src/hotspot/share/opto/block.cpp
changeset 47216 71c04702a3d5
parent 40862 3f9cd7a4bfa7
child 51333 f6641fcf7b7e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/opto/block.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1781 @@
+/*
+ * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "libadt/vectset.hpp"
+#include "memory/allocation.inline.hpp"
+#include "memory/resourceArea.hpp"
+#include "compiler/compilerDirectives.hpp"
+#include "opto/block.hpp"
+#include "opto/cfgnode.hpp"
+#include "opto/chaitin.hpp"
+#include "opto/loopnode.hpp"
+#include "opto/machnode.hpp"
+#include "opto/matcher.hpp"
+#include "opto/opcodes.hpp"
+#include "opto/rootnode.hpp"
+#include "utilities/copy.hpp"
+
+void Block_Array::grow( uint i ) {
+  assert(i >= Max(), "must be an overflow");
+  debug_only(_limit = i+1);
+  if( i < _size )  return;
+  if( !_size ) {
+    _size = 1;
+    _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
+    _blocks[0] = NULL;
+  }
+  uint old = _size;
+  while( i >= _size ) _size <<= 1;      // Double to fit
+  _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
+  Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
+}
+
+void Block_List::remove(uint i) {
+  assert(i < _cnt, "index out of bounds");
+  Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
+  pop(); // shrink list by one block
+}
+
+void Block_List::insert(uint i, Block *b) {
+  push(b); // grow list by one block
+  Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
+  _blocks[i] = b;
+}
+
+#ifndef PRODUCT
+void Block_List::print() {
+  for (uint i=0; i < size(); i++) {
+    tty->print("B%d ", _blocks[i]->_pre_order);
+  }
+  tty->print("size = %d\n", size());
+}
+#endif
+
+uint Block::code_alignment() const {
+  // Check for Root block
+  if (_pre_order == 0) return CodeEntryAlignment;
+  // Check for Start block
+  if (_pre_order == 1) return InteriorEntryAlignment;
+  // Check for loop alignment
+  if (has_loop_alignment()) return loop_alignment();
+
+  return relocInfo::addr_unit(); // no particular alignment
+}
+
+uint Block::compute_loop_alignment() {
+  Node *h = head();
+  int unit_sz = relocInfo::addr_unit();
+  if (h->is_Loop() && h->as_Loop()->is_inner_loop())  {
+    // Pre- and post-loops have low trip count so do not bother with
+    // NOPs for align loop head.  The constants are hidden from tuning
+    // but only because my "divide by 4" heuristic surely gets nearly
+    // all possible gain (a "do not align at all" heuristic has a
+    // chance of getting a really tiny gain).
+    if (h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
+                                h->as_CountedLoop()->is_post_loop())) {
+      return (OptoLoopAlignment > 4*unit_sz) ? (OptoLoopAlignment>>2) : unit_sz;
+    }
+    // Loops with low backedge frequency should not be aligned.
+    Node *n = h->in(LoopNode::LoopBackControl)->in(0);
+    if (n->is_MachIf() && n->as_MachIf()->_prob < 0.01) {
+      return unit_sz; // Loop does not loop, more often than not!
+    }
+    return OptoLoopAlignment; // Otherwise align loop head
+  }
+
+  return unit_sz; // no particular alignment
+}
+
+// Compute the size of first 'inst_cnt' instructions in this block.
+// Return the number of instructions left to compute if the block has
+// less then 'inst_cnt' instructions. Stop, and return 0 if sum_size
+// exceeds OptoLoopAlignment.
+uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
+                                    PhaseRegAlloc* ra) {
+  uint last_inst = number_of_nodes();
+  for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
+    uint inst_size = get_node(j)->size(ra);
+    if( inst_size > 0 ) {
+      inst_cnt--;
+      uint sz = sum_size + inst_size;
+      if( sz <= (uint)OptoLoopAlignment ) {
+        // Compute size of instructions which fit into fetch buffer only
+        // since all inst_cnt instructions will not fit even if we align them.
+        sum_size = sz;
+      } else {
+        return 0;
+      }
+    }
+  }
+  return inst_cnt;
+}
+
+uint Block::find_node( const Node *n ) const {
+  for( uint i = 0; i < number_of_nodes(); i++ ) {
+    if( get_node(i) == n )
+      return i;
+  }
+  ShouldNotReachHere();
+  return 0;
+}
+
+// Find and remove n from block list
+void Block::find_remove( const Node *n ) {
+  remove_node(find_node(n));
+}
+
+bool Block::contains(const Node *n) const {
+  return _nodes.contains(n);
+}
+
+// Return empty status of a block.  Empty blocks contain only the head, other
+// ideal nodes, and an optional trailing goto.
+int Block::is_Empty() const {
+
+  // Root or start block is not considered empty
+  if (head()->is_Root() || head()->is_Start()) {
+    return not_empty;
+  }
+
+  int success_result = completely_empty;
+  int end_idx = number_of_nodes() - 1;
+
+  // Check for ending goto
+  if ((end_idx > 0) && (get_node(end_idx)->is_MachGoto())) {
+    success_result = empty_with_goto;
+    end_idx--;
+  }
+
+  // Unreachable blocks are considered empty
+  if (num_preds() <= 1) {
+    return success_result;
+  }
+
+  // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
+  // turn directly into code, because only MachNodes have non-trivial
+  // emit() functions.
+  while ((end_idx > 0) && !get_node(end_idx)->is_Mach()) {
+    end_idx--;
+  }
+
+  // No room for any interesting instructions?
+  if (end_idx == 0) {
+    return success_result;
+  }
+
+  return not_empty;
+}
+
+// Return true if the block's code implies that it is likely to be
+// executed infrequently.  Check to see if the block ends in a Halt or
+// a low probability call.
+bool Block::has_uncommon_code() const {
+  Node* en = end();
+
+  if (en->is_MachGoto())
+    en = en->in(0);
+  if (en->is_Catch())
+    en = en->in(0);
+  if (en->is_MachProj() && en->in(0)->is_MachCall()) {
+    MachCallNode* call = en->in(0)->as_MachCall();
+    if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
+      // This is true for slow-path stubs like new_{instance,array},
+      // slow_arraycopy, complete_monitor_locking, uncommon_trap.
+      // The magic number corresponds to the probability of an uncommon_trap,
+      // even though it is a count not a probability.
+      return true;
+    }
+  }
+
+  int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
+  return op == Op_Halt;
+}
+
+// True if block is low enough frequency or guarded by a test which
+// mostly does not go here.
+bool PhaseCFG::is_uncommon(const Block* block) {
+  // Initial blocks must never be moved, so are never uncommon.
+  if (block->head()->is_Root() || block->head()->is_Start())  return false;
+
+  // Check for way-low freq
+  if(block->_freq < BLOCK_FREQUENCY(0.00001f) ) return true;
+
+  // Look for code shape indicating uncommon_trap or slow path
+  if (block->has_uncommon_code()) return true;
+
+  const float epsilon = 0.05f;
+  const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
+  uint uncommon_preds = 0;
+  uint freq_preds = 0;
+  uint uncommon_for_freq_preds = 0;
+
+  for( uint i=1; i< block->num_preds(); i++ ) {
+    Block* guard = get_block_for_node(block->pred(i));
+    // Check to see if this block follows its guard 1 time out of 10000
+    // or less.
+    //
+    // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
+    // we intend to be "uncommon", such as slow-path TLE allocation,
+    // predicted call failure, and uncommon trap triggers.
+    //
+    // Use an epsilon value of 5% to allow for variability in frequency
+    // predictions and floating point calculations. The net effect is
+    // that guard_factor is set to 9500.
+    //
+    // Ignore low-frequency blocks.
+    // The next check is (guard->_freq < 1.e-5 * 9500.).
+    if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
+      uncommon_preds++;
+    } else {
+      freq_preds++;
+      if(block->_freq < guard->_freq * guard_factor ) {
+        uncommon_for_freq_preds++;
+      }
+    }
+  }
+  if( block->num_preds() > 1 &&
+      // The block is uncommon if all preds are uncommon or
+      (uncommon_preds == (block->num_preds()-1) ||
+      // it is uncommon for all frequent preds.
+       uncommon_for_freq_preds == freq_preds) ) {
+    return true;
+  }
+  return false;
+}
+
+#ifndef PRODUCT
+void Block::dump_bidx(const Block* orig, outputStream* st) const {
+  if (_pre_order) st->print("B%d",_pre_order);
+  else st->print("N%d", head()->_idx);
+
+  if (Verbose && orig != this) {
+    // Dump the original block's idx
+    st->print(" (");
+    orig->dump_bidx(orig, st);
+    st->print(")");
+  }
+}
+
+void Block::dump_pred(const PhaseCFG* cfg, Block* orig, outputStream* st) const {
+  if (is_connector()) {
+    for (uint i=1; i<num_preds(); i++) {
+      Block *p = cfg->get_block_for_node(pred(i));
+      p->dump_pred(cfg, orig, st);
+    }
+  } else {
+    dump_bidx(orig, st);
+    st->print(" ");
+  }
+}
+
+void Block::dump_head(const PhaseCFG* cfg, outputStream* st) const {
+  // Print the basic block
+  dump_bidx(this, st);
+  st->print(": #\t");
+
+  // Print the incoming CFG edges and the outgoing CFG edges
+  for( uint i=0; i<_num_succs; i++ ) {
+    non_connector_successor(i)->dump_bidx(_succs[i], st);
+    st->print(" ");
+  }
+  st->print("<- ");
+  if( head()->is_block_start() ) {
+    for (uint i=1; i<num_preds(); i++) {
+      Node *s = pred(i);
+      if (cfg != NULL) {
+        Block *p = cfg->get_block_for_node(s);
+        p->dump_pred(cfg, p, st);
+      } else {
+        while (!s->is_block_start())
+          s = s->in(0);
+        st->print("N%d ", s->_idx );
+      }
+    }
+  } else {
+    st->print("BLOCK HEAD IS JUNK  ");
+  }
+
+  // Print loop, if any
+  const Block *bhead = this;    // Head of self-loop
+  Node *bh = bhead->head();
+
+  if ((cfg != NULL) && bh->is_Loop() && !head()->is_Root()) {
+    LoopNode *loop = bh->as_Loop();
+    const Block *bx = cfg->get_block_for_node(loop->in(LoopNode::LoopBackControl));
+    while (bx->is_connector()) {
+      bx = cfg->get_block_for_node(bx->pred(1));
+    }
+    st->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
+    // Dump any loop-specific bits, especially for CountedLoops.
+    loop->dump_spec(st);
+  } else if (has_loop_alignment()) {
+    st->print(" top-of-loop");
+  }
+  st->print(" Freq: %g",_freq);
+  if( Verbose || WizardMode ) {
+    st->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
+    st->print(" RegPressure: %d",_reg_pressure);
+    st->print(" IHRP Index: %d",_ihrp_index);
+    st->print(" FRegPressure: %d",_freg_pressure);
+    st->print(" FHRP Index: %d",_fhrp_index);
+  }
+  st->cr();
+}
+
+void Block::dump() const {
+  dump(NULL);
+}
+
+void Block::dump(const PhaseCFG* cfg) const {
+  dump_head(cfg);
+  for (uint i=0; i< number_of_nodes(); i++) {
+    get_node(i)->dump();
+  }
+  tty->print("\n");
+}
+#endif
+
+PhaseCFG::PhaseCFG(Arena* arena, RootNode* root, Matcher& matcher)
+: Phase(CFG)
+, _block_arena(arena)
+, _regalloc(NULL)
+, _scheduling_for_pressure(false)
+, _root(root)
+, _matcher(matcher)
+, _node_to_block_mapping(arena)
+, _node_latency(NULL)
+#ifndef PRODUCT
+, _trace_opto_pipelining(C->directive()->TraceOptoPipeliningOption)
+#endif
+#ifdef ASSERT
+, _raw_oops(arena)
+#endif
+{
+  ResourceMark rm;
+  // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
+  // then Match it into a machine-specific Node.  Then clone the machine
+  // Node on demand.
+  Node *x = new GotoNode(NULL);
+  x->init_req(0, x);
+  _goto = matcher.match_tree(x);
+  assert(_goto != NULL, "");
+  _goto->set_req(0,_goto);
+
+  // Build the CFG in Reverse Post Order
+  _number_of_blocks = build_cfg();
+  _root_block = get_block_for_node(_root);
+}
+
+// Build a proper looking CFG.  Make every block begin with either a StartNode
+// or a RegionNode.  Make every block end with either a Goto, If or Return.
+// The RootNode both starts and ends it's own block.  Do this with a recursive
+// backwards walk over the control edges.
+uint PhaseCFG::build_cfg() {
+  Arena *a = Thread::current()->resource_area();
+  VectorSet visited(a);
+
+  // Allocate stack with enough space to avoid frequent realloc
+  Node_Stack nstack(a, C->live_nodes() >> 1);
+  nstack.push(_root, 0);
+  uint sum = 0;                 // Counter for blocks
+
+  while (nstack.is_nonempty()) {
+    // node and in's index from stack's top
+    // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
+    // only nodes which point to the start of basic block (see below).
+    Node *np = nstack.node();
+    // idx > 0, except for the first node (_root) pushed on stack
+    // at the beginning when idx == 0.
+    // We will use the condition (idx == 0) later to end the build.
+    uint idx = nstack.index();
+    Node *proj = np->in(idx);
+    const Node *x = proj->is_block_proj();
+    // Does the block end with a proper block-ending Node?  One of Return,
+    // If or Goto? (This check should be done for visited nodes also).
+    if (x == NULL) {                    // Does not end right...
+      Node *g = _goto->clone(); // Force it to end in a Goto
+      g->set_req(0, proj);
+      np->set_req(idx, g);
+      x = proj = g;
+    }
+    if (!visited.test_set(x->_idx)) { // Visit this block once
+      // Skip any control-pinned middle'in stuff
+      Node *p = proj;
+      do {
+        proj = p;                   // Update pointer to last Control
+        p = p->in(0);               // Move control forward
+      } while( !p->is_block_proj() &&
+               !p->is_block_start() );
+      // Make the block begin with one of Region or StartNode.
+      if( !p->is_block_start() ) {
+        RegionNode *r = new RegionNode( 2 );
+        r->init_req(1, p);         // Insert RegionNode in the way
+        proj->set_req(0, r);        // Insert RegionNode in the way
+        p = r;
+      }
+      // 'p' now points to the start of this basic block
+
+      // Put self in array of basic blocks
+      Block *bb = new (_block_arena) Block(_block_arena, p);
+      map_node_to_block(p, bb);
+      map_node_to_block(x, bb);
+      if( x != p ) {                // Only for root is x == p
+        bb->push_node((Node*)x);
+      }
+      // Now handle predecessors
+      ++sum;                        // Count 1 for self block
+      uint cnt = bb->num_preds();
+      for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
+        Node *prevproj = p->in(i);  // Get prior input
+        assert( !prevproj->is_Con(), "dead input not removed" );
+        // Check to see if p->in(i) is a "control-dependent" CFG edge -
+        // i.e., it splits at the source (via an IF or SWITCH) and merges
+        // at the destination (via a many-input Region).
+        // This breaks critical edges.  The RegionNode to start the block
+        // will be added when <p,i> is pulled off the node stack
+        if ( cnt > 2 ) {             // Merging many things?
+          assert( prevproj== bb->pred(i),"");
+          if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
+            // Force a block on the control-dependent edge
+            Node *g = _goto->clone();       // Force it to end in a Goto
+            g->set_req(0,prevproj);
+            p->set_req(i,g);
+          }
+        }
+        nstack.push(p, i);  // 'p' is RegionNode or StartNode
+      }
+    } else { // Post-processing visited nodes
+      nstack.pop();                 // remove node from stack
+      // Check if it the fist node pushed on stack at the beginning.
+      if (idx == 0) break;          // end of the build
+      // Find predecessor basic block
+      Block *pb = get_block_for_node(x);
+      // Insert into nodes array, if not already there
+      if (!has_block(proj)) {
+        assert( x != proj, "" );
+        // Map basic block of projection
+        map_node_to_block(proj, pb);
+        pb->push_node(proj);
+      }
+      // Insert self as a child of my predecessor block
+      pb->_succs.map(pb->_num_succs++, get_block_for_node(np));
+      assert( pb->get_node(pb->number_of_nodes() - pb->_num_succs)->is_block_proj(),
+              "too many control users, not a CFG?" );
+    }
+  }
+  // Return number of basic blocks for all children and self
+  return sum;
+}
+
+// Inserts a goto & corresponding basic block between
+// block[block_no] and its succ_no'th successor block
+void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
+  // get block with block_no
+  assert(block_no < number_of_blocks(), "illegal block number");
+  Block* in  = get_block(block_no);
+  // get successor block succ_no
+  assert(succ_no < in->_num_succs, "illegal successor number");
+  Block* out = in->_succs[succ_no];
+  // Compute frequency of the new block. Do this before inserting
+  // new block in case succ_prob() needs to infer the probability from
+  // surrounding blocks.
+  float freq = in->_freq * in->succ_prob(succ_no);
+  // get ProjNode corresponding to the succ_no'th successor of the in block
+  ProjNode* proj = in->get_node(in->number_of_nodes() - in->_num_succs + succ_no)->as_Proj();
+  // create region for basic block
+  RegionNode* region = new RegionNode(2);
+  region->init_req(1, proj);
+  // setup corresponding basic block
+  Block* block = new (_block_arena) Block(_block_arena, region);
+  map_node_to_block(region, block);
+  C->regalloc()->set_bad(region->_idx);
+  // add a goto node
+  Node* gto = _goto->clone(); // get a new goto node
+  gto->set_req(0, region);
+  // add it to the basic block
+  block->push_node(gto);
+  map_node_to_block(gto, block);
+  C->regalloc()->set_bad(gto->_idx);
+  // hook up successor block
+  block->_succs.map(block->_num_succs++, out);
+  // remap successor's predecessors if necessary
+  for (uint i = 1; i < out->num_preds(); i++) {
+    if (out->pred(i) == proj) out->head()->set_req(i, gto);
+  }
+  // remap predecessor's successor to new block
+  in->_succs.map(succ_no, block);
+  // Set the frequency of the new block
+  block->_freq = freq;
+  // add new basic block to basic block list
+  add_block_at(block_no + 1, block);
+}
+
+// Does this block end in a multiway branch that cannot have the default case
+// flipped for another case?
+static bool no_flip_branch(Block *b) {
+  int branch_idx = b->number_of_nodes() - b->_num_succs-1;
+  if (branch_idx < 1) {
+    return false;
+  }
+  Node *branch = b->get_node(branch_idx);
+  if (branch->is_Catch()) {
+    return true;
+  }
+  if (branch->is_Mach()) {
+    if (branch->is_MachNullCheck()) {
+      return true;
+    }
+    int iop = branch->as_Mach()->ideal_Opcode();
+    if (iop == Op_FastLock || iop == Op_FastUnlock) {
+      return true;
+    }
+    // Don't flip if branch has an implicit check.
+    if (branch->as_Mach()->is_TrapBasedCheckNode()) {
+      return true;
+    }
+  }
+  return false;
+}
+
+// Check for NeverBranch at block end.  This needs to become a GOTO to the
+// true target.  NeverBranch are treated as a conditional branch that always
+// goes the same direction for most of the optimizer and are used to give a
+// fake exit path to infinite loops.  At this late stage they need to turn
+// into Goto's so that when you enter the infinite loop you indeed hang.
+void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
+  // Find true target
+  int end_idx = b->end_idx();
+  int idx = b->get_node(end_idx+1)->as_Proj()->_con;
+  Block *succ = b->_succs[idx];
+  Node* gto = _goto->clone(); // get a new goto node
+  gto->set_req(0, b->head());
+  Node *bp = b->get_node(end_idx);
+  b->map_node(gto, end_idx); // Slam over NeverBranch
+  map_node_to_block(gto, b);
+  C->regalloc()->set_bad(gto->_idx);
+  b->pop_node();              // Yank projections
+  b->pop_node();              // Yank projections
+  b->_succs.map(0,succ);        // Map only successor
+  b->_num_succs = 1;
+  // remap successor's predecessors if necessary
+  uint j;
+  for( j = 1; j < succ->num_preds(); j++)
+    if( succ->pred(j)->in(0) == bp )
+      succ->head()->set_req(j, gto);
+  // Kill alternate exit path
+  Block *dead = b->_succs[1-idx];
+  for( j = 1; j < dead->num_preds(); j++)
+    if( dead->pred(j)->in(0) == bp )
+      break;
+  // Scan through block, yanking dead path from
+  // all regions and phis.
+  dead->head()->del_req(j);
+  for( int k = 1; dead->get_node(k)->is_Phi(); k++ )
+    dead->get_node(k)->del_req(j);
+}
+
+// Helper function to move block bx to the slot following b_index. Return
+// true if the move is successful, otherwise false
+bool PhaseCFG::move_to_next(Block* bx, uint b_index) {
+  if (bx == NULL) return false;
+
+  // Return false if bx is already scheduled.
+  uint bx_index = bx->_pre_order;
+  if ((bx_index <= b_index) && (get_block(bx_index) == bx)) {
+    return false;
+  }
+
+  // Find the current index of block bx on the block list
+  bx_index = b_index + 1;
+  while (bx_index < number_of_blocks() && get_block(bx_index) != bx) {
+    bx_index++;
+  }
+  assert(get_block(bx_index) == bx, "block not found");
+
+  // If the previous block conditionally falls into bx, return false,
+  // because moving bx will create an extra jump.
+  for(uint k = 1; k < bx->num_preds(); k++ ) {
+    Block* pred = get_block_for_node(bx->pred(k));
+    if (pred == get_block(bx_index - 1)) {
+      if (pred->_num_succs != 1) {
+        return false;
+      }
+    }
+  }
+
+  // Reinsert bx just past block 'b'
+  _blocks.remove(bx_index);
+  _blocks.insert(b_index + 1, bx);
+  return true;
+}
+
+// Move empty and uncommon blocks to the end.
+void PhaseCFG::move_to_end(Block *b, uint i) {
+  int e = b->is_Empty();
+  if (e != Block::not_empty) {
+    if (e == Block::empty_with_goto) {
+      // Remove the goto, but leave the block.
+      b->pop_node();
+    }
+    // Mark this block as a connector block, which will cause it to be
+    // ignored in certain functions such as non_connector_successor().
+    b->set_connector();
+  }
+  // Move the empty block to the end, and don't recheck.
+  _blocks.remove(i);
+  _blocks.push(b);
+}
+
+// Set loop alignment for every block
+void PhaseCFG::set_loop_alignment() {
+  uint last = number_of_blocks();
+  assert(get_block(0) == get_root_block(), "");
+
+  for (uint i = 1; i < last; i++) {
+    Block* block = get_block(i);
+    if (block->head()->is_Loop()) {
+      block->set_loop_alignment(block);
+    }
+  }
+}
+
+// Make empty basic blocks to be "connector" blocks, Move uncommon blocks
+// to the end.
+void PhaseCFG::remove_empty_blocks() {
+  // Move uncommon blocks to the end
+  uint last = number_of_blocks();
+  assert(get_block(0) == get_root_block(), "");
+
+  for (uint i = 1; i < last; i++) {
+    Block* block = get_block(i);
+    if (block->is_connector()) {
+      break;
+    }
+
+    // Check for NeverBranch at block end.  This needs to become a GOTO to the
+    // true target.  NeverBranch are treated as a conditional branch that
+    // always goes the same direction for most of the optimizer and are used
+    // to give a fake exit path to infinite loops.  At this late stage they
+    // need to turn into Goto's so that when you enter the infinite loop you
+    // indeed hang.
+    if (block->get_node(block->end_idx())->Opcode() == Op_NeverBranch) {
+      convert_NeverBranch_to_Goto(block);
+    }
+
+    // Look for uncommon blocks and move to end.
+    if (!C->do_freq_based_layout()) {
+      if (is_uncommon(block)) {
+        move_to_end(block, i);
+        last--;                   // No longer check for being uncommon!
+        if (no_flip_branch(block)) { // Fall-thru case must follow?
+          // Find the fall-thru block
+          block = get_block(i);
+          move_to_end(block, i);
+          last--;
+        }
+        // backup block counter post-increment
+        i--;
+      }
+    }
+  }
+
+  // Move empty blocks to the end
+  last = number_of_blocks();
+  for (uint i = 1; i < last; i++) {
+    Block* block = get_block(i);
+    if (block->is_Empty() != Block::not_empty) {
+      move_to_end(block, i);
+      last--;
+      i--;
+    }
+  } // End of for all blocks
+}
+
+Block *PhaseCFG::fixup_trap_based_check(Node *branch, Block *block, int block_pos, Block *bnext) {
+  // Trap based checks must fall through to the successor with
+  // PROB_ALWAYS.
+  // They should be an If with 2 successors.
+  assert(branch->is_MachIf(),   "must be If");
+  assert(block->_num_succs == 2, "must have 2 successors");
+
+  // Get the If node and the projection for the first successor.
+  MachIfNode *iff   = block->get_node(block->number_of_nodes()-3)->as_MachIf();
+  ProjNode   *proj0 = block->get_node(block->number_of_nodes()-2)->as_Proj();
+  ProjNode   *proj1 = block->get_node(block->number_of_nodes()-1)->as_Proj();
+  ProjNode   *projt = (proj0->Opcode() == Op_IfTrue)  ? proj0 : proj1;
+  ProjNode   *projf = (proj0->Opcode() == Op_IfFalse) ? proj0 : proj1;
+
+  // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
+  assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
+  assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
+
+  ProjNode *proj_always;
+  ProjNode *proj_never;
+  // We must negate the branch if the implicit check doesn't follow
+  // the branch's TRUE path. Then, the new TRUE branch target will
+  // be the old FALSE branch target.
+  if (iff->_prob <= 2*PROB_NEVER) {   // There are small rounding errors.
+    proj_never  = projt;
+    proj_always = projf;
+  } else {
+    // We must negate the branch if the trap doesn't follow the
+    // branch's TRUE path. Then, the new TRUE branch target will
+    // be the old FALSE branch target.
+    proj_never  = projf;
+    proj_always = projt;
+    iff->negate();
+  }
+  assert(iff->_prob <= 2*PROB_NEVER, "Trap based checks are expected to trap never!");
+  // Map the successors properly
+  block->_succs.map(0, get_block_for_node(proj_never ->raw_out(0)));   // The target of the trap.
+  block->_succs.map(1, get_block_for_node(proj_always->raw_out(0)));   // The fall through target.
+
+  if (block->get_node(block->number_of_nodes() - block->_num_succs + 1) != proj_always) {
+    block->map_node(proj_never,  block->number_of_nodes() - block->_num_succs + 0);
+    block->map_node(proj_always, block->number_of_nodes() - block->_num_succs + 1);
+  }
+
+  // Place the fall through block after this block.
+  Block *bs1 = block->non_connector_successor(1);
+  if (bs1 != bnext && move_to_next(bs1, block_pos)) {
+    bnext = bs1;
+  }
+  // If the fall through block still is not the next block, insert a goto.
+  if (bs1 != bnext) {
+    insert_goto_at(block_pos, 1);
+  }
+  return bnext;
+}
+
+// Fix up the final control flow for basic blocks.
+void PhaseCFG::fixup_flow() {
+  // Fixup final control flow for the blocks.  Remove jump-to-next
+  // block. If neither arm of an IF follows the conditional branch, we
+  // have to add a second jump after the conditional.  We place the
+  // TRUE branch target in succs[0] for both GOTOs and IFs.
+  for (uint i = 0; i < number_of_blocks(); i++) {
+    Block* block = get_block(i);
+    block->_pre_order = i;          // turn pre-order into block-index
+
+    // Connector blocks need no further processing.
+    if (block->is_connector()) {
+      assert((i+1) == number_of_blocks() || get_block(i + 1)->is_connector(), "All connector blocks should sink to the end");
+      continue;
+    }
+    assert(block->is_Empty() != Block::completely_empty, "Empty blocks should be connectors");
+
+    Block* bnext = (i < number_of_blocks() - 1) ? get_block(i + 1) : NULL;
+    Block* bs0 = block->non_connector_successor(0);
+
+    // Check for multi-way branches where I cannot negate the test to
+    // exchange the true and false targets.
+    if (no_flip_branch(block)) {
+      // Find fall through case - if must fall into its target.
+      // Get the index of the branch's first successor.
+      int branch_idx = block->number_of_nodes() - block->_num_succs;
+
+      // The branch is 1 before the branch's first successor.
+      Node *branch = block->get_node(branch_idx-1);
+
+      // Handle no-flip branches which have implicit checks and which require
+      // special block ordering and individual semantics of the 'fall through
+      // case'.
+      if ((TrapBasedNullChecks || TrapBasedRangeChecks) &&
+          branch->is_Mach() && branch->as_Mach()->is_TrapBasedCheckNode()) {
+        bnext = fixup_trap_based_check(branch, block, i, bnext);
+      } else {
+        // Else, default handling for no-flip branches
+        for (uint j2 = 0; j2 < block->_num_succs; j2++) {
+          const ProjNode* p = block->get_node(branch_idx + j2)->as_Proj();
+          if (p->_con == 0) {
+            // successor j2 is fall through case
+            if (block->non_connector_successor(j2) != bnext) {
+              // but it is not the next block => insert a goto
+              insert_goto_at(i, j2);
+            }
+            // Put taken branch in slot 0
+            if (j2 == 0 && block->_num_succs == 2) {
+              // Flip targets in succs map
+              Block *tbs0 = block->_succs[0];
+              Block *tbs1 = block->_succs[1];
+              block->_succs.map(0, tbs1);
+              block->_succs.map(1, tbs0);
+            }
+            break;
+          }
+        }
+      }
+
+      // Remove all CatchProjs
+      for (uint j = 0; j < block->_num_succs; j++) {
+        block->pop_node();
+      }
+
+    } else if (block->_num_succs == 1) {
+      // Block ends in a Goto?
+      if (bnext == bs0) {
+        // We fall into next block; remove the Goto
+        block->pop_node();
+      }
+
+    } else if(block->_num_succs == 2) { // Block ends in a If?
+      // Get opcode of 1st projection (matches _succs[0])
+      // Note: Since this basic block has 2 exits, the last 2 nodes must
+      //       be projections (in any order), the 3rd last node must be
+      //       the IfNode (we have excluded other 2-way exits such as
+      //       CatchNodes already).
+      MachNode* iff   = block->get_node(block->number_of_nodes() - 3)->as_Mach();
+      ProjNode* proj0 = block->get_node(block->number_of_nodes() - 2)->as_Proj();
+      ProjNode* proj1 = block->get_node(block->number_of_nodes() - 1)->as_Proj();
+
+      // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
+      assert(proj0->raw_out(0) == block->_succs[0]->head(), "Mismatch successor 0");
+      assert(proj1->raw_out(0) == block->_succs[1]->head(), "Mismatch successor 1");
+
+      Block* bs1 = block->non_connector_successor(1);
+
+      // Check for neither successor block following the current
+      // block ending in a conditional. If so, move one of the
+      // successors after the current one, provided that the
+      // successor was previously unscheduled, but moveable
+      // (i.e., all paths to it involve a branch).
+      if (!C->do_freq_based_layout() && bnext != bs0 && bnext != bs1) {
+        // Choose the more common successor based on the probability
+        // of the conditional branch.
+        Block* bx = bs0;
+        Block* by = bs1;
+
+        // _prob is the probability of taking the true path. Make
+        // p the probability of taking successor #1.
+        float p = iff->as_MachIf()->_prob;
+        if (proj0->Opcode() == Op_IfTrue) {
+          p = 1.0 - p;
+        }
+
+        // Prefer successor #1 if p > 0.5
+        if (p > PROB_FAIR) {
+          bx = bs1;
+          by = bs0;
+        }
+
+        // Attempt the more common successor first
+        if (move_to_next(bx, i)) {
+          bnext = bx;
+        } else if (move_to_next(by, i)) {
+          bnext = by;
+        }
+      }
+
+      // Check for conditional branching the wrong way.  Negate
+      // conditional, if needed, so it falls into the following block
+      // and branches to the not-following block.
+
+      // Check for the next block being in succs[0].  We are going to branch
+      // to succs[0], so we want the fall-thru case as the next block in
+      // succs[1].
+      if (bnext == bs0) {
+        // Fall-thru case in succs[0], so flip targets in succs map
+        Block* tbs0 = block->_succs[0];
+        Block* tbs1 = block->_succs[1];
+        block->_succs.map(0, tbs1);
+        block->_succs.map(1, tbs0);
+        // Flip projection for each target
+        ProjNode* tmp = proj0;
+        proj0 = proj1;
+        proj1 = tmp;
+
+      } else if(bnext != bs1) {
+        // Need a double-branch
+        // The existing conditional branch need not change.
+        // Add a unconditional branch to the false target.
+        // Alas, it must appear in its own block and adding a
+        // block this late in the game is complicated.  Sigh.
+        insert_goto_at(i, 1);
+      }
+
+      // Make sure we TRUE branch to the target
+      if (proj0->Opcode() == Op_IfFalse) {
+        iff->as_MachIf()->negate();
+      }
+
+      block->pop_node();          // Remove IfFalse & IfTrue projections
+      block->pop_node();
+
+    } else {
+      // Multi-exit block, e.g. a switch statement
+      // But we don't need to do anything here
+    }
+  } // End of for all blocks
+}
+
+
+// postalloc_expand: Expand nodes after register allocation.
+//
+// postalloc_expand has to be called after register allocation, just
+// before output (i.e. scheduling). It only gets called if
+// Matcher::require_postalloc_expand is true.
+//
+// Background:
+//
+// Nodes that are expandend (one compound node requiring several
+// assembler instructions to be implemented split into two or more
+// non-compound nodes) after register allocation are not as nice as
+// the ones expanded before register allocation - they don't
+// participate in optimizations as global code motion. But after
+// register allocation we can expand nodes that use registers which
+// are not spillable or registers that are not allocated, because the
+// old compound node is simply replaced (in its location in the basic
+// block) by a new subgraph which does not contain compound nodes any
+// more. The scheduler called during output can later on process these
+// non-compound nodes.
+//
+// Implementation:
+//
+// Nodes requiring postalloc expand are specified in the ad file by using
+// a postalloc_expand statement instead of ins_encode. A postalloc_expand
+// contains a single call to an encoding, as does an ins_encode
+// statement. Instead of an emit() function a postalloc_expand() function
+// is generated that doesn't emit assembler but creates a new
+// subgraph. The code below calls this postalloc_expand function for each
+// node with the appropriate attribute. This function returns the new
+// nodes generated in an array passed in the call. The old node,
+// potential MachTemps before and potential Projs after it then get
+// disconnected and replaced by the new nodes. The instruction
+// generating the result has to be the last one in the array. In
+// general it is assumed that Projs after the node expanded are
+// kills. These kills are not required any more after expanding as
+// there are now explicitly visible def-use chains and the Projs are
+// removed. This does not hold for calls: They do not only have
+// kill-Projs but also Projs defining values. Therefore Projs after
+// the node expanded are removed for all but for calls. If a node is
+// to be reused, it must be added to the nodes list returned, and it
+// will be added again.
+//
+// Implementing the postalloc_expand function for a node in an enc_class
+// is rather tedious. It requires knowledge about many node details, as
+// the nodes and the subgraph must be hand crafted. To simplify this,
+// adlc generates some utility variables into the postalloc_expand function,
+// e.g., holding the operands as specified by the postalloc_expand encoding
+// specification, e.g.:
+//  * unsigned idx_<par_name>  holding the index of the node in the ins
+//  * Node *n_<par_name>       holding the node loaded from the ins
+//  * MachOpnd *op_<par_name>  holding the corresponding operand
+//
+// The ordering of operands can not be determined by looking at a
+// rule. Especially if a match rule matches several different trees,
+// several nodes are generated from one instruct specification with
+// different operand orderings. In this case the adlc generated
+// variables are the only way to access the ins and operands
+// deterministically.
+//
+// If assigning a register to a node that contains an oop, don't
+// forget to call ra_->set_oop() for the node.
+void PhaseCFG::postalloc_expand(PhaseRegAlloc* _ra) {
+  GrowableArray <Node *> new_nodes(32); // Array with new nodes filled by postalloc_expand function of node.
+  GrowableArray <Node *> remove(32);
+  GrowableArray <Node *> succs(32);
+  unsigned int max_idx = C->unique();   // Remember to distinguish new from old nodes.
+  DEBUG_ONLY(bool foundNode = false);
+
+  // for all blocks
+  for (uint i = 0; i < number_of_blocks(); i++) {
+    Block *b = _blocks[i];
+    // For all instructions in the current block.
+    for (uint j = 0; j < b->number_of_nodes(); j++) {
+      Node *n = b->get_node(j);
+      if (n->is_Mach() && n->as_Mach()->requires_postalloc_expand()) {
+#ifdef ASSERT
+        if (TracePostallocExpand) {
+          if (!foundNode) {
+            foundNode = true;
+            tty->print("POSTALLOC EXPANDING %d %s\n", C->compile_id(),
+                       C->method() ? C->method()->name()->as_utf8() : C->stub_name());
+          }
+          tty->print("  postalloc expanding "); n->dump();
+          if (Verbose) {
+            tty->print("    with ins:\n");
+            for (uint k = 0; k < n->len(); ++k) {
+              if (n->in(k)) { tty->print("        "); n->in(k)->dump(); }
+            }
+          }
+        }
+#endif
+        new_nodes.clear();
+        // Collect nodes that have to be removed from the block later on.
+        uint req = n->req();
+        remove.clear();
+        for (uint k = 0; k < req; ++k) {
+          if (n->in(k) && n->in(k)->is_MachTemp()) {
+            remove.push(n->in(k)); // MachTemps which are inputs to the old node have to be removed.
+            n->in(k)->del_req(0);
+            j--;
+          }
+        }
+
+        // Check whether we can allocate enough nodes. We set a fix limit for
+        // the size of postalloc expands with this.
+        uint unique_limit = C->unique() + 40;
+        if (unique_limit >= _ra->node_regs_max_index()) {
+          Compile::current()->record_failure("out of nodes in postalloc expand");
+          return;
+        }
+
+        // Emit (i.e. generate new nodes).
+        n->as_Mach()->postalloc_expand(&new_nodes, _ra);
+
+        assert(C->unique() < unique_limit, "You allocated too many nodes in your postalloc expand.");
+
+        // Disconnect the inputs of the old node.
+        //
+        // We reuse MachSpillCopy nodes. If we need to expand them, there
+        // are many, so reusing pays off. If reused, the node already
+        // has the new ins. n must be the last node on new_nodes list.
+        if (!n->is_MachSpillCopy()) {
+          for (int k = req - 1; k >= 0; --k) {
+            n->del_req(k);
+          }
+        }
+
+#ifdef ASSERT
+        // Check that all nodes have proper operands.
+        for (int k = 0; k < new_nodes.length(); ++k) {
+          if (new_nodes.at(k)->_idx < max_idx || !new_nodes.at(k)->is_Mach()) continue; // old node, Proj ...
+          MachNode *m = new_nodes.at(k)->as_Mach();
+          for (unsigned int l = 0; l < m->num_opnds(); ++l) {
+            if (MachOper::notAnOper(m->_opnds[l])) {
+              outputStream *os = tty;
+              os->print("Node %s ", m->Name());
+              os->print("has invalid opnd %d: %p\n", l, m->_opnds[l]);
+              assert(0, "Invalid operands, see inline trace in hs_err_pid file.");
+            }
+          }
+        }
+#endif
+
+        // Collect succs of old node in remove (for projections) and in succs (for
+        // all other nodes) do _not_ collect projections in remove (but in succs)
+        // in case the node is a call. We need the projections for calls as they are
+        // associated with registes (i.e. they are defs).
+        succs.clear();
+        for (DUIterator k = n->outs(); n->has_out(k); k++) {
+          if (n->out(k)->is_Proj() && !n->is_MachCall() && !n->is_MachBranch()) {
+            remove.push(n->out(k));
+          } else {
+            succs.push(n->out(k));
+          }
+        }
+        // Replace old node n as input of its succs by last of the new nodes.
+        for (int k = 0; k < succs.length(); ++k) {
+          Node *succ = succs.at(k);
+          for (uint l = 0; l < succ->req(); ++l) {
+            if (succ->in(l) == n) {
+              succ->set_req(l, new_nodes.at(new_nodes.length() - 1));
+            }
+          }
+          for (uint l = succ->req(); l < succ->len(); ++l) {
+            if (succ->in(l) == n) {
+              succ->set_prec(l, new_nodes.at(new_nodes.length() - 1));
+            }
+          }
+        }
+
+        // Index of old node in block.
+        uint index = b->find_node(n);
+        // Insert new nodes into block and map them in nodes->blocks array
+        // and remember last node in n2.
+        Node *n2 = NULL;
+        for (int k = 0; k < new_nodes.length(); ++k) {
+          n2 = new_nodes.at(k);
+          b->insert_node(n2, ++index);
+          map_node_to_block(n2, b);
+        }
+
+        // Add old node n to remove and remove them all from block.
+        remove.push(n);
+        j--;
+#ifdef ASSERT
+        if (TracePostallocExpand && Verbose) {
+          tty->print("    removing:\n");
+          for (int k = 0; k < remove.length(); ++k) {
+            tty->print("        "); remove.at(k)->dump();
+          }
+          tty->print("    inserting:\n");
+          for (int k = 0; k < new_nodes.length(); ++k) {
+            tty->print("        "); new_nodes.at(k)->dump();
+          }
+        }
+#endif
+        for (int k = 0; k < remove.length(); ++k) {
+          if (b->contains(remove.at(k))) {
+            b->find_remove(remove.at(k));
+          } else {
+            assert(remove.at(k)->is_Proj() && (remove.at(k)->in(0)->is_MachBranch()), "");
+          }
+        }
+        // If anything has been inserted (n2 != NULL), continue after last node inserted.
+        // This does not always work. Some postalloc expands don't insert any nodes, if they
+        // do optimizations (e.g., max(x,x)). In this case we decrement j accordingly.
+        j = n2 ? b->find_node(n2) : j;
+      }
+    }
+  }
+
+#ifdef ASSERT
+  if (foundNode) {
+    tty->print("FINISHED %d %s\n", C->compile_id(),
+               C->method() ? C->method()->name()->as_utf8() : C->stub_name());
+    tty->flush();
+  }
+#endif
+}
+
+
+//------------------------------dump-------------------------------------------
+#ifndef PRODUCT
+void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
+  const Node *x = end->is_block_proj();
+  assert( x, "not a CFG" );
+
+  // Do not visit this block again
+  if( visited.test_set(x->_idx) ) return;
+
+  // Skip through this block
+  const Node *p = x;
+  do {
+    p = p->in(0);               // Move control forward
+    assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
+  } while( !p->is_block_start() );
+
+  // Recursively visit
+  for (uint i = 1; i < p->req(); i++) {
+    _dump_cfg(p->in(i), visited);
+  }
+
+  // Dump the block
+  get_block_for_node(p)->dump(this);
+}
+
+void PhaseCFG::dump( ) const {
+  tty->print("\n--- CFG --- %d BBs\n", number_of_blocks());
+  if (_blocks.size()) {        // Did we do basic-block layout?
+    for (uint i = 0; i < number_of_blocks(); i++) {
+      const Block* block = get_block(i);
+      block->dump(this);
+    }
+  } else {                      // Else do it with a DFS
+    VectorSet visited(_block_arena);
+    _dump_cfg(_root,visited);
+  }
+}
+
+void PhaseCFG::dump_headers() {
+  for (uint i = 0; i < number_of_blocks(); i++) {
+    Block* block = get_block(i);
+    if (block != NULL) {
+      block->dump_head(this);
+    }
+  }
+}
+
+void PhaseCFG::verify() const {
+#ifdef ASSERT
+  // Verify sane CFG
+  for (uint i = 0; i < number_of_blocks(); i++) {
+    Block* block = get_block(i);
+    uint cnt = block->number_of_nodes();
+    uint j;
+    for (j = 0; j < cnt; j++)  {
+      Node *n = block->get_node(j);
+      assert(get_block_for_node(n) == block, "");
+      if (j >= 1 && n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CreateEx) {
+        assert(j == 1 || block->get_node(j-1)->is_Phi(), "CreateEx must be first instruction in block");
+      }
+      if (n->needs_anti_dependence_check()) {
+        verify_anti_dependences(block, n);
+      }
+      for (uint k = 0; k < n->req(); k++) {
+        Node *def = n->in(k);
+        if (def && def != n) {
+          assert(get_block_for_node(def) || def->is_Con(), "must have block; constants for debug info ok");
+          // Verify that instructions in the block is in correct order.
+          // Uses must follow their definition if they are at the same block.
+          // Mostly done to check that MachSpillCopy nodes are placed correctly
+          // when CreateEx node is moved in build_ifg_physical().
+          if (get_block_for_node(def) == block && !(block->head()->is_Loop() && n->is_Phi()) &&
+              // See (+++) comment in reg_split.cpp
+              !(n->jvms() != NULL && n->jvms()->is_monitor_use(k))) {
+            bool is_loop = false;
+            if (n->is_Phi()) {
+              for (uint l = 1; l < def->req(); l++) {
+                if (n == def->in(l)) {
+                  is_loop = true;
+                  break; // Some kind of loop
+                }
+              }
+            }
+            assert(is_loop || block->find_node(def) < j, "uses must follow definitions");
+          }
+        }
+      }
+    }
+
+    j = block->end_idx();
+    Node* bp = (Node*)block->get_node(block->number_of_nodes() - 1)->is_block_proj();
+    assert(bp, "last instruction must be a block proj");
+    assert(bp == block->get_node(j), "wrong number of successors for this block");
+    if (bp->is_Catch()) {
+      while (block->get_node(--j)->is_MachProj()) {
+        ;
+      }
+      assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
+    } else if (bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If) {
+      assert(block->_num_succs == 2, "Conditional branch must have two targets");
+    }
+  }
+#endif
+}
+#endif
+
+UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
+  Copy::zero_to_bytes( _indices, sizeof(uint)*max );
+}
+
+void UnionFind::extend( uint from_idx, uint to_idx ) {
+  _nesting.check();
+  if( from_idx >= _max ) {
+    uint size = 16;
+    while( size <= from_idx ) size <<=1;
+    _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
+    _max = size;
+  }
+  while( _cnt <= from_idx ) _indices[_cnt++] = 0;
+  _indices[from_idx] = to_idx;
+}
+
+void UnionFind::reset( uint max ) {
+  // Force the Union-Find mapping to be at least this large
+  extend(max,0);
+  // Initialize to be the ID mapping.
+  for( uint i=0; i<max; i++ ) map(i,i);
+}
+
+// Straight out of Tarjan's union-find algorithm
+uint UnionFind::Find_compress( uint idx ) {
+  uint cur  = idx;
+  uint next = lookup(cur);
+  while( next != cur ) {        // Scan chain of equivalences
+    assert( next < cur, "always union smaller" );
+    cur = next;                 // until find a fixed-point
+    next = lookup(cur);
+  }
+  // Core of union-find algorithm: update chain of
+  // equivalences to be equal to the root.
+  while( idx != next ) {
+    uint tmp = lookup(idx);
+    map(idx, next);
+    idx = tmp;
+  }
+  return idx;
+}
+
+// Like Find above, but no path compress, so bad asymptotic behavior
+uint UnionFind::Find_const( uint idx ) const {
+  if( idx == 0 ) return idx;    // Ignore the zero idx
+  // Off the end?  This can happen during debugging dumps
+  // when data structures have not finished being updated.
+  if( idx >= _max ) return idx;
+  uint next = lookup(idx);
+  while( next != idx ) {        // Scan chain of equivalences
+    idx = next;                 // until find a fixed-point
+    next = lookup(idx);
+  }
+  return next;
+}
+
+// union 2 sets together.
+void UnionFind::Union( uint idx1, uint idx2 ) {
+  uint src = Find(idx1);
+  uint dst = Find(idx2);
+  assert( src, "" );
+  assert( dst, "" );
+  assert( src < _max, "oob" );
+  assert( dst < _max, "oob" );
+  assert( src < dst, "always union smaller" );
+  map(dst,src);
+}
+
+#ifndef PRODUCT
+void Trace::dump( ) const {
+  tty->print_cr("Trace (freq %f)", first_block()->_freq);
+  for (Block *b = first_block(); b != NULL; b = next(b)) {
+    tty->print("  B%d", b->_pre_order);
+    if (b->head()->is_Loop()) {
+      tty->print(" (L%d)", b->compute_loop_alignment());
+    }
+    if (b->has_loop_alignment()) {
+      tty->print(" (T%d)", b->code_alignment());
+    }
+  }
+  tty->cr();
+}
+
+void CFGEdge::dump( ) const {
+  tty->print(" B%d  -->  B%d  Freq: %f  out:%3d%%  in:%3d%%  State: ",
+             from()->_pre_order, to()->_pre_order, freq(), _from_pct, _to_pct);
+  switch(state()) {
+  case connected:
+    tty->print("connected");
+    break;
+  case open:
+    tty->print("open");
+    break;
+  case interior:
+    tty->print("interior");
+    break;
+  }
+  if (infrequent()) {
+    tty->print("  infrequent");
+  }
+  tty->cr();
+}
+#endif
+
+// Comparison function for edges
+static int edge_order(CFGEdge **e0, CFGEdge **e1) {
+  float freq0 = (*e0)->freq();
+  float freq1 = (*e1)->freq();
+  if (freq0 != freq1) {
+    return freq0 > freq1 ? -1 : 1;
+  }
+
+  int dist0 = (*e0)->to()->_rpo - (*e0)->from()->_rpo;
+  int dist1 = (*e1)->to()->_rpo - (*e1)->from()->_rpo;
+
+  return dist1 - dist0;
+}
+
+// Comparison function for edges
+extern "C" int trace_frequency_order(const void *p0, const void *p1) {
+  Trace *tr0 = *(Trace **) p0;
+  Trace *tr1 = *(Trace **) p1;
+  Block *b0 = tr0->first_block();
+  Block *b1 = tr1->first_block();
+
+  // The trace of connector blocks goes at the end;
+  // we only expect one such trace
+  if (b0->is_connector() != b1->is_connector()) {
+    return b1->is_connector() ? -1 : 1;
+  }
+
+  // Pull more frequently executed blocks to the beginning
+  float freq0 = b0->_freq;
+  float freq1 = b1->_freq;
+  if (freq0 != freq1) {
+    return freq0 > freq1 ? -1 : 1;
+  }
+
+  int diff = tr0->first_block()->_rpo - tr1->first_block()->_rpo;
+
+  return diff;
+}
+
+// Find edges of interest, i.e, those which can fall through. Presumes that
+// edges which don't fall through are of low frequency and can be generally
+// ignored.  Initialize the list of traces.
+void PhaseBlockLayout::find_edges() {
+  // Walk the blocks, creating edges and Traces
+  uint i;
+  Trace *tr = NULL;
+  for (i = 0; i < _cfg.number_of_blocks(); i++) {
+    Block* b = _cfg.get_block(i);
+    tr = new Trace(b, next, prev);
+    traces[tr->id()] = tr;
+
+    // All connector blocks should be at the end of the list
+    if (b->is_connector()) break;
+
+    // If this block and the next one have a one-to-one successor
+    // predecessor relationship, simply append the next block
+    int nfallthru = b->num_fall_throughs();
+    while (nfallthru == 1 &&
+           b->succ_fall_through(0)) {
+      Block *n = b->_succs[0];
+
+      // Skip over single-entry connector blocks, we don't want to
+      // add them to the trace.
+      while (n->is_connector() && n->num_preds() == 1) {
+        n = n->_succs[0];
+      }
+
+      // We see a merge point, so stop search for the next block
+      if (n->num_preds() != 1) break;
+
+      i++;
+      assert(n == _cfg.get_block(i), "expecting next block");
+      tr->append(n);
+      uf->map(n->_pre_order, tr->id());
+      traces[n->_pre_order] = NULL;
+      nfallthru = b->num_fall_throughs();
+      b = n;
+    }
+
+    if (nfallthru > 0) {
+      // Create a CFGEdge for each outgoing
+      // edge that could be a fall-through.
+      for (uint j = 0; j < b->_num_succs; j++ ) {
+        if (b->succ_fall_through(j)) {
+          Block *target = b->non_connector_successor(j);
+          float freq = b->_freq * b->succ_prob(j);
+          int from_pct = (int) ((100 * freq) / b->_freq);
+          int to_pct = (int) ((100 * freq) / target->_freq);
+          edges->append(new CFGEdge(b, target, freq, from_pct, to_pct));
+        }
+      }
+    }
+  }
+
+  // Group connector blocks into one trace
+  for (i++; i < _cfg.number_of_blocks(); i++) {
+    Block *b = _cfg.get_block(i);
+    assert(b->is_connector(), "connector blocks at the end");
+    tr->append(b);
+    uf->map(b->_pre_order, tr->id());
+    traces[b->_pre_order] = NULL;
+  }
+}
+
+// Union two traces together in uf, and null out the trace in the list
+void PhaseBlockLayout::union_traces(Trace* updated_trace, Trace* old_trace) {
+  uint old_id = old_trace->id();
+  uint updated_id = updated_trace->id();
+
+  uint lo_id = updated_id;
+  uint hi_id = old_id;
+
+  // If from is greater than to, swap values to meet
+  // UnionFind guarantee.
+  if (updated_id > old_id) {
+    lo_id = old_id;
+    hi_id = updated_id;
+
+    // Fix up the trace ids
+    traces[lo_id] = traces[updated_id];
+    updated_trace->set_id(lo_id);
+  }
+
+  // Union the lower with the higher and remove the pointer
+  // to the higher.
+  uf->Union(lo_id, hi_id);
+  traces[hi_id] = NULL;
+}
+
+// Append traces together via the most frequently executed edges
+void PhaseBlockLayout::grow_traces() {
+  // Order the edges, and drive the growth of Traces via the most
+  // frequently executed edges.
+  edges->sort(edge_order);
+  for (int i = 0; i < edges->length(); i++) {
+    CFGEdge *e = edges->at(i);
+
+    if (e->state() != CFGEdge::open) continue;
+
+    Block *src_block = e->from();
+    Block *targ_block = e->to();
+
+    // Don't grow traces along backedges?
+    if (!BlockLayoutRotateLoops) {
+      if (targ_block->_rpo <= src_block->_rpo) {
+        targ_block->set_loop_alignment(targ_block);
+        continue;
+      }
+    }
+
+    Trace *src_trace = trace(src_block);
+    Trace *targ_trace = trace(targ_block);
+
+    // If the edge in question can join two traces at their ends,
+    // append one trace to the other.
+   if (src_trace->last_block() == src_block) {
+      if (src_trace == targ_trace) {
+        e->set_state(CFGEdge::interior);
+        if (targ_trace->backedge(e)) {
+          // Reset i to catch any newly eligible edge
+          // (Or we could remember the first "open" edge, and reset there)
+          i = 0;
+        }
+      } else if (targ_trace->first_block() == targ_block) {
+        e->set_state(CFGEdge::connected);
+        src_trace->append(targ_trace);
+        union_traces(src_trace, targ_trace);
+      }
+    }
+  }
+}
+
+// Embed one trace into another, if the fork or join points are sufficiently
+// balanced.
+void PhaseBlockLayout::merge_traces(bool fall_thru_only) {
+  // Walk the edge list a another time, looking at unprocessed edges.
+  // Fold in diamonds
+  for (int i = 0; i < edges->length(); i++) {
+    CFGEdge *e = edges->at(i);
+
+    if (e->state() != CFGEdge::open) continue;
+    if (fall_thru_only) {
+      if (e->infrequent()) continue;
+    }
+
+    Block *src_block = e->from();
+    Trace *src_trace = trace(src_block);
+    bool src_at_tail = src_trace->last_block() == src_block;
+
+    Block *targ_block  = e->to();
+    Trace *targ_trace  = trace(targ_block);
+    bool targ_at_start = targ_trace->first_block() == targ_block;
+
+    if (src_trace == targ_trace) {
+      // This may be a loop, but we can't do much about it.
+      e->set_state(CFGEdge::interior);
+      continue;
+    }
+
+    if (fall_thru_only) {
+      // If the edge links the middle of two traces, we can't do anything.
+      // Mark the edge and continue.
+      if (!src_at_tail & !targ_at_start) {
+        continue;
+      }
+
+      // Don't grow traces along backedges?
+      if (!BlockLayoutRotateLoops && (targ_block->_rpo <= src_block->_rpo)) {
+          continue;
+      }
+
+      // If both ends of the edge are available, why didn't we handle it earlier?
+      assert(src_at_tail ^ targ_at_start, "Should have caught this edge earlier.");
+
+      if (targ_at_start) {
+        // Insert the "targ" trace in the "src" trace if the insertion point
+        // is a two way branch.
+        // Better profitability check possible, but may not be worth it.
+        // Someday, see if the this "fork" has an associated "join";
+        // then make a policy on merging this trace at the fork or join.
+        // For example, other things being equal, it may be better to place this
+        // trace at the join point if the "src" trace ends in a two-way, but
+        // the insertion point is one-way.
+        assert(src_block->num_fall_throughs() == 2, "unexpected diamond");
+        e->set_state(CFGEdge::connected);
+        src_trace->insert_after(src_block, targ_trace);
+        union_traces(src_trace, targ_trace);
+      } else if (src_at_tail) {
+        if (src_trace != trace(_cfg.get_root_block())) {
+          e->set_state(CFGEdge::connected);
+          targ_trace->insert_before(targ_block, src_trace);
+          union_traces(targ_trace, src_trace);
+        }
+      }
+    } else if (e->state() == CFGEdge::open) {
+      // Append traces, even without a fall-thru connection.
+      // But leave root entry at the beginning of the block list.
+      if (targ_trace != trace(_cfg.get_root_block())) {
+        e->set_state(CFGEdge::connected);
+        src_trace->append(targ_trace);
+        union_traces(src_trace, targ_trace);
+      }
+    }
+  }
+}
+
+// Order the sequence of the traces in some desirable way, and fixup the
+// jumps at the end of each block.
+void PhaseBlockLayout::reorder_traces(int count) {
+  ResourceArea *area = Thread::current()->resource_area();
+  Trace ** new_traces = NEW_ARENA_ARRAY(area, Trace *, count);
+  Block_List worklist;
+  int new_count = 0;
+
+  // Compact the traces.
+  for (int i = 0; i < count; i++) {
+    Trace *tr = traces[i];
+    if (tr != NULL) {
+      new_traces[new_count++] = tr;
+    }
+  }
+
+  // The entry block should be first on the new trace list.
+  Trace *tr = trace(_cfg.get_root_block());
+  assert(tr == new_traces[0], "entry trace misplaced");
+
+  // Sort the new trace list by frequency
+  qsort(new_traces + 1, new_count - 1, sizeof(new_traces[0]), trace_frequency_order);
+
+  // Patch up the successor blocks
+  _cfg.clear_blocks();
+  for (int i = 0; i < new_count; i++) {
+    Trace *tr = new_traces[i];
+    if (tr != NULL) {
+      tr->fixup_blocks(_cfg);
+    }
+  }
+}
+
+// Order basic blocks based on frequency
+PhaseBlockLayout::PhaseBlockLayout(PhaseCFG &cfg)
+: Phase(BlockLayout)
+, _cfg(cfg) {
+  ResourceMark rm;
+  ResourceArea *area = Thread::current()->resource_area();
+
+  // List of traces
+  int size = _cfg.number_of_blocks() + 1;
+  traces = NEW_ARENA_ARRAY(area, Trace *, size);
+  memset(traces, 0, size*sizeof(Trace*));
+  next = NEW_ARENA_ARRAY(area, Block *, size);
+  memset(next,   0, size*sizeof(Block *));
+  prev = NEW_ARENA_ARRAY(area, Block *, size);
+  memset(prev  , 0, size*sizeof(Block *));
+
+  // List of edges
+  edges = new GrowableArray<CFGEdge*>;
+
+  // Mapping block index --> block_trace
+  uf = new UnionFind(size);
+  uf->reset(size);
+
+  // Find edges and create traces.
+  find_edges();
+
+  // Grow traces at their ends via most frequent edges.
+  grow_traces();
+
+  // Merge one trace into another, but only at fall-through points.
+  // This may make diamonds and other related shapes in a trace.
+  merge_traces(true);
+
+  // Run merge again, allowing two traces to be catenated, even if
+  // one does not fall through into the other. This appends loosely
+  // related traces to be near each other.
+  merge_traces(false);
+
+  // Re-order all the remaining traces by frequency
+  reorder_traces(size);
+
+  assert(_cfg.number_of_blocks() >= (uint) (size - 1), "number of blocks can not shrink");
+}
+
+
+// Edge e completes a loop in a trace. If the target block is head of the
+// loop, rotate the loop block so that the loop ends in a conditional branch.
+bool Trace::backedge(CFGEdge *e) {
+  bool loop_rotated = false;
+  Block *src_block  = e->from();
+  Block *targ_block    = e->to();
+
+  assert(last_block() == src_block, "loop discovery at back branch");
+  if (first_block() == targ_block) {
+    if (BlockLayoutRotateLoops && last_block()->num_fall_throughs() < 2) {
+      // Find the last block in the trace that has a conditional
+      // branch.
+      Block *b;
+      for (b = last_block(); b != NULL; b = prev(b)) {
+        if (b->num_fall_throughs() == 2) {
+          break;
+        }
+      }
+
+      if (b != last_block() && b != NULL) {
+        loop_rotated = true;
+
+        // Rotate the loop by doing two-part linked-list surgery.
+        append(first_block());
+        break_loop_after(b);
+      }
+    }
+
+    // Backbranch to the top of a trace
+    // Scroll forward through the trace from the targ_block. If we find
+    // a loop head before another loop top, use the the loop head alignment.
+    for (Block *b = targ_block; b != NULL; b = next(b)) {
+      if (b->has_loop_alignment()) {
+        break;
+      }
+      if (b->head()->is_Loop()) {
+        targ_block = b;
+        break;
+      }
+    }
+
+    first_block()->set_loop_alignment(targ_block);
+
+  } else {
+    // That loop may already have a loop top (we're reaching it again
+    // through the backedge of an outer loop)
+    Block* b = prev(targ_block);
+    bool has_top = targ_block->head()->is_Loop() && b->has_loop_alignment() && !b->head()->is_Loop();
+    if (!has_top) {
+      // Backbranch into the middle of a trace
+      targ_block->set_loop_alignment(targ_block);
+    }
+  }
+
+  return loop_rotated;
+}
+
+// push blocks onto the CFG list
+// ensure that blocks have the correct two-way branch sense
+void Trace::fixup_blocks(PhaseCFG &cfg) {
+  Block *last = last_block();
+  for (Block *b = first_block(); b != NULL; b = next(b)) {
+    cfg.add_block(b);
+    if (!b->is_connector()) {
+      int nfallthru = b->num_fall_throughs();
+      if (b != last) {
+        if (nfallthru == 2) {
+          // Ensure that the sense of the branch is correct
+          Block *bnext = next(b);
+          Block *bs0 = b->non_connector_successor(0);
+
+          MachNode *iff = b->get_node(b->number_of_nodes() - 3)->as_Mach();
+          ProjNode *proj0 = b->get_node(b->number_of_nodes() - 2)->as_Proj();
+          ProjNode *proj1 = b->get_node(b->number_of_nodes() - 1)->as_Proj();
+
+          if (bnext == bs0) {
+            // Fall-thru case in succs[0], should be in succs[1]
+
+            // Flip targets in _succs map
+            Block *tbs0 = b->_succs[0];
+            Block *tbs1 = b->_succs[1];
+            b->_succs.map( 0, tbs1 );
+            b->_succs.map( 1, tbs0 );
+
+            // Flip projections to match targets
+            b->map_node(proj1, b->number_of_nodes() - 2);
+            b->map_node(proj0, b->number_of_nodes() - 1);
+          }
+        }
+      }
+    }
+  }
+}