(Flag_is_expensive);
+    C->add_expensive_node(this);
+  }
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return Type::DOUBLE; }
+  virtual uint ideal_reg() const { return Op_RegD; }
+  virtual const Type* Value(PhaseGVN* phase) const;
+};
+
+//-------------------------------ReverseBytesINode--------------------------------
+// reverse bytes of an integer
+class ReverseBytesINode : public Node {
+public:
+  ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return TypeInt::INT; }
+  virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+//-------------------------------ReverseBytesLNode--------------------------------
+// reverse bytes of a long
+class ReverseBytesLNode : public Node {
+public:
+  ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return TypeLong::LONG; }
+  virtual uint ideal_reg() const { return Op_RegL; }
+};
+
+//-------------------------------ReverseBytesUSNode--------------------------------
+// reverse bytes of an unsigned short / char
+class ReverseBytesUSNode : public Node {
+public:
+  ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return TypeInt::CHAR; }
+  virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+//-------------------------------ReverseBytesSNode--------------------------------
+// reverse bytes of a short
+class ReverseBytesSNode : public Node {
+public:
+  ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
+  virtual int Opcode() const;
+  const Type *bottom_type() const { return TypeInt::SHORT; }
+  virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+#endif // SHARE_VM_OPTO_SUBNODE_HPP