diff -r 4ebc2e2fb97c -r 71c04702a3d5 src/hotspot/share/opto/subnode.hpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/hotspot/share/opto/subnode.hpp Tue Sep 12 19:03:39 2017 +0200 @@ -0,0 +1,485 @@ +/* + * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#ifndef SHARE_VM_OPTO_SUBNODE_HPP +#define SHARE_VM_OPTO_SUBNODE_HPP + +#include "opto/node.hpp" +#include "opto/opcodes.hpp" +#include "opto/type.hpp" + +// Portions of code courtesy of Clifford Click + +//------------------------------SUBNode---------------------------------------- +// Class SUBTRACTION functionality. This covers all the usual 'subtract' +// behaviors. Subtract-integer, -float, -double, binary xor, compare-integer, +// -float, and -double are all inherited from this class. The compare +// functions behave like subtract functions, except that all negative answers +// are compressed into -1, and all positive answers compressed to 1. +class SubNode : public Node { +public: + SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) { + init_class_id(Class_Sub); + } + + // Handle algebraic identities here. If we have an identity, return the Node + // we are equivalent to. We look for "add of zero" as an identity. + virtual Node* Identity(PhaseGVN* phase); + + // Compute a new Type for this node. Basically we just do the pre-check, + // then call the virtual add() to set the type. + virtual const Type* Value(PhaseGVN* phase) const; + const Type* Value_common( PhaseTransform *phase ) const; + + // Supplied function returns the subtractend of the inputs. + // This also type-checks the inputs for sanity. Guaranteed never to + // be passed a TOP or BOTTOM type, these are filtered out by a pre-check. + virtual const Type *sub( const Type *, const Type * ) const = 0; + + // Supplied function to return the additive identity type. + // This is returned whenever the subtracts inputs are the same. + virtual const Type *add_id() const = 0; +}; + + +// NOTE: SubINode should be taken away and replaced by add and negate +//------------------------------SubINode--------------------------------------- +// Subtract 2 integers +class SubINode : public SubNode { +public: + SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {} + virtual int Opcode() const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual const Type *sub( const Type *, const Type * ) const; + const Type *add_id() const { return TypeInt::ZERO; } + const Type *bottom_type() const { return TypeInt::INT; } + virtual uint ideal_reg() const { return Op_RegI; } +}; + +//------------------------------SubLNode--------------------------------------- +// Subtract 2 integers +class SubLNode : public SubNode { +public: + SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {} + virtual int Opcode() const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual const Type *sub( const Type *, const Type * ) const; + const Type *add_id() const { return TypeLong::ZERO; } + const Type *bottom_type() const { return TypeLong::LONG; } + virtual uint ideal_reg() const { return Op_RegL; } +}; + +// NOTE: SubFPNode should be taken away and replaced by add and negate +//------------------------------SubFPNode-------------------------------------- +// Subtract 2 floats or doubles +class SubFPNode : public SubNode { +protected: + SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {} +public: + const Type* Value(PhaseGVN* phase) const; +}; + +// NOTE: SubFNode should be taken away and replaced by add and negate +//------------------------------SubFNode--------------------------------------- +// Subtract 2 doubles +class SubFNode : public SubFPNode { +public: + SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {} + virtual int Opcode() const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual const Type *sub( const Type *, const Type * ) const; + const Type *add_id() const { return TypeF::ZERO; } + const Type *bottom_type() const { return Type::FLOAT; } + virtual uint ideal_reg() const { return Op_RegF; } +}; + +// NOTE: SubDNode should be taken away and replaced by add and negate +//------------------------------SubDNode--------------------------------------- +// Subtract 2 doubles +class SubDNode : public SubFPNode { +public: + SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {} + virtual int Opcode() const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual const Type *sub( const Type *, const Type * ) const; + const Type *add_id() const { return TypeD::ZERO; } + const Type *bottom_type() const { return Type::DOUBLE; } + virtual uint ideal_reg() const { return Op_RegD; } +}; + +//------------------------------CmpNode--------------------------------------- +// Compare 2 values, returning condition codes (-1, 0 or 1). +class CmpNode : public SubNode { +public: + CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) { + init_class_id(Class_Cmp); + } + virtual Node* Identity(PhaseGVN* phase); + const Type *add_id() const { return TypeInt::ZERO; } + const Type *bottom_type() const { return TypeInt::CC; } + virtual uint ideal_reg() const { return Op_RegFlags; } + +#ifndef PRODUCT + // CmpNode and subclasses include all data inputs (until hitting a control + // boundary) in their related node set, as well as all outputs until and + // including eventual control nodes and their projections. + virtual void related(GrowableArray *in_rel, GrowableArray *out_rel, bool compact) const; +#endif +}; + +//------------------------------CmpINode--------------------------------------- +// Compare 2 signed values, returning condition codes (-1, 0 or 1). +class CmpINode : public CmpNode { +public: + CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} + virtual int Opcode() const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual const Type *sub( const Type *, const Type * ) const; +}; + +//------------------------------CmpUNode--------------------------------------- +// Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1). +class CmpUNode : public CmpNode { +public: + CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} + virtual int Opcode() const; + virtual const Type *sub( const Type *, const Type * ) const; + const Type* Value(PhaseGVN* phase) const; + bool is_index_range_check() const; +}; + +//------------------------------CmpPNode--------------------------------------- +// Compare 2 pointer values, returning condition codes (-1, 0 or 1). +class CmpPNode : public CmpNode { +public: + CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} + virtual int Opcode() const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual const Type *sub( const Type *, const Type * ) const; +}; + +//------------------------------CmpNNode-------------------------------------- +// Compare 2 narrow oop values, returning condition codes (-1, 0 or 1). +class CmpNNode : public CmpNode { +public: + CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} + virtual int Opcode() const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual const Type *sub( const Type *, const Type * ) const; +}; + +//------------------------------CmpLNode--------------------------------------- +// Compare 2 long values, returning condition codes (-1, 0 or 1). +class CmpLNode : public CmpNode { +public: + CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} + virtual int Opcode() const; + virtual const Type *sub( const Type *, const Type * ) const; +}; + +//------------------------------CmpULNode--------------------------------------- +// Compare 2 unsigned long values, returning condition codes (-1, 0 or 1). +class CmpULNode : public CmpNode { +public: + CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { } + virtual int Opcode() const; + virtual const Type* sub(const Type*, const Type*) const; +}; + +//------------------------------CmpL3Node-------------------------------------- +// Compare 2 long values, returning integer value (-1, 0 or 1). +class CmpL3Node : public CmpLNode { +public: + CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) { + // Since it is not consumed by Bools, it is not really a Cmp. + init_class_id(Class_Sub); + } + virtual int Opcode() const; + virtual uint ideal_reg() const { return Op_RegI; } +}; + +//------------------------------CmpFNode--------------------------------------- +// Compare 2 float values, returning condition codes (-1, 0 or 1). +// This implements the Java bytecode fcmpl, so unordered returns -1. +// Operands may not commute. +class CmpFNode : public CmpNode { +public: + CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} + virtual int Opcode() const; + virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; } + const Type* Value(PhaseGVN* phase) const; +}; + +//------------------------------CmpF3Node-------------------------------------- +// Compare 2 float values, returning integer value (-1, 0 or 1). +// This implements the Java bytecode fcmpl, so unordered returns -1. +// Operands may not commute. +class CmpF3Node : public CmpFNode { +public: + CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) { + // Since it is not consumed by Bools, it is not really a Cmp. + init_class_id(Class_Sub); + } + virtual int Opcode() const; + // Since it is not consumed by Bools, it is not really a Cmp. + virtual uint ideal_reg() const { return Op_RegI; } +}; + + +//------------------------------CmpDNode--------------------------------------- +// Compare 2 double values, returning condition codes (-1, 0 or 1). +// This implements the Java bytecode dcmpl, so unordered returns -1. +// Operands may not commute. +class CmpDNode : public CmpNode { +public: + CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} + virtual int Opcode() const; + virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; } + const Type* Value(PhaseGVN* phase) const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); +}; + +//------------------------------CmpD3Node-------------------------------------- +// Compare 2 double values, returning integer value (-1, 0 or 1). +// This implements the Java bytecode dcmpl, so unordered returns -1. +// Operands may not commute. +class CmpD3Node : public CmpDNode { +public: + CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) { + // Since it is not consumed by Bools, it is not really a Cmp. + init_class_id(Class_Sub); + } + virtual int Opcode() const; + virtual uint ideal_reg() const { return Op_RegI; } +}; + + +//------------------------------BoolTest--------------------------------------- +// Convert condition codes to a boolean test value (0 or -1). +// We pick the values as 3 bits; the low order 2 bits we compare against the +// condition codes, the high bit flips the sense of the result. +struct BoolTest VALUE_OBJ_CLASS_SPEC { + enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, illegal = 8 }; + mask _test; + BoolTest( mask btm ) : _test(btm) {} + const Type *cc2logical( const Type *CC ) const; + // Commute the test. I use a small table lookup. The table is created as + // a simple char array where each element is the ASCII version of a 'mask' + // enum from above. + mask commute( ) const { return mask("032147658"[_test]-'0'); } + mask negate( ) const { return mask(_test^4); } + bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); } + bool is_less( ) const { return _test == BoolTest::lt || _test == BoolTest::le; } + bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; } + void dump_on(outputStream *st) const; +}; + +//------------------------------BoolNode--------------------------------------- +// A Node to convert a Condition Codes to a Logical result. +class BoolNode : public Node { + virtual uint hash() const; + virtual uint cmp( const Node &n ) const; + virtual uint size_of() const; + + // Try to optimize signed integer comparison + Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op, + int cmp1_op, const TypeInt* cmp2_type); +public: + const BoolTest _test; + BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) { + init_class_id(Class_Bool); + } + // Convert an arbitrary int value to a Bool or other suitable predicate. + static Node* make_predicate(Node* test_value, PhaseGVN* phase); + // Convert self back to an integer value. + Node* as_int_value(PhaseGVN* phase); + // Invert sense of self, returning new Bool. + BoolNode* negate(PhaseGVN* phase); + virtual int Opcode() const; + virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); + virtual const Type* Value(PhaseGVN* phase) const; + virtual const Type *bottom_type() const { return TypeInt::BOOL; } + uint match_edge(uint idx) const { return 0; } + virtual uint ideal_reg() const { return Op_RegI; } + + bool is_counted_loop_exit_test(); +#ifndef PRODUCT + virtual void dump_spec(outputStream *st) const; + virtual void related(GrowableArray *in_rel, GrowableArray *out_rel, bool compact) const; +#endif +}; + +//------------------------------AbsNode---------------------------------------- +// Abstract class for absolute value. Mostly used to get a handy wrapper +// for finding this pattern in the graph. +class AbsNode : public Node { +public: + AbsNode( Node *value ) : Node(0,value) {} +}; + +//------------------------------AbsINode--------------------------------------- +// Absolute value an integer. Since a naive graph involves control flow, we +// "match" it in the ideal world (so the control flow can be removed). +class AbsINode : public AbsNode { +public: + AbsINode( Node *in1 ) : AbsNode(in1) {} + virtual int Opcode() const; + const Type *bottom_type() const { return TypeInt::INT; } + virtual uint ideal_reg() const { return Op_RegI; } +}; + +//------------------------------AbsFNode--------------------------------------- +// Absolute value a float, a common float-point idiom with a cheap hardware +// implemention on most chips. Since a naive graph involves control flow, we +// "match" it in the ideal world (so the control flow can be removed). +class AbsFNode : public AbsNode { +public: + AbsFNode( Node *in1 ) : AbsNode(in1) {} + virtual int Opcode() const; + const Type *bottom_type() const { return Type::FLOAT; } + virtual uint ideal_reg() const { return Op_RegF; } +}; + +//------------------------------AbsDNode--------------------------------------- +// Absolute value a double, a common float-point idiom with a cheap hardware +// implemention on most chips. Since a naive graph involves control flow, we +// "match" it in the ideal world (so the control flow can be removed). +class AbsDNode : public AbsNode { +public: + AbsDNode( Node *in1 ) : AbsNode(in1) {} + virtual int Opcode() const; + const Type *bottom_type() const { return Type::DOUBLE; } + virtual uint ideal_reg() const { return Op_RegD; } +}; + + +//------------------------------CmpLTMaskNode---------------------------------- +// If p < q, return -1 else return 0. Nice for flow-free idioms. +class CmpLTMaskNode : public Node { +public: + CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {} + virtual int Opcode() const; + const Type *bottom_type() const { return TypeInt::INT; } + virtual uint ideal_reg() const { return Op_RegI; } +}; + + +//------------------------------NegNode---------------------------------------- +class NegNode : public Node { +public: + NegNode( Node *in1 ) : Node(0,in1) {} +}; + +//------------------------------NegFNode--------------------------------------- +// Negate value a float. Negating 0.0 returns -0.0, but subtracting from +// zero returns +0.0 (per JVM spec on 'fneg' bytecode). As subtraction +// cannot be used to replace negation we have to implement negation as ideal +// node; note that negation and addition can replace subtraction. +class NegFNode : public NegNode { +public: + NegFNode( Node *in1 ) : NegNode(in1) {} + virtual int Opcode() const; + const Type *bottom_type() const { return Type::FLOAT; } + virtual uint ideal_reg() const { return Op_RegF; } +}; + +//------------------------------NegDNode--------------------------------------- +// Negate value a double. Negating 0.0 returns -0.0, but subtracting from +// zero returns +0.0 (per JVM spec on 'dneg' bytecode). As subtraction +// cannot be used to replace negation we have to implement negation as ideal +// node; note that negation and addition can replace subtraction. +class NegDNode : public NegNode { +public: + NegDNode( Node *in1 ) : NegNode(in1) {} + virtual int Opcode() const; + const Type *bottom_type() const { return Type::DOUBLE; } + virtual uint ideal_reg() const { return Op_RegD; } +}; + +//------------------------------AtanDNode-------------------------------------- +// arcus tangens of a double +class AtanDNode : public Node { +public: + AtanDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {} + virtual int Opcode() const; + const Type *bottom_type() const { return Type::DOUBLE; } + virtual uint ideal_reg() const { return Op_RegD; } +}; + + +//------------------------------SqrtDNode-------------------------------------- +// square root a double +class SqrtDNode : public Node { +public: + SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) { + init_flags(Flag_is_expensive); + C->add_expensive_node(this); + } + virtual int Opcode() const; + const Type *bottom_type() const { return Type::DOUBLE; } + virtual uint ideal_reg() const { return Op_RegD; } + virtual const Type* Value(PhaseGVN* phase) const; +}; + +//-------------------------------ReverseBytesINode-------------------------------- +// reverse bytes of an integer +class ReverseBytesINode : public Node { +public: + ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {} + virtual int Opcode() const; + const Type *bottom_type() const { return TypeInt::INT; } + virtual uint ideal_reg() const { return Op_RegI; } +}; + +//-------------------------------ReverseBytesLNode-------------------------------- +// reverse bytes of a long +class ReverseBytesLNode : public Node { +public: + ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {} + virtual int Opcode() const; + const Type *bottom_type() const { return TypeLong::LONG; } + virtual uint ideal_reg() const { return Op_RegL; } +}; + +//-------------------------------ReverseBytesUSNode-------------------------------- +// reverse bytes of an unsigned short / char +class ReverseBytesUSNode : public Node { +public: + ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {} + virtual int Opcode() const; + const Type *bottom_type() const { return TypeInt::CHAR; } + virtual uint ideal_reg() const { return Op_RegI; } +}; + +//-------------------------------ReverseBytesSNode-------------------------------- +// reverse bytes of a short +class ReverseBytesSNode : public Node { +public: + ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {} + virtual int Opcode() const; + const Type *bottom_type() const { return TypeInt::SHORT; } + virtual uint ideal_reg() const { return Op_RegI; } +}; + +#endif // SHARE_VM_OPTO_SUBNODE_HPP