--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/ppc/assembler_ppc.hpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,2359 @@
+/*
+ * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2012, 2017 SAP SE. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
+#define CPU_PPC_VM_ASSEMBLER_PPC_HPP
+
+#include "asm/register.hpp"
+
+// Address is an abstraction used to represent a memory location
+// as used in assembler instructions.
+// PPC instructions grok either baseReg + indexReg or baseReg + disp.
+class Address VALUE_OBJ_CLASS_SPEC {
+ private:
+ Register _base; // Base register.
+ Register _index; // Index register.
+ intptr_t _disp; // Displacement.
+
+ public:
+ Address(Register b, Register i, address d = 0)
+ : _base(b), _index(i), _disp((intptr_t)d) {
+ assert(i == noreg || d == 0, "can't have both");
+ }
+
+ Address(Register b, address d = 0)
+ : _base(b), _index(noreg), _disp((intptr_t)d) {}
+
+ Address(Register b, intptr_t d)
+ : _base(b), _index(noreg), _disp(d) {}
+
+ Address(Register b, RegisterOrConstant roc)
+ : _base(b), _index(noreg), _disp(0) {
+ if (roc.is_constant()) _disp = roc.as_constant(); else _index = roc.as_register();
+ }
+
+ Address()
+ : _base(noreg), _index(noreg), _disp(0) {}
+
+ // accessors
+ Register base() const { return _base; }
+ Register index() const { return _index; }
+ int disp() const { return (int)_disp; }
+ bool is_const() const { return _base == noreg && _index == noreg; }
+};
+
+class AddressLiteral VALUE_OBJ_CLASS_SPEC {
+ private:
+ address _address;
+ RelocationHolder _rspec;
+
+ RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
+ switch (rtype) {
+ case relocInfo::external_word_type:
+ return external_word_Relocation::spec(addr);
+ case relocInfo::internal_word_type:
+ return internal_word_Relocation::spec(addr);
+ case relocInfo::opt_virtual_call_type:
+ return opt_virtual_call_Relocation::spec();
+ case relocInfo::static_call_type:
+ return static_call_Relocation::spec();
+ case relocInfo::runtime_call_type:
+ return runtime_call_Relocation::spec();
+ case relocInfo::none:
+ return RelocationHolder();
+ default:
+ ShouldNotReachHere();
+ return RelocationHolder();
+ }
+ }
+
+ protected:
+ // creation
+ AddressLiteral() : _address(NULL), _rspec(NULL) {}
+
+ public:
+ AddressLiteral(address addr, RelocationHolder const& rspec)
+ : _address(addr),
+ _rspec(rspec) {}
+
+ AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
+ : _address((address) addr),
+ _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+ AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
+ : _address((address) addr),
+ _rspec(rspec_from_rtype(rtype, (address) addr)) {}
+
+ intptr_t value() const { return (intptr_t) _address; }
+
+ const RelocationHolder& rspec() const { return _rspec; }
+};
+
+// Argument is an abstraction used to represent an outgoing
+// actual argument or an incoming formal parameter, whether
+// it resides in memory or in a register, in a manner consistent
+// with the PPC Application Binary Interface, or ABI. This is
+// often referred to as the native or C calling convention.
+
+class Argument VALUE_OBJ_CLASS_SPEC {
+ private:
+ int _number; // The number of the argument.
+ public:
+ enum {
+ // Only 8 registers may contain integer parameters.
+ n_register_parameters = 8,
+ // Can have up to 8 floating registers.
+ n_float_register_parameters = 8,
+
+ // PPC C calling conventions.
+ // The first eight arguments are passed in int regs if they are int.
+ n_int_register_parameters_c = 8,
+ // The first thirteen float arguments are passed in float regs.
+ n_float_register_parameters_c = 13,
+ // Only the first 8 parameters are not placed on the stack. Aix disassembly
+ // shows that xlC places all float args after argument 8 on the stack AND
+ // in a register. This is not documented, but we follow this convention, too.
+ n_regs_not_on_stack_c = 8,
+ };
+ // creation
+ Argument(int number) : _number(number) {}
+
+ int number() const { return _number; }
+
+ // Locating register-based arguments:
+ bool is_register() const { return _number < n_register_parameters; }
+
+ Register as_register() const {
+ assert(is_register(), "must be a register argument");
+ return as_Register(number() + R3_ARG1->encoding());
+ }
+};
+
+#if !defined(ABI_ELFv2)
+// A ppc64 function descriptor.
+struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
+ private:
+ address _entry;
+ address _toc;
+ address _env;
+
+ public:
+ inline address entry() const { return _entry; }
+ inline address toc() const { return _toc; }
+ inline address env() const { return _env; }
+
+ inline void set_entry(address entry) { _entry = entry; }
+ inline void set_toc( address toc) { _toc = toc; }
+ inline void set_env( address env) { _env = env; }
+
+ inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
+ inline static ByteSize toc_offset() { return byte_offset_of(FunctionDescriptor, _toc); }
+ inline static ByteSize env_offset() { return byte_offset_of(FunctionDescriptor, _env); }
+
+ // Friend functions can be called without loading toc and env.
+ enum {
+ friend_toc = 0xcafe,
+ friend_env = 0xc0de
+ };
+
+ inline bool is_friend_function() const {
+ return (toc() == (address) friend_toc) && (env() == (address) friend_env);
+ }
+
+ // Constructor for stack-allocated instances.
+ FunctionDescriptor() {
+ _entry = (address) 0xbad;
+ _toc = (address) 0xbad;
+ _env = (address) 0xbad;
+ }
+};
+#endif
+
+
+// The PPC Assembler: Pure assembler doing NO optimizations on the
+// instruction level; i.e., what you write is what you get. The
+// Assembler is generating code into a CodeBuffer.
+
+class Assembler : public AbstractAssembler {
+ protected:
+ // Displacement routines
+ static int patched_branch(int dest_pos, int inst, int inst_pos);
+ static int branch_destination(int inst, int pos);
+
+ friend class AbstractAssembler;
+
+ // Code patchers need various routines like inv_wdisp()
+ friend class NativeInstruction;
+ friend class NativeGeneralJump;
+ friend class Relocation;
+
+ public:
+
+ enum shifts {
+ XO_21_29_SHIFT = 2,
+ XO_21_30_SHIFT = 1,
+ XO_27_29_SHIFT = 2,
+ XO_30_31_SHIFT = 0,
+ SPR_5_9_SHIFT = 11u, // SPR_5_9 field in bits 11 -- 15
+ SPR_0_4_SHIFT = 16u, // SPR_0_4 field in bits 16 -- 20
+ RS_SHIFT = 21u, // RS field in bits 21 -- 25
+ OPCODE_SHIFT = 26u, // opcode in bits 26 -- 31
+ };
+
+ enum opcdxos_masks {
+ XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
+ ADDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
+ ADDIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
+ BXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
+ BCXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
+ // trap instructions
+ TDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
+ TWI_OPCODE_MASK = (63u << OPCODE_SHIFT),
+ TD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
+ TW_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
+ LD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
+ STD_OPCODE_MASK = LD_OPCODE_MASK,
+ STDU_OPCODE_MASK = STD_OPCODE_MASK,
+ STDX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
+ STDUX_OPCODE_MASK = STDX_OPCODE_MASK,
+ STW_OPCODE_MASK = (63u << OPCODE_SHIFT),
+ STWU_OPCODE_MASK = STW_OPCODE_MASK,
+ STWX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
+ STWUX_OPCODE_MASK = STWX_OPCODE_MASK,
+ MTCTR_OPCODE_MASK = ~(31u << RS_SHIFT),
+ ORI_OPCODE_MASK = (63u << OPCODE_SHIFT),
+ ORIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
+ RLDICR_OPCODE_MASK = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
+ };
+
+ enum opcdxos {
+ ADD_OPCODE = (31u << OPCODE_SHIFT | 266u << 1),
+ ADDC_OPCODE = (31u << OPCODE_SHIFT | 10u << 1),
+ ADDI_OPCODE = (14u << OPCODE_SHIFT),
+ ADDIS_OPCODE = (15u << OPCODE_SHIFT),
+ ADDIC__OPCODE = (13u << OPCODE_SHIFT),
+ ADDE_OPCODE = (31u << OPCODE_SHIFT | 138u << 1),
+ ADDME_OPCODE = (31u << OPCODE_SHIFT | 234u << 1),
+ ADDZE_OPCODE = (31u << OPCODE_SHIFT | 202u << 1),
+ SUBF_OPCODE = (31u << OPCODE_SHIFT | 40u << 1),
+ SUBFC_OPCODE = (31u << OPCODE_SHIFT | 8u << 1),
+ SUBFE_OPCODE = (31u << OPCODE_SHIFT | 136u << 1),
+ SUBFIC_OPCODE = (8u << OPCODE_SHIFT),
+ SUBFME_OPCODE = (31u << OPCODE_SHIFT | 232u << 1),
+ SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
+ DIVW_OPCODE = (31u << OPCODE_SHIFT | 491u << 1),
+ MULLW_OPCODE = (31u << OPCODE_SHIFT | 235u << 1),
+ MULHW_OPCODE = (31u << OPCODE_SHIFT | 75u << 1),
+ MULHWU_OPCODE = (31u << OPCODE_SHIFT | 11u << 1),
+ MULLI_OPCODE = (7u << OPCODE_SHIFT),
+ AND_OPCODE = (31u << OPCODE_SHIFT | 28u << 1),
+ ANDI_OPCODE = (28u << OPCODE_SHIFT),
+ ANDIS_OPCODE = (29u << OPCODE_SHIFT),
+ ANDC_OPCODE = (31u << OPCODE_SHIFT | 60u << 1),
+ ORC_OPCODE = (31u << OPCODE_SHIFT | 412u << 1),
+ OR_OPCODE = (31u << OPCODE_SHIFT | 444u << 1),
+ ORI_OPCODE = (24u << OPCODE_SHIFT),
+ ORIS_OPCODE = (25u << OPCODE_SHIFT),
+ XOR_OPCODE = (31u << OPCODE_SHIFT | 316u << 1),
+ XORI_OPCODE = (26u << OPCODE_SHIFT),
+ XORIS_OPCODE = (27u << OPCODE_SHIFT),
+
+ NEG_OPCODE = (31u << OPCODE_SHIFT | 104u << 1),
+
+ RLWINM_OPCODE = (21u << OPCODE_SHIFT),
+ CLRRWI_OPCODE = RLWINM_OPCODE,
+ CLRLWI_OPCODE = RLWINM_OPCODE,
+
+ RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
+
+ SLW_OPCODE = (31u << OPCODE_SHIFT | 24u << 1),
+ SLWI_OPCODE = RLWINM_OPCODE,
+ SRW_OPCODE = (31u << OPCODE_SHIFT | 536u << 1),
+ SRWI_OPCODE = RLWINM_OPCODE,
+ SRAW_OPCODE = (31u << OPCODE_SHIFT | 792u << 1),
+ SRAWI_OPCODE = (31u << OPCODE_SHIFT | 824u << 1),
+
+ CMP_OPCODE = (31u << OPCODE_SHIFT | 0u << 1),
+ CMPI_OPCODE = (11u << OPCODE_SHIFT),
+ CMPL_OPCODE = (31u << OPCODE_SHIFT | 32u << 1),
+ CMPLI_OPCODE = (10u << OPCODE_SHIFT),
+
+ ISEL_OPCODE = (31u << OPCODE_SHIFT | 15u << 1),
+
+ // Special purpose registers
+ MTSPR_OPCODE = (31u << OPCODE_SHIFT | 467u << 1),
+ MFSPR_OPCODE = (31u << OPCODE_SHIFT | 339u << 1),
+
+ MTXER_OPCODE = (MTSPR_OPCODE | 1 << SPR_0_4_SHIFT),
+ MFXER_OPCODE = (MFSPR_OPCODE | 1 << SPR_0_4_SHIFT),
+
+ MTDSCR_OPCODE = (MTSPR_OPCODE | 3 << SPR_0_4_SHIFT),
+ MFDSCR_OPCODE = (MFSPR_OPCODE | 3 << SPR_0_4_SHIFT),
+
+ MTLR_OPCODE = (MTSPR_OPCODE | 8 << SPR_0_4_SHIFT),
+ MFLR_OPCODE = (MFSPR_OPCODE | 8 << SPR_0_4_SHIFT),
+
+ MTCTR_OPCODE = (MTSPR_OPCODE | 9 << SPR_0_4_SHIFT),
+ MFCTR_OPCODE = (MFSPR_OPCODE | 9 << SPR_0_4_SHIFT),
+
+ // Attention: Higher and lower half are inserted in reversed order.
+ MTTFHAR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
+ MFTFHAR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
+ MTTFIAR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
+ MFTFIAR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
+ MTTEXASR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
+ MFTEXASR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
+ MTTEXASRU_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
+ MFTEXASRU_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
+
+ MTVRSAVE_OPCODE = (MTSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
+ MFVRSAVE_OPCODE = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
+
+ MFTB_OPCODE = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 12 << SPR_0_4_SHIFT),
+
+ MTCRF_OPCODE = (31u << OPCODE_SHIFT | 144u << 1),
+ MFCR_OPCODE = (31u << OPCODE_SHIFT | 19u << 1),
+ MCRF_OPCODE = (19u << OPCODE_SHIFT | 0u << 1),
+
+ // condition register logic instructions
+ CRAND_OPCODE = (19u << OPCODE_SHIFT | 257u << 1),
+ CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
+ CROR_OPCODE = (19u << OPCODE_SHIFT | 449u << 1),
+ CRXOR_OPCODE = (19u << OPCODE_SHIFT | 193u << 1),
+ CRNOR_OPCODE = (19u << OPCODE_SHIFT | 33u << 1),
+ CREQV_OPCODE = (19u << OPCODE_SHIFT | 289u << 1),
+ CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
+ CRORC_OPCODE = (19u << OPCODE_SHIFT | 417u << 1),
+
+ BCLR_OPCODE = (19u << OPCODE_SHIFT | 16u << 1),
+ BXX_OPCODE = (18u << OPCODE_SHIFT),
+ BCXX_OPCODE = (16u << OPCODE_SHIFT),
+
+ // CTR-related opcodes
+ BCCTR_OPCODE = (19u << OPCODE_SHIFT | 528u << 1),
+
+ LWZ_OPCODE = (32u << OPCODE_SHIFT),
+ LWZX_OPCODE = (31u << OPCODE_SHIFT | 23u << 1),
+ LWZU_OPCODE = (33u << OPCODE_SHIFT),
+ LWBRX_OPCODE = (31u << OPCODE_SHIFT | 534 << 1),
+
+ LHA_OPCODE = (42u << OPCODE_SHIFT),
+ LHAX_OPCODE = (31u << OPCODE_SHIFT | 343u << 1),
+ LHAU_OPCODE = (43u << OPCODE_SHIFT),
+
+ LHZ_OPCODE = (40u << OPCODE_SHIFT),
+ LHZX_OPCODE = (31u << OPCODE_SHIFT | 279u << 1),
+ LHZU_OPCODE = (41u << OPCODE_SHIFT),
+ LHBRX_OPCODE = (31u << OPCODE_SHIFT | 790 << 1),
+
+ LBZ_OPCODE = (34u << OPCODE_SHIFT),
+ LBZX_OPCODE = (31u << OPCODE_SHIFT | 87u << 1),
+ LBZU_OPCODE = (35u << OPCODE_SHIFT),
+
+ STW_OPCODE = (36u << OPCODE_SHIFT),
+ STWX_OPCODE = (31u << OPCODE_SHIFT | 151u << 1),
+ STWU_OPCODE = (37u << OPCODE_SHIFT),
+ STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
+ STWBRX_OPCODE = (31u << OPCODE_SHIFT | 662u << 1),
+
+ STH_OPCODE = (44u << OPCODE_SHIFT),
+ STHX_OPCODE = (31u << OPCODE_SHIFT | 407u << 1),
+ STHU_OPCODE = (45u << OPCODE_SHIFT),
+ STHBRX_OPCODE = (31u << OPCODE_SHIFT | 918u << 1),
+
+ STB_OPCODE = (38u << OPCODE_SHIFT),
+ STBX_OPCODE = (31u << OPCODE_SHIFT | 215u << 1),
+ STBU_OPCODE = (39u << OPCODE_SHIFT),
+
+ EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
+ EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
+ EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1), // X-FORM
+
+ // 32 bit opcode encodings
+
+ LWA_OPCODE = (58u << OPCODE_SHIFT | 2u << XO_30_31_SHIFT), // DS-FORM
+ LWAX_OPCODE = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
+
+ CNTLZW_OPCODE = (31u << OPCODE_SHIFT | 26u << XO_21_30_SHIFT), // X-FORM
+
+ // 64 bit opcode encodings
+
+ LD_OPCODE = (58u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
+ LDU_OPCODE = (58u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
+ LDX_OPCODE = (31u << OPCODE_SHIFT | 21u << XO_21_30_SHIFT), // X-FORM
+ LDBRX_OPCODE = (31u << OPCODE_SHIFT | 532u << 1), // X-FORM
+
+ STD_OPCODE = (62u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
+ STDU_OPCODE = (62u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
+ STDUX_OPCODE = (31u << OPCODE_SHIFT | 181u << 1), // X-FORM
+ STDX_OPCODE = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
+ STDBRX_OPCODE = (31u << OPCODE_SHIFT | 660u << 1), // X-FORM
+
+ RLDICR_OPCODE = (30u << OPCODE_SHIFT | 1u << XO_27_29_SHIFT), // MD-FORM
+ RLDICL_OPCODE = (30u << OPCODE_SHIFT | 0u << XO_27_29_SHIFT), // MD-FORM
+ RLDIC_OPCODE = (30u << OPCODE_SHIFT | 2u << XO_27_29_SHIFT), // MD-FORM
+ RLDIMI_OPCODE = (30u << OPCODE_SHIFT | 3u << XO_27_29_SHIFT), // MD-FORM
+
+ SRADI_OPCODE = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
+
+ SLD_OPCODE = (31u << OPCODE_SHIFT | 27u << 1), // X-FORM
+ SRD_OPCODE = (31u << OPCODE_SHIFT | 539u << 1), // X-FORM
+ SRAD_OPCODE = (31u << OPCODE_SHIFT | 794u << 1), // X-FORM
+
+ MULLD_OPCODE = (31u << OPCODE_SHIFT | 233u << 1), // XO-FORM
+ MULHD_OPCODE = (31u << OPCODE_SHIFT | 73u << 1), // XO-FORM
+ MULHDU_OPCODE = (31u << OPCODE_SHIFT | 9u << 1), // XO-FORM
+ DIVD_OPCODE = (31u << OPCODE_SHIFT | 489u << 1), // XO-FORM
+
+ CNTLZD_OPCODE = (31u << OPCODE_SHIFT | 58u << XO_21_30_SHIFT), // X-FORM
+ NAND_OPCODE = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
+ NOR_OPCODE = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
+
+
+ // opcodes only used for floating arithmetic
+ FADD_OPCODE = (63u << OPCODE_SHIFT | 21u << 1),
+ FADDS_OPCODE = (59u << OPCODE_SHIFT | 21u << 1),
+ FCMPU_OPCODE = (63u << OPCODE_SHIFT | 00u << 1),
+ FDIV_OPCODE = (63u << OPCODE_SHIFT | 18u << 1),
+ FDIVS_OPCODE = (59u << OPCODE_SHIFT | 18u << 1),
+ FMR_OPCODE = (63u << OPCODE_SHIFT | 72u << 1),
+ // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
+ // on Power7. Do not use.
+ // MFFGPR_OPCODE = (31u << OPCODE_SHIFT | 607u << 1),
+ // MFTGPR_OPCODE = (31u << OPCODE_SHIFT | 735u << 1),
+ CMPB_OPCODE = (31u << OPCODE_SHIFT | 508 << 1),
+ POPCNTB_OPCODE = (31u << OPCODE_SHIFT | 122 << 1),
+ POPCNTW_OPCODE = (31u << OPCODE_SHIFT | 378 << 1),
+ POPCNTD_OPCODE = (31u << OPCODE_SHIFT | 506 << 1),
+ FABS_OPCODE = (63u << OPCODE_SHIFT | 264u << 1),
+ FNABS_OPCODE = (63u << OPCODE_SHIFT | 136u << 1),
+ FMUL_OPCODE = (63u << OPCODE_SHIFT | 25u << 1),
+ FMULS_OPCODE = (59u << OPCODE_SHIFT | 25u << 1),
+ FNEG_OPCODE = (63u << OPCODE_SHIFT | 40u << 1),
+ FSUB_OPCODE = (63u << OPCODE_SHIFT | 20u << 1),
+ FSUBS_OPCODE = (59u << OPCODE_SHIFT | 20u << 1),
+
+ // PPC64-internal FPU conversion opcodes
+ FCFID_OPCODE = (63u << OPCODE_SHIFT | 846u << 1),
+ FCFIDS_OPCODE = (59u << OPCODE_SHIFT | 846u << 1),
+ FCTID_OPCODE = (63u << OPCODE_SHIFT | 814u << 1),
+ FCTIDZ_OPCODE = (63u << OPCODE_SHIFT | 815u << 1),
+ FCTIW_OPCODE = (63u << OPCODE_SHIFT | 14u << 1),
+ FCTIWZ_OPCODE = (63u << OPCODE_SHIFT | 15u << 1),
+ FRSP_OPCODE = (63u << OPCODE_SHIFT | 12u << 1),
+
+ // Fused multiply-accumulate instructions.
+ FMADD_OPCODE = (63u << OPCODE_SHIFT | 29u << 1),
+ FMADDS_OPCODE = (59u << OPCODE_SHIFT | 29u << 1),
+ FMSUB_OPCODE = (63u << OPCODE_SHIFT | 28u << 1),
+ FMSUBS_OPCODE = (59u << OPCODE_SHIFT | 28u << 1),
+ FNMADD_OPCODE = (63u << OPCODE_SHIFT | 31u << 1),
+ FNMADDS_OPCODE = (59u << OPCODE_SHIFT | 31u << 1),
+ FNMSUB_OPCODE = (63u << OPCODE_SHIFT | 30u << 1),
+ FNMSUBS_OPCODE = (59u << OPCODE_SHIFT | 30u << 1),
+
+ LFD_OPCODE = (50u << OPCODE_SHIFT | 00u << 1),
+ LFDU_OPCODE = (51u << OPCODE_SHIFT | 00u << 1),
+ LFDX_OPCODE = (31u << OPCODE_SHIFT | 599u << 1),
+ LFS_OPCODE = (48u << OPCODE_SHIFT | 00u << 1),
+ LFSU_OPCODE = (49u << OPCODE_SHIFT | 00u << 1),
+ LFSX_OPCODE = (31u << OPCODE_SHIFT | 535u << 1),
+
+ STFD_OPCODE = (54u << OPCODE_SHIFT | 00u << 1),
+ STFDU_OPCODE = (55u << OPCODE_SHIFT | 00u << 1),
+ STFDX_OPCODE = (31u << OPCODE_SHIFT | 727u << 1),
+ STFS_OPCODE = (52u << OPCODE_SHIFT | 00u << 1),
+ STFSU_OPCODE = (53u << OPCODE_SHIFT | 00u << 1),
+ STFSX_OPCODE = (31u << OPCODE_SHIFT | 663u << 1),
+
+ FSQRT_OPCODE = (63u << OPCODE_SHIFT | 22u << 1), // A-FORM
+ FSQRTS_OPCODE = (59u << OPCODE_SHIFT | 22u << 1), // A-FORM
+
+ // Vector instruction support for >= Power6
+ // Vector Storage Access
+ LVEBX_OPCODE = (31u << OPCODE_SHIFT | 7u << 1),
+ LVEHX_OPCODE = (31u << OPCODE_SHIFT | 39u << 1),
+ LVEWX_OPCODE = (31u << OPCODE_SHIFT | 71u << 1),
+ LVX_OPCODE = (31u << OPCODE_SHIFT | 103u << 1),
+ LVXL_OPCODE = (31u << OPCODE_SHIFT | 359u << 1),
+ STVEBX_OPCODE = (31u << OPCODE_SHIFT | 135u << 1),
+ STVEHX_OPCODE = (31u << OPCODE_SHIFT | 167u << 1),
+ STVEWX_OPCODE = (31u << OPCODE_SHIFT | 199u << 1),
+ STVX_OPCODE = (31u << OPCODE_SHIFT | 231u << 1),
+ STVXL_OPCODE = (31u << OPCODE_SHIFT | 487u << 1),
+ LVSL_OPCODE = (31u << OPCODE_SHIFT | 6u << 1),
+ LVSR_OPCODE = (31u << OPCODE_SHIFT | 38u << 1),
+
+ // Vector-Scalar (VSX) instruction support.
+ LXVD2X_OPCODE = (31u << OPCODE_SHIFT | 844u << 1),
+ STXVD2X_OPCODE = (31u << OPCODE_SHIFT | 972u << 1),
+ MTVSRD_OPCODE = (31u << OPCODE_SHIFT | 179u << 1),
+ MTVSRWZ_OPCODE = (31u << OPCODE_SHIFT | 243u << 1),
+ MFVSRD_OPCODE = (31u << OPCODE_SHIFT | 51u << 1),
+ MTVSRWA_OPCODE = (31u << OPCODE_SHIFT | 211u << 1),
+ MFVSRWZ_OPCODE = (31u << OPCODE_SHIFT | 115u << 1),
+ XXPERMDI_OPCODE= (60u << OPCODE_SHIFT | 10u << 3),
+ XXMRGHW_OPCODE = (60u << OPCODE_SHIFT | 18u << 3),
+ XXMRGLW_OPCODE = (60u << OPCODE_SHIFT | 50u << 3),
+
+ // Vector Permute and Formatting
+ VPKPX_OPCODE = (4u << OPCODE_SHIFT | 782u ),
+ VPKSHSS_OPCODE = (4u << OPCODE_SHIFT | 398u ),
+ VPKSWSS_OPCODE = (4u << OPCODE_SHIFT | 462u ),
+ VPKSHUS_OPCODE = (4u << OPCODE_SHIFT | 270u ),
+ VPKSWUS_OPCODE = (4u << OPCODE_SHIFT | 334u ),
+ VPKUHUM_OPCODE = (4u << OPCODE_SHIFT | 14u ),
+ VPKUWUM_OPCODE = (4u << OPCODE_SHIFT | 78u ),
+ VPKUHUS_OPCODE = (4u << OPCODE_SHIFT | 142u ),
+ VPKUWUS_OPCODE = (4u << OPCODE_SHIFT | 206u ),
+ VUPKHPX_OPCODE = (4u << OPCODE_SHIFT | 846u ),
+ VUPKHSB_OPCODE = (4u << OPCODE_SHIFT | 526u ),
+ VUPKHSH_OPCODE = (4u << OPCODE_SHIFT | 590u ),
+ VUPKLPX_OPCODE = (4u << OPCODE_SHIFT | 974u ),
+ VUPKLSB_OPCODE = (4u << OPCODE_SHIFT | 654u ),
+ VUPKLSH_OPCODE = (4u << OPCODE_SHIFT | 718u ),
+
+ VMRGHB_OPCODE = (4u << OPCODE_SHIFT | 12u ),
+ VMRGHW_OPCODE = (4u << OPCODE_SHIFT | 140u ),
+ VMRGHH_OPCODE = (4u << OPCODE_SHIFT | 76u ),
+ VMRGLB_OPCODE = (4u << OPCODE_SHIFT | 268u ),
+ VMRGLW_OPCODE = (4u << OPCODE_SHIFT | 396u ),
+ VMRGLH_OPCODE = (4u << OPCODE_SHIFT | 332u ),
+
+ VSPLT_OPCODE = (4u << OPCODE_SHIFT | 524u ),
+ VSPLTH_OPCODE = (4u << OPCODE_SHIFT | 588u ),
+ VSPLTW_OPCODE = (4u << OPCODE_SHIFT | 652u ),
+ VSPLTISB_OPCODE= (4u << OPCODE_SHIFT | 780u ),
+ VSPLTISH_OPCODE= (4u << OPCODE_SHIFT | 844u ),
+ VSPLTISW_OPCODE= (4u << OPCODE_SHIFT | 908u ),
+
+ VPERM_OPCODE = (4u << OPCODE_SHIFT | 43u ),
+ VSEL_OPCODE = (4u << OPCODE_SHIFT | 42u ),
+
+ VSL_OPCODE = (4u << OPCODE_SHIFT | 452u ),
+ VSLDOI_OPCODE = (4u << OPCODE_SHIFT | 44u ),
+ VSLO_OPCODE = (4u << OPCODE_SHIFT | 1036u ),
+ VSR_OPCODE = (4u << OPCODE_SHIFT | 708u ),
+ VSRO_OPCODE = (4u << OPCODE_SHIFT | 1100u ),
+
+ // Vector Integer
+ VADDCUW_OPCODE = (4u << OPCODE_SHIFT | 384u ),
+ VADDSHS_OPCODE = (4u << OPCODE_SHIFT | 832u ),
+ VADDSBS_OPCODE = (4u << OPCODE_SHIFT | 768u ),
+ VADDSWS_OPCODE = (4u << OPCODE_SHIFT | 896u ),
+ VADDUBM_OPCODE = (4u << OPCODE_SHIFT | 0u ),
+ VADDUWM_OPCODE = (4u << OPCODE_SHIFT | 128u ),
+ VADDUHM_OPCODE = (4u << OPCODE_SHIFT | 64u ),
+ VADDUDM_OPCODE = (4u << OPCODE_SHIFT | 192u ),
+ VADDUBS_OPCODE = (4u << OPCODE_SHIFT | 512u ),
+ VADDUWS_OPCODE = (4u << OPCODE_SHIFT | 640u ),
+ VADDUHS_OPCODE = (4u << OPCODE_SHIFT | 576u ),
+ VSUBCUW_OPCODE = (4u << OPCODE_SHIFT | 1408u ),
+ VSUBSHS_OPCODE = (4u << OPCODE_SHIFT | 1856u ),
+ VSUBSBS_OPCODE = (4u << OPCODE_SHIFT | 1792u ),
+ VSUBSWS_OPCODE = (4u << OPCODE_SHIFT | 1920u ),
+ VSUBUBM_OPCODE = (4u << OPCODE_SHIFT | 1024u ),
+ VSUBUWM_OPCODE = (4u << OPCODE_SHIFT | 1152u ),
+ VSUBUHM_OPCODE = (4u << OPCODE_SHIFT | 1088u ),
+ VSUBUBS_OPCODE = (4u << OPCODE_SHIFT | 1536u ),
+ VSUBUWS_OPCODE = (4u << OPCODE_SHIFT | 1664u ),
+ VSUBUHS_OPCODE = (4u << OPCODE_SHIFT | 1600u ),
+
+ VMULESB_OPCODE = (4u << OPCODE_SHIFT | 776u ),
+ VMULEUB_OPCODE = (4u << OPCODE_SHIFT | 520u ),
+ VMULESH_OPCODE = (4u << OPCODE_SHIFT | 840u ),
+ VMULEUH_OPCODE = (4u << OPCODE_SHIFT | 584u ),
+ VMULOSB_OPCODE = (4u << OPCODE_SHIFT | 264u ),
+ VMULOUB_OPCODE = (4u << OPCODE_SHIFT | 8u ),
+ VMULOSH_OPCODE = (4u << OPCODE_SHIFT | 328u ),
+ VMULOUH_OPCODE = (4u << OPCODE_SHIFT | 72u ),
+ VMHADDSHS_OPCODE=(4u << OPCODE_SHIFT | 32u ),
+ VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT | 33u ),
+ VMLADDUHM_OPCODE=(4u << OPCODE_SHIFT | 34u ),
+ VMSUBUHM_OPCODE= (4u << OPCODE_SHIFT | 36u ),
+ VMSUMMBM_OPCODE= (4u << OPCODE_SHIFT | 37u ),
+ VMSUMSHM_OPCODE= (4u << OPCODE_SHIFT | 40u ),
+ VMSUMSHS_OPCODE= (4u << OPCODE_SHIFT | 41u ),
+ VMSUMUHM_OPCODE= (4u << OPCODE_SHIFT | 38u ),
+ VMSUMUHS_OPCODE= (4u << OPCODE_SHIFT | 39u ),
+
+ VSUMSWS_OPCODE = (4u << OPCODE_SHIFT | 1928u ),
+ VSUM2SWS_OPCODE= (4u << OPCODE_SHIFT | 1672u ),
+ VSUM4SBS_OPCODE= (4u << OPCODE_SHIFT | 1800u ),
+ VSUM4UBS_OPCODE= (4u << OPCODE_SHIFT | 1544u ),
+ VSUM4SHS_OPCODE= (4u << OPCODE_SHIFT | 1608u ),
+
+ VAVGSB_OPCODE = (4u << OPCODE_SHIFT | 1282u ),
+ VAVGSW_OPCODE = (4u << OPCODE_SHIFT | 1410u ),
+ VAVGSH_OPCODE = (4u << OPCODE_SHIFT | 1346u ),
+ VAVGUB_OPCODE = (4u << OPCODE_SHIFT | 1026u ),
+ VAVGUW_OPCODE = (4u << OPCODE_SHIFT | 1154u ),
+ VAVGUH_OPCODE = (4u << OPCODE_SHIFT | 1090u ),
+
+ VMAXSB_OPCODE = (4u << OPCODE_SHIFT | 258u ),
+ VMAXSW_OPCODE = (4u << OPCODE_SHIFT | 386u ),
+ VMAXSH_OPCODE = (4u << OPCODE_SHIFT | 322u ),
+ VMAXUB_OPCODE = (4u << OPCODE_SHIFT | 2u ),
+ VMAXUW_OPCODE = (4u << OPCODE_SHIFT | 130u ),
+ VMAXUH_OPCODE = (4u << OPCODE_SHIFT | 66u ),
+ VMINSB_OPCODE = (4u << OPCODE_SHIFT | 770u ),
+ VMINSW_OPCODE = (4u << OPCODE_SHIFT | 898u ),
+ VMINSH_OPCODE = (4u << OPCODE_SHIFT | 834u ),
+ VMINUB_OPCODE = (4u << OPCODE_SHIFT | 514u ),
+ VMINUW_OPCODE = (4u << OPCODE_SHIFT | 642u ),
+ VMINUH_OPCODE = (4u << OPCODE_SHIFT | 578u ),
+
+ VCMPEQUB_OPCODE= (4u << OPCODE_SHIFT | 6u ),
+ VCMPEQUH_OPCODE= (4u << OPCODE_SHIFT | 70u ),
+ VCMPEQUW_OPCODE= (4u << OPCODE_SHIFT | 134u ),
+ VCMPGTSH_OPCODE= (4u << OPCODE_SHIFT | 838u ),
+ VCMPGTSB_OPCODE= (4u << OPCODE_SHIFT | 774u ),
+ VCMPGTSW_OPCODE= (4u << OPCODE_SHIFT | 902u ),
+ VCMPGTUB_OPCODE= (4u << OPCODE_SHIFT | 518u ),
+ VCMPGTUH_OPCODE= (4u << OPCODE_SHIFT | 582u ),
+ VCMPGTUW_OPCODE= (4u << OPCODE_SHIFT | 646u ),
+
+ VAND_OPCODE = (4u << OPCODE_SHIFT | 1028u ),
+ VANDC_OPCODE = (4u << OPCODE_SHIFT | 1092u ),
+ VNOR_OPCODE = (4u << OPCODE_SHIFT | 1284u ),
+ VOR_OPCODE = (4u << OPCODE_SHIFT | 1156u ),
+ VXOR_OPCODE = (4u << OPCODE_SHIFT | 1220u ),
+ VRLD_OPCODE = (4u << OPCODE_SHIFT | 196u ),
+ VRLB_OPCODE = (4u << OPCODE_SHIFT | 4u ),
+ VRLW_OPCODE = (4u << OPCODE_SHIFT | 132u ),
+ VRLH_OPCODE = (4u << OPCODE_SHIFT | 68u ),
+ VSLB_OPCODE = (4u << OPCODE_SHIFT | 260u ),
+ VSKW_OPCODE = (4u << OPCODE_SHIFT | 388u ),
+ VSLH_OPCODE = (4u << OPCODE_SHIFT | 324u ),
+ VSRB_OPCODE = (4u << OPCODE_SHIFT | 516u ),
+ VSRW_OPCODE = (4u << OPCODE_SHIFT | 644u ),
+ VSRH_OPCODE = (4u << OPCODE_SHIFT | 580u ),
+ VSRAB_OPCODE = (4u << OPCODE_SHIFT | 772u ),
+ VSRAW_OPCODE = (4u << OPCODE_SHIFT | 900u ),
+ VSRAH_OPCODE = (4u << OPCODE_SHIFT | 836u ),
+
+ // Vector Floating-Point
+ // not implemented yet
+
+ // Vector Status and Control
+ MTVSCR_OPCODE = (4u << OPCODE_SHIFT | 1604u ),
+ MFVSCR_OPCODE = (4u << OPCODE_SHIFT | 1540u ),
+
+ // AES (introduced with Power 8)
+ VCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1288u),
+ VCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1289u),
+ VNCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1352u),
+ VNCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1353u),
+ VSBOX_OPCODE = (4u << OPCODE_SHIFT | 1480u),
+
+ // SHA (introduced with Power 8)
+ VSHASIGMAD_OPCODE = (4u << OPCODE_SHIFT | 1730u),
+ VSHASIGMAW_OPCODE = (4u << OPCODE_SHIFT | 1666u),
+
+ // Vector Binary Polynomial Multiplication (introduced with Power 8)
+ VPMSUMB_OPCODE = (4u << OPCODE_SHIFT | 1032u),
+ VPMSUMD_OPCODE = (4u << OPCODE_SHIFT | 1224u),
+ VPMSUMH_OPCODE = (4u << OPCODE_SHIFT | 1096u),
+ VPMSUMW_OPCODE = (4u << OPCODE_SHIFT | 1160u),
+
+ // Vector Permute and Xor (introduced with Power 8)
+ VPERMXOR_OPCODE = (4u << OPCODE_SHIFT | 45u),
+
+ // Transactional Memory instructions (introduced with Power 8)
+ TBEGIN_OPCODE = (31u << OPCODE_SHIFT | 654u << 1),
+ TEND_OPCODE = (31u << OPCODE_SHIFT | 686u << 1),
+ TABORT_OPCODE = (31u << OPCODE_SHIFT | 910u << 1),
+ TABORTWC_OPCODE = (31u << OPCODE_SHIFT | 782u << 1),
+ TABORTWCI_OPCODE = (31u << OPCODE_SHIFT | 846u << 1),
+ TABORTDC_OPCODE = (31u << OPCODE_SHIFT | 814u << 1),
+ TABORTDCI_OPCODE = (31u << OPCODE_SHIFT | 878u << 1),
+ TSR_OPCODE = (31u << OPCODE_SHIFT | 750u << 1),
+ TCHECK_OPCODE = (31u << OPCODE_SHIFT | 718u << 1),
+
+ // Icache and dcache related instructions
+ DCBA_OPCODE = (31u << OPCODE_SHIFT | 758u << 1),
+ DCBZ_OPCODE = (31u << OPCODE_SHIFT | 1014u << 1),
+ DCBST_OPCODE = (31u << OPCODE_SHIFT | 54u << 1),
+ DCBF_OPCODE = (31u << OPCODE_SHIFT | 86u << 1),
+
+ DCBT_OPCODE = (31u << OPCODE_SHIFT | 278u << 1),
+ DCBTST_OPCODE = (31u << OPCODE_SHIFT | 246u << 1),
+ ICBI_OPCODE = (31u << OPCODE_SHIFT | 982u << 1),
+
+ // Instruction synchronization
+ ISYNC_OPCODE = (19u << OPCODE_SHIFT | 150u << 1),
+ // Memory barriers
+ SYNC_OPCODE = (31u << OPCODE_SHIFT | 598u << 1),
+ EIEIO_OPCODE = (31u << OPCODE_SHIFT | 854u << 1),
+
+ // Wait instructions for polling.
+ WAIT_OPCODE = (31u << OPCODE_SHIFT | 62u << 1),
+
+ // Trap instructions
+ TDI_OPCODE = (2u << OPCODE_SHIFT),
+ TWI_OPCODE = (3u << OPCODE_SHIFT),
+ TD_OPCODE = (31u << OPCODE_SHIFT | 68u << 1),
+ TW_OPCODE = (31u << OPCODE_SHIFT | 4u << 1),
+
+ // Atomics.
+ LBARX_OPCODE = (31u << OPCODE_SHIFT | 52u << 1),
+ LHARX_OPCODE = (31u << OPCODE_SHIFT | 116u << 1),
+ LWARX_OPCODE = (31u << OPCODE_SHIFT | 20u << 1),
+ LDARX_OPCODE = (31u << OPCODE_SHIFT | 84u << 1),
+ LQARX_OPCODE = (31u << OPCODE_SHIFT | 276u << 1),
+ STBCX_OPCODE = (31u << OPCODE_SHIFT | 694u << 1),
+ STHCX_OPCODE = (31u << OPCODE_SHIFT | 726u << 1),
+ STWCX_OPCODE = (31u << OPCODE_SHIFT | 150u << 1),
+ STDCX_OPCODE = (31u << OPCODE_SHIFT | 214u << 1),
+ STQCX_OPCODE = (31u << OPCODE_SHIFT | 182u << 1)
+
+ };
+
+ // Trap instructions TO bits
+ enum trap_to_bits {
+ // single bits
+ traptoLessThanSigned = 1 << 4, // 0, left end
+ traptoGreaterThanSigned = 1 << 3,
+ traptoEqual = 1 << 2,
+ traptoLessThanUnsigned = 1 << 1,
+ traptoGreaterThanUnsigned = 1 << 0, // 4, right end
+
+ // compound ones
+ traptoUnconditional = (traptoLessThanSigned |
+ traptoGreaterThanSigned |
+ traptoEqual |
+ traptoLessThanUnsigned |
+ traptoGreaterThanUnsigned)
+ };
+
+ // Branch hints BH field
+ enum branch_hint_bh {
+ // bclr cases:
+ bhintbhBCLRisReturn = 0,
+ bhintbhBCLRisNotReturnButSame = 1,
+ bhintbhBCLRisNotPredictable = 3,
+
+ // bcctr cases:
+ bhintbhBCCTRisNotReturnButSame = 0,
+ bhintbhBCCTRisNotPredictable = 3
+ };
+
+ // Branch prediction hints AT field
+ enum branch_hint_at {
+ bhintatNoHint = 0, // at=00
+ bhintatIsNotTaken = 2, // at=10
+ bhintatIsTaken = 3 // at=11
+ };
+
+ // Branch prediction hints
+ enum branch_hint_concept {
+ // Use the same encoding as branch_hint_at to simply code.
+ bhintNoHint = bhintatNoHint,
+ bhintIsNotTaken = bhintatIsNotTaken,
+ bhintIsTaken = bhintatIsTaken
+ };
+
+ // Used in BO field of branch instruction.
+ enum branch_condition {
+ bcondCRbiIs0 = 4, // bo=001at
+ bcondCRbiIs1 = 12, // bo=011at
+ bcondAlways = 20 // bo=10100
+ };
+
+ // Branch condition with combined prediction hints.
+ enum branch_condition_with_hint {
+ bcondCRbiIs0_bhintNoHint = bcondCRbiIs0 | bhintatNoHint,
+ bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
+ bcondCRbiIs0_bhintIsTaken = bcondCRbiIs0 | bhintatIsTaken,
+ bcondCRbiIs1_bhintNoHint = bcondCRbiIs1 | bhintatNoHint,
+ bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
+ bcondCRbiIs1_bhintIsTaken = bcondCRbiIs1 | bhintatIsTaken,
+ };
+
+ // Elemental Memory Barriers (>=Power 8)
+ enum Elemental_Membar_mask_bits {
+ StoreStore = 1 << 0,
+ StoreLoad = 1 << 1,
+ LoadStore = 1 << 2,
+ LoadLoad = 1 << 3
+ };
+
+ // Branch prediction hints.
+ inline static int add_bhint_to_boint(const int bhint, const int boint) {
+ switch (boint) {
+ case bcondCRbiIs0:
+ case bcondCRbiIs1:
+ // branch_hint and branch_hint_at have same encodings
+ assert( (int)bhintNoHint == (int)bhintatNoHint
+ && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
+ && (int)bhintIsTaken == (int)bhintatIsTaken,
+ "wrong encodings");
+ assert((bhint & 0x03) == bhint, "wrong encodings");
+ return (boint & ~0x03) | bhint;
+ case bcondAlways:
+ // no branch_hint
+ return boint;
+ default:
+ ShouldNotReachHere();
+ return 0;
+ }
+ }
+
+ // Extract bcond from boint.
+ inline static int inv_boint_bcond(const int boint) {
+ int r_bcond = boint & ~0x03;
+ assert(r_bcond == bcondCRbiIs0 ||
+ r_bcond == bcondCRbiIs1 ||
+ r_bcond == bcondAlways,
+ "bad branch condition");
+ return r_bcond;
+ }
+
+ // Extract bhint from boint.
+ inline static int inv_boint_bhint(const int boint) {
+ int r_bhint = boint & 0x03;
+ assert(r_bhint == bhintatNoHint ||
+ r_bhint == bhintatIsNotTaken ||
+ r_bhint == bhintatIsTaken,
+ "bad branch hint");
+ return r_bhint;
+ }
+
+ // Calculate opposite of given bcond.
+ inline static int opposite_bcond(const int bcond) {
+ switch (bcond) {
+ case bcondCRbiIs0:
+ return bcondCRbiIs1;
+ case bcondCRbiIs1:
+ return bcondCRbiIs0;
+ default:
+ ShouldNotReachHere();
+ return 0;
+ }
+ }
+
+ // Calculate opposite of given bhint.
+ inline static int opposite_bhint(const int bhint) {
+ switch (bhint) {
+ case bhintatNoHint:
+ return bhintatNoHint;
+ case bhintatIsNotTaken:
+ return bhintatIsTaken;
+ case bhintatIsTaken:
+ return bhintatIsNotTaken;
+ default:
+ ShouldNotReachHere();
+ return 0;
+ }
+ }
+
+ // PPC branch instructions
+ enum ppcops {
+ b_op = 18,
+ bc_op = 16,
+ bcr_op = 19
+ };
+
+ enum Condition {
+ negative = 0,
+ less = 0,
+ positive = 1,
+ greater = 1,
+ zero = 2,
+ equal = 2,
+ summary_overflow = 3,
+ };
+
+ public:
+ // Helper functions for groups of instructions
+
+ enum Predict { pt = 1, pn = 0 }; // pt = predict taken
+
+ // Instruction must start at passed address.
+ static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
+
+ // longest instructions
+ static int instr_maxlen() { return BytesPerInstWord; }
+
+ // Test if x is within signed immediate range for nbits.
+ static bool is_simm(int x, unsigned int nbits) {
+ assert(0 < nbits && nbits < 32, "out of bounds");
+ const int min = -(((int)1) << nbits-1);
+ const int maxplus1 = (((int)1) << nbits-1);
+ return min <= x && x < maxplus1;
+ }
+
+ static bool is_simm(jlong x, unsigned int nbits) {
+ assert(0 < nbits && nbits < 64, "out of bounds");
+ const jlong min = -(((jlong)1) << nbits-1);
+ const jlong maxplus1 = (((jlong)1) << nbits-1);
+ return min <= x && x < maxplus1;
+ }
+
+ // Test if x is within unsigned immediate range for nbits.
+ static bool is_uimm(int x, unsigned int nbits) {
+ assert(0 < nbits && nbits < 32, "out of bounds");
+ const unsigned int maxplus1 = (((unsigned int)1) << nbits);
+ return (unsigned int)x < maxplus1;
+ }
+
+ static bool is_uimm(jlong x, unsigned int nbits) {
+ assert(0 < nbits && nbits < 64, "out of bounds");
+ const julong maxplus1 = (((julong)1) << nbits);
+ return (julong)x < maxplus1;
+ }
+
+ protected:
+ // helpers
+
+ // X is supposed to fit in a field "nbits" wide
+ // and be sign-extended. Check the range.
+ static void assert_signed_range(intptr_t x, int nbits) {
+ assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
+ "value out of range");
+ }
+
+ static void assert_signed_word_disp_range(intptr_t x, int nbits) {
+ assert((x & 3) == 0, "not word aligned");
+ assert_signed_range(x, nbits + 2);
+ }
+
+ static void assert_unsigned_const(int x, int nbits) {
+ assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
+ }
+
+ static int fmask(juint hi_bit, juint lo_bit) {
+ assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
+ return (1 << ( hi_bit-lo_bit + 1 )) - 1;
+ }
+
+ // inverse of u_field
+ static int inv_u_field(int x, int hi_bit, int lo_bit) {
+ juint r = juint(x) >> lo_bit;
+ r &= fmask(hi_bit, lo_bit);
+ return int(r);
+ }
+
+ // signed version: extract from field and sign-extend
+ static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
+ x = x << (31-hi_bit);
+ x = x >> (31-hi_bit+lo_bit);
+ return x;
+ }
+
+ static int u_field(int x, int hi_bit, int lo_bit) {
+ assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
+ int r = x << lo_bit;
+ assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
+ return r;
+ }
+
+ // Same as u_field for signed values
+ static int s_field(int x, int hi_bit, int lo_bit) {
+ int nbits = hi_bit - lo_bit + 1;
+ assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
+ "value out of range");
+ x &= fmask(hi_bit, lo_bit);
+ int r = x << lo_bit;
+ return r;
+ }
+
+ // inv_op for ppc instructions
+ static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
+
+ // Determine target address from li, bd field of branch instruction.
+ static intptr_t inv_li_field(int x) {
+ intptr_t r = inv_s_field_ppc(x, 25, 2);
+ r = (r << 2);
+ return r;
+ }
+ static intptr_t inv_bd_field(int x, intptr_t pos) {
+ intptr_t r = inv_s_field_ppc(x, 15, 2);
+ r = (r << 2) + pos;
+ return r;
+ }
+
+ #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
+ #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
+ // Extract instruction fields from instruction words.
+ public:
+ static int inv_ra_field(int x) { return inv_opp_u_field(x, 15, 11); }
+ static int inv_rb_field(int x) { return inv_opp_u_field(x, 20, 16); }
+ static int inv_rt_field(int x) { return inv_opp_u_field(x, 10, 6); }
+ static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
+ static int inv_rs_field(int x) { return inv_opp_u_field(x, 10, 6); }
+ // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
+ // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
+ static int inv_ds_field(int x) { return inv_opp_s_field(x, 29, 16) << 2; }
+ static int inv_d1_field(int x) { return inv_opp_s_field(x, 31, 16); }
+ static int inv_si_field(int x) { return inv_opp_s_field(x, 31, 16); }
+ static int inv_to_field(int x) { return inv_opp_u_field(x, 10, 6); }
+ static int inv_lk_field(int x) { return inv_opp_u_field(x, 31, 31); }
+ static int inv_bo_field(int x) { return inv_opp_u_field(x, 10, 6); }
+ static int inv_bi_field(int x) { return inv_opp_u_field(x, 15, 11); }
+
+ #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
+ #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
+
+ // instruction fields
+ static int aa( int x) { return opp_u_field(x, 30, 30); }
+ static int ba( int x) { return opp_u_field(x, 15, 11); }
+ static int bb( int x) { return opp_u_field(x, 20, 16); }
+ static int bc( int x) { return opp_u_field(x, 25, 21); }
+ static int bd( int x) { return opp_s_field(x, 29, 16); }
+ static int bf( ConditionRegister cr) { return bf(cr->encoding()); }
+ static int bf( int x) { return opp_u_field(x, 8, 6); }
+ static int bfa(ConditionRegister cr) { return bfa(cr->encoding()); }
+ static int bfa( int x) { return opp_u_field(x, 13, 11); }
+ static int bh( int x) { return opp_u_field(x, 20, 19); }
+ static int bi( int x) { return opp_u_field(x, 15, 11); }
+ static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
+ static int bo( int x) { return opp_u_field(x, 10, 6); }
+ static int bt( int x) { return opp_u_field(x, 10, 6); }
+ static int d1( int x) { return opp_s_field(x, 31, 16); }
+ static int ds( int x) { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
+ static int eh( int x) { return opp_u_field(x, 31, 31); }
+ static int flm( int x) { return opp_u_field(x, 14, 7); }
+ static int fra( FloatRegister r) { return fra(r->encoding());}
+ static int frb( FloatRegister r) { return frb(r->encoding());}
+ static int frc( FloatRegister r) { return frc(r->encoding());}
+ static int frs( FloatRegister r) { return frs(r->encoding());}
+ static int frt( FloatRegister r) { return frt(r->encoding());}
+ static int fra( int x) { return opp_u_field(x, 15, 11); }
+ static int frb( int x) { return opp_u_field(x, 20, 16); }
+ static int frc( int x) { return opp_u_field(x, 25, 21); }
+ static int frs( int x) { return opp_u_field(x, 10, 6); }
+ static int frt( int x) { return opp_u_field(x, 10, 6); }
+ static int fxm( int x) { return opp_u_field(x, 19, 12); }
+ static int l10( int x) { return opp_u_field(x, 10, 10); }
+ static int l15( int x) { return opp_u_field(x, 15, 15); }
+ static int l910( int x) { return opp_u_field(x, 10, 9); }
+ static int e1215( int x) { return opp_u_field(x, 15, 12); }
+ static int lev( int x) { return opp_u_field(x, 26, 20); }
+ static int li( int x) { return opp_s_field(x, 29, 6); }
+ static int lk( int x) { return opp_u_field(x, 31, 31); }
+ static int mb2125( int x) { return opp_u_field(x, 25, 21); }
+ static int me2630( int x) { return opp_u_field(x, 30, 26); }
+ static int mb2126( int x) { return opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
+ static int me2126( int x) { return mb2126(x); }
+ static int nb( int x) { return opp_u_field(x, 20, 16); }
+ //static int opcd( int x) { return opp_u_field(x, 5, 0); } // is contained in our opcodes
+ static int oe( int x) { return opp_u_field(x, 21, 21); }
+ static int ra( Register r) { return ra(r->encoding()); }
+ static int ra( int x) { return opp_u_field(x, 15, 11); }
+ static int rb( Register r) { return rb(r->encoding()); }
+ static int rb( int x) { return opp_u_field(x, 20, 16); }
+ static int rc( int x) { return opp_u_field(x, 31, 31); }
+ static int rs( Register r) { return rs(r->encoding()); }
+ static int rs( int x) { return opp_u_field(x, 10, 6); }
+ // we don't want to use R0 in memory accesses, because it has value `0' then
+ static int ra0mem( Register r) { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
+ static int ra0mem( int x) { assert(x != 0, "cannot use register 0 in memory access"); return ra(x); }
+
+ // register r is target
+ static int rt( Register r) { return rs(r); }
+ static int rt( int x) { return rs(x); }
+ static int rta( Register r) { return ra(r); }
+ static int rta0mem( Register r) { rta(r); return ra0mem(r); }
+
+ static int sh1620( int x) { return opp_u_field(x, 20, 16); }
+ static int sh30( int x) { return opp_u_field(x, 30, 30); }
+ static int sh162030( int x) { return sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
+ static int si( int x) { return opp_s_field(x, 31, 16); }
+ static int spr( int x) { return opp_u_field(x, 20, 11); }
+ static int sr( int x) { return opp_u_field(x, 15, 12); }
+ static int tbr( int x) { return opp_u_field(x, 20, 11); }
+ static int th( int x) { return opp_u_field(x, 10, 7); }
+ static int thct( int x) { assert((x&8) == 0, "must be valid cache specification"); return th(x); }
+ static int thds( int x) { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
+ static int to( int x) { return opp_u_field(x, 10, 6); }
+ static int u( int x) { return opp_u_field(x, 19, 16); }
+ static int ui( int x) { return opp_u_field(x, 31, 16); }
+
+ // Support vector instructions for >= Power6.
+ static int vra( int x) { return opp_u_field(x, 15, 11); }
+ static int vrb( int x) { return opp_u_field(x, 20, 16); }
+ static int vrc( int x) { return opp_u_field(x, 25, 21); }
+ static int vrs( int x) { return opp_u_field(x, 10, 6); }
+ static int vrt( int x) { return opp_u_field(x, 10, 6); }
+
+ static int vra( VectorRegister r) { return vra(r->encoding());}
+ static int vrb( VectorRegister r) { return vrb(r->encoding());}
+ static int vrc( VectorRegister r) { return vrc(r->encoding());}
+ static int vrs( VectorRegister r) { return vrs(r->encoding());}
+ static int vrt( VectorRegister r) { return vrt(r->encoding());}
+
+ // Only used on SHA sigma instructions (VX-form)
+ static int vst( int x) { return opp_u_field(x, 16, 16); }
+ static int vsix( int x) { return opp_u_field(x, 20, 17); }
+
+ // Support Vector-Scalar (VSX) instructions.
+ static int vsra( int x) { return opp_u_field(x & 0x1F, 15, 11) | opp_u_field((x & 0x20) >> 5, 29, 29); }
+ static int vsrb( int x) { return opp_u_field(x & 0x1F, 20, 16) | opp_u_field((x & 0x20) >> 5, 30, 30); }
+ static int vsrs( int x) { return opp_u_field(x & 0x1F, 10, 6) | opp_u_field((x & 0x20) >> 5, 31, 31); }
+ static int vsrt( int x) { return vsrs(x); }
+ static int vsdm( int x) { return opp_u_field(x, 23, 22); }
+
+ static int vsra( VectorSRegister r) { return vsra(r->encoding());}
+ static int vsrb( VectorSRegister r) { return vsrb(r->encoding());}
+ static int vsrs( VectorSRegister r) { return vsrs(r->encoding());}
+ static int vsrt( VectorSRegister r) { return vsrt(r->encoding());}
+
+ static int vsplt_uim( int x) { return opp_u_field(x, 15, 12); } // for vsplt* instructions
+ static int vsplti_sim(int x) { return opp_u_field(x, 15, 11); } // for vsplti* instructions
+ static int vsldoi_shb(int x) { return opp_u_field(x, 25, 22); } // for vsldoi instruction
+ static int vcmp_rc( int x) { return opp_u_field(x, 21, 21); } // for vcmp* instructions
+
+ //static int xo1( int x) { return opp_u_field(x, 29, 21); }// is contained in our opcodes
+ //static int xo2( int x) { return opp_u_field(x, 30, 21); }// is contained in our opcodes
+ //static int xo3( int x) { return opp_u_field(x, 30, 22); }// is contained in our opcodes
+ //static int xo4( int x) { return opp_u_field(x, 30, 26); }// is contained in our opcodes
+ //static int xo5( int x) { return opp_u_field(x, 29, 27); }// is contained in our opcodes
+ //static int xo6( int x) { return opp_u_field(x, 30, 27); }// is contained in our opcodes
+ //static int xo7( int x) { return opp_u_field(x, 31, 30); }// is contained in our opcodes
+
+ protected:
+ // Compute relative address for branch.
+ static intptr_t disp(intptr_t x, intptr_t off) {
+ int xx = x - off;
+ xx = xx >> 2;
+ return xx;
+ }
+
+ public:
+ // signed immediate, in low bits, nbits long
+ static int simm(int x, int nbits) {
+ assert_signed_range(x, nbits);
+ return x & ((1 << nbits) - 1);
+ }
+
+ // unsigned immediate, in low bits, nbits long
+ static int uimm(int x, int nbits) {
+ assert_unsigned_const(x, nbits);
+ return x & ((1 << nbits) - 1);
+ }
+
+ static void set_imm(int* instr, short s) {
+ // imm is always in the lower 16 bits of the instruction,
+ // so this is endian-neutral. Same for the get_imm below.
+ uint32_t w = *(uint32_t *)instr;
+ *instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
+ }
+
+ static int get_imm(address a, int instruction_number) {
+ return (short)((int *)a)[instruction_number];
+ }
+
+ static inline int hi16_signed( int x) { return (int)(int16_t)(x >> 16); }
+ static inline int lo16_unsigned(int x) { return x & 0xffff; }
+
+ protected:
+
+ // Extract the top 32 bits in a 64 bit word.
+ static int32_t hi32(int64_t x) {
+ int32_t r = int32_t((uint64_t)x >> 32);
+ return r;
+ }
+
+ public:
+
+ static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
+ return ((addr + (a - 1)) & ~(a - 1));
+ }
+
+ static inline bool is_aligned(unsigned int addr, unsigned int a) {
+ return (0 == addr % a);
+ }
+
+ void flush() {
+ AbstractAssembler::flush();
+ }
+
+ inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
+ inline void emit_data(int);
+ inline void emit_data(int, RelocationHolder const&);
+ inline void emit_data(int, relocInfo::relocType rtype);
+
+ // Emit an address.
+ inline address emit_addr(const address addr = NULL);
+
+#if !defined(ABI_ELFv2)
+ // Emit a function descriptor with the specified entry point, TOC,
+ // and ENV. If the entry point is NULL, the descriptor will point
+ // just past the descriptor.
+ // Use values from friend functions as defaults.
+ inline address emit_fd(address entry = NULL,
+ address toc = (address) FunctionDescriptor::friend_toc,
+ address env = (address) FunctionDescriptor::friend_env);
+#endif
+
+ /////////////////////////////////////////////////////////////////////////////////////
+ // PPC instructions
+ /////////////////////////////////////////////////////////////////////////////////////
+
+ // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
+ // immediates. The normal instruction encoders enforce that r0 is not
+ // passed to them. Use either extended mnemonics encoders or the special ra0
+ // versions.
+
+ // Issue an illegal instruction.
+ inline void illtrap();
+ static inline bool is_illtrap(int x);
+
+ // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
+ inline void addi( Register d, Register a, int si16);
+ inline void addis(Register d, Register a, int si16);
+ private:
+ inline void addi_r0ok( Register d, Register a, int si16);
+ inline void addis_r0ok(Register d, Register a, int si16);
+ public:
+ inline void addic_( Register d, Register a, int si16);
+ inline void subfic( Register d, Register a, int si16);
+ inline void add( Register d, Register a, Register b);
+ inline void add_( Register d, Register a, Register b);
+ inline void subf( Register d, Register a, Register b); // d = b - a "Sub_from", as in ppc spec.
+ inline void sub( Register d, Register a, Register b); // d = a - b Swap operands of subf for readability.
+ inline void subf_( Register d, Register a, Register b);
+ inline void addc( Register d, Register a, Register b);
+ inline void addc_( Register d, Register a, Register b);
+ inline void subfc( Register d, Register a, Register b);
+ inline void subfc_( Register d, Register a, Register b);
+ inline void adde( Register d, Register a, Register b);
+ inline void adde_( Register d, Register a, Register b);
+ inline void subfe( Register d, Register a, Register b);
+ inline void subfe_( Register d, Register a, Register b);
+ inline void addme( Register d, Register a);
+ inline void addme_( Register d, Register a);
+ inline void subfme( Register d, Register a);
+ inline void subfme_(Register d, Register a);
+ inline void addze( Register d, Register a);
+ inline void addze_( Register d, Register a);
+ inline void subfze( Register d, Register a);
+ inline void subfze_(Register d, Register a);
+ inline void neg( Register d, Register a);
+ inline void neg_( Register d, Register a);
+ inline void mulli( Register d, Register a, int si16);
+ inline void mulld( Register d, Register a, Register b);
+ inline void mulld_( Register d, Register a, Register b);
+ inline void mullw( Register d, Register a, Register b);
+ inline void mullw_( Register d, Register a, Register b);
+ inline void mulhw( Register d, Register a, Register b);
+ inline void mulhw_( Register d, Register a, Register b);
+ inline void mulhwu( Register d, Register a, Register b);
+ inline void mulhwu_(Register d, Register a, Register b);
+ inline void mulhd( Register d, Register a, Register b);
+ inline void mulhd_( Register d, Register a, Register b);
+ inline void mulhdu( Register d, Register a, Register b);
+ inline void mulhdu_(Register d, Register a, Register b);
+ inline void divd( Register d, Register a, Register b);
+ inline void divd_( Register d, Register a, Register b);
+ inline void divw( Register d, Register a, Register b);
+ inline void divw_( Register d, Register a, Register b);
+
+ // Fixed-Point Arithmetic Instructions with Overflow detection
+ inline void addo( Register d, Register a, Register b);
+ inline void addo_( Register d, Register a, Register b);
+ inline void subfo( Register d, Register a, Register b);
+ inline void subfo_( Register d, Register a, Register b);
+ inline void addco( Register d, Register a, Register b);
+ inline void addco_( Register d, Register a, Register b);
+ inline void subfco( Register d, Register a, Register b);
+ inline void subfco_( Register d, Register a, Register b);
+ inline void addeo( Register d, Register a, Register b);
+ inline void addeo_( Register d, Register a, Register b);
+ inline void subfeo( Register d, Register a, Register b);
+ inline void subfeo_( Register d, Register a, Register b);
+ inline void addmeo( Register d, Register a);
+ inline void addmeo_( Register d, Register a);
+ inline void subfmeo( Register d, Register a);
+ inline void subfmeo_(Register d, Register a);
+ inline void addzeo( Register d, Register a);
+ inline void addzeo_( Register d, Register a);
+ inline void subfzeo( Register d, Register a);
+ inline void subfzeo_(Register d, Register a);
+ inline void nego( Register d, Register a);
+ inline void nego_( Register d, Register a);
+ inline void mulldo( Register d, Register a, Register b);
+ inline void mulldo_( Register d, Register a, Register b);
+ inline void mullwo( Register d, Register a, Register b);
+ inline void mullwo_( Register d, Register a, Register b);
+ inline void divdo( Register d, Register a, Register b);
+ inline void divdo_( Register d, Register a, Register b);
+ inline void divwo( Register d, Register a, Register b);
+ inline void divwo_( Register d, Register a, Register b);
+
+ // extended mnemonics
+ inline void li( Register d, int si16);
+ inline void lis( Register d, int si16);
+ inline void addir(Register d, int si16, Register a);
+
+ static bool is_addi(int x) {
+ return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
+ }
+ static bool is_addis(int x) {
+ return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
+ }
+ static bool is_bxx(int x) {
+ return BXX_OPCODE == (x & BXX_OPCODE_MASK);
+ }
+ static bool is_b(int x) {
+ return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
+ }
+ static bool is_bl(int x) {
+ return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
+ }
+ static bool is_bcxx(int x) {
+ return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
+ }
+ static bool is_bxx_or_bcxx(int x) {
+ return is_bxx(x) || is_bcxx(x);
+ }
+ static bool is_bctrl(int x) {
+ return x == 0x4e800421;
+ }
+ static bool is_bctr(int x) {
+ return x == 0x4e800420;
+ }
+ static bool is_bclr(int x) {
+ return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
+ }
+ static bool is_li(int x) {
+ return is_addi(x) && inv_ra_field(x)==0;
+ }
+ static bool is_lis(int x) {
+ return is_addis(x) && inv_ra_field(x)==0;
+ }
+ static bool is_mtctr(int x) {
+ return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
+ }
+ static bool is_ld(int x) {
+ return LD_OPCODE == (x & LD_OPCODE_MASK);
+ }
+ static bool is_std(int x) {
+ return STD_OPCODE == (x & STD_OPCODE_MASK);
+ }
+ static bool is_stdu(int x) {
+ return STDU_OPCODE == (x & STDU_OPCODE_MASK);
+ }
+ static bool is_stdx(int x) {
+ return STDX_OPCODE == (x & STDX_OPCODE_MASK);
+ }
+ static bool is_stdux(int x) {
+ return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
+ }
+ static bool is_stwx(int x) {
+ return STWX_OPCODE == (x & STWX_OPCODE_MASK);
+ }
+ static bool is_stwux(int x) {
+ return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
+ }
+ static bool is_stw(int x) {
+ return STW_OPCODE == (x & STW_OPCODE_MASK);
+ }
+ static bool is_stwu(int x) {
+ return STWU_OPCODE == (x & STWU_OPCODE_MASK);
+ }
+ static bool is_ori(int x) {
+ return ORI_OPCODE == (x & ORI_OPCODE_MASK);
+ };
+ static bool is_oris(int x) {
+ return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
+ };
+ static bool is_rldicr(int x) {
+ return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
+ };
+ static bool is_nop(int x) {
+ return x == 0x60000000;
+ }
+ // endgroup opcode for Power6
+ static bool is_endgroup(int x) {
+ return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
+ }
+
+
+ private:
+ // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
+ inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
+ inline void cmp( ConditionRegister bf, int l, Register a, Register b);
+ inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
+ inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
+
+ public:
+ // extended mnemonics of Compare Instructions
+ inline void cmpwi( ConditionRegister crx, Register a, int si16);
+ inline void cmpdi( ConditionRegister crx, Register a, int si16);
+ inline void cmpw( ConditionRegister crx, Register a, Register b);
+ inline void cmpd( ConditionRegister crx, Register a, Register b);
+ inline void cmplwi(ConditionRegister crx, Register a, int ui16);
+ inline void cmpldi(ConditionRegister crx, Register a, int ui16);
+ inline void cmplw( ConditionRegister crx, Register a, Register b);
+ inline void cmpld( ConditionRegister crx, Register a, Register b);
+
+ inline void isel( Register d, Register a, Register b, int bc);
+ // Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
+ inline void isel( Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
+ // Set d = 0 if (cr.cc) equals 1, otherwise b.
+ inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
+
+ // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
+ void andi( Register a, Register s, long ui16); // optimized version
+ inline void andi_( Register a, Register s, int ui16);
+ inline void andis_( Register a, Register s, int ui16);
+ inline void ori( Register a, Register s, int ui16);
+ inline void oris( Register a, Register s, int ui16);
+ inline void xori( Register a, Register s, int ui16);
+ inline void xoris( Register a, Register s, int ui16);
+ inline void andr( Register a, Register s, Register b); // suffixed by 'r' as 'and' is C++ keyword
+ inline void and_( Register a, Register s, Register b);
+ // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
+ // SMT-priority change instruction (see SMT instructions below).
+ inline void or_unchecked(Register a, Register s, Register b);
+ inline void orr( Register a, Register s, Register b); // suffixed by 'r' as 'or' is C++ keyword
+ inline void or_( Register a, Register s, Register b);
+ inline void xorr( Register a, Register s, Register b); // suffixed by 'r' as 'xor' is C++ keyword
+ inline void xor_( Register a, Register s, Register b);
+ inline void nand( Register a, Register s, Register b);
+ inline void nand_( Register a, Register s, Register b);
+ inline void nor( Register a, Register s, Register b);
+ inline void nor_( Register a, Register s, Register b);
+ inline void andc( Register a, Register s, Register b);
+ inline void andc_( Register a, Register s, Register b);
+ inline void orc( Register a, Register s, Register b);
+ inline void orc_( Register a, Register s, Register b);
+ inline void extsb( Register a, Register s);
+ inline void extsb_( Register a, Register s);
+ inline void extsh( Register a, Register s);
+ inline void extsh_( Register a, Register s);
+ inline void extsw( Register a, Register s);
+ inline void extsw_( Register a, Register s);
+
+ // extended mnemonics
+ inline void nop();
+ // NOP for FP and BR units (different versions to allow them to be in one group)
+ inline void fpnop0();
+ inline void fpnop1();
+ inline void brnop0();
+ inline void brnop1();
+ inline void brnop2();
+
+ inline void mr( Register d, Register s);
+ inline void ori_opt( Register d, int ui16);
+ inline void oris_opt(Register d, int ui16);
+
+ // endgroup opcode for Power6
+ inline void endgroup();
+
+ // count instructions
+ inline void cntlzw( Register a, Register s);
+ inline void cntlzw_( Register a, Register s);
+ inline void cntlzd( Register a, Register s);
+ inline void cntlzd_( Register a, Register s);
+
+ // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
+ inline void sld( Register a, Register s, Register b);
+ inline void sld_( Register a, Register s, Register b);
+ inline void slw( Register a, Register s, Register b);
+ inline void slw_( Register a, Register s, Register b);
+ inline void srd( Register a, Register s, Register b);
+ inline void srd_( Register a, Register s, Register b);
+ inline void srw( Register a, Register s, Register b);
+ inline void srw_( Register a, Register s, Register b);
+ inline void srad( Register a, Register s, Register b);
+ inline void srad_( Register a, Register s, Register b);
+ inline void sraw( Register a, Register s, Register b);
+ inline void sraw_( Register a, Register s, Register b);
+ inline void sradi( Register a, Register s, int sh6);
+ inline void sradi_( Register a, Register s, int sh6);
+ inline void srawi( Register a, Register s, int sh5);
+ inline void srawi_( Register a, Register s, int sh5);
+
+ // extended mnemonics for Shift Instructions
+ inline void sldi( Register a, Register s, int sh6);
+ inline void sldi_( Register a, Register s, int sh6);
+ inline void slwi( Register a, Register s, int sh5);
+ inline void slwi_( Register a, Register s, int sh5);
+ inline void srdi( Register a, Register s, int sh6);
+ inline void srdi_( Register a, Register s, int sh6);
+ inline void srwi( Register a, Register s, int sh5);
+ inline void srwi_( Register a, Register s, int sh5);
+
+ inline void clrrdi( Register a, Register s, int ui6);
+ inline void clrrdi_( Register a, Register s, int ui6);
+ inline void clrldi( Register a, Register s, int ui6);
+ inline void clrldi_( Register a, Register s, int ui6);
+ inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
+ inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
+ inline void extrdi( Register a, Register s, int n, int b);
+ // testbit with condition register
+ inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
+
+ // rotate instructions
+ inline void rotldi( Register a, Register s, int n);
+ inline void rotrdi( Register a, Register s, int n);
+ inline void rotlwi( Register a, Register s, int n);
+ inline void rotrwi( Register a, Register s, int n);
+
+ // Rotate Instructions
+ inline void rldic( Register a, Register s, int sh6, int mb6);
+ inline void rldic_( Register a, Register s, int sh6, int mb6);
+ inline void rldicr( Register a, Register s, int sh6, int mb6);
+ inline void rldicr_( Register a, Register s, int sh6, int mb6);
+ inline void rldicl( Register a, Register s, int sh6, int mb6);
+ inline void rldicl_( Register a, Register s, int sh6, int mb6);
+ inline void rlwinm( Register a, Register s, int sh5, int mb5, int me5);
+ inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
+ inline void rldimi( Register a, Register s, int sh6, int mb6);
+ inline void rldimi_( Register a, Register s, int sh6, int mb6);
+ inline void rlwimi( Register a, Register s, int sh5, int mb5, int me5);
+ inline void insrdi( Register a, Register s, int n, int b);
+ inline void insrwi( Register a, Register s, int n, int b);
+
+ // PPC 1, section 3.3.2 Fixed-Point Load Instructions
+ // 4 bytes
+ inline void lwzx( Register d, Register s1, Register s2);
+ inline void lwz( Register d, int si16, Register s1);
+ inline void lwzu( Register d, int si16, Register s1);
+
+ // 4 bytes
+ inline void lwax( Register d, Register s1, Register s2);
+ inline void lwa( Register d, int si16, Register s1);
+
+ // 4 bytes reversed
+ inline void lwbrx( Register d, Register s1, Register s2);
+
+ // 2 bytes
+ inline void lhzx( Register d, Register s1, Register s2);
+ inline void lhz( Register d, int si16, Register s1);
+ inline void lhzu( Register d, int si16, Register s1);
+
+ // 2 bytes reversed
+ inline void lhbrx( Register d, Register s1, Register s2);
+
+ // 2 bytes
+ inline void lhax( Register d, Register s1, Register s2);
+ inline void lha( Register d, int si16, Register s1);
+ inline void lhau( Register d, int si16, Register s1);
+
+ // 1 byte
+ inline void lbzx( Register d, Register s1, Register s2);
+ inline void lbz( Register d, int si16, Register s1);
+ inline void lbzu( Register d, int si16, Register s1);
+
+ // 8 bytes
+ inline void ldx( Register d, Register s1, Register s2);
+ inline void ld( Register d, int si16, Register s1);
+ inline void ldu( Register d, int si16, Register s1);
+
+ // 8 bytes reversed
+ inline void ldbrx( Register d, Register s1, Register s2);
+
+ // For convenience. Load pointer into d from b+s1.
+ inline void ld_ptr(Register d, int b, Register s1);
+ DEBUG_ONLY(inline void ld_ptr(Register d, ByteSize b, Register s1);)
+
+ // PPC 1, section 3.3.3 Fixed-Point Store Instructions
+ inline void stwx( Register d, Register s1, Register s2);
+ inline void stw( Register d, int si16, Register s1);
+ inline void stwu( Register d, int si16, Register s1);
+ inline void stwbrx( Register d, Register s1, Register s2);
+
+ inline void sthx( Register d, Register s1, Register s2);
+ inline void sth( Register d, int si16, Register s1);
+ inline void sthu( Register d, int si16, Register s1);
+ inline void sthbrx( Register d, Register s1, Register s2);
+
+ inline void stbx( Register d, Register s1, Register s2);
+ inline void stb( Register d, int si16, Register s1);
+ inline void stbu( Register d, int si16, Register s1);
+
+ inline void stdx( Register d, Register s1, Register s2);
+ inline void std( Register d, int si16, Register s1);
+ inline void stdu( Register d, int si16, Register s1);
+ inline void stdux(Register s, Register a, Register b);
+ inline void stdbrx( Register d, Register s1, Register s2);
+
+ inline void st_ptr(Register d, int si16, Register s1);
+ DEBUG_ONLY(inline void st_ptr(Register d, ByteSize b, Register s1);)
+
+ // PPC 1, section 3.3.13 Move To/From System Register Instructions
+ inline void mtlr( Register s1);
+ inline void mflr( Register d);
+ inline void mtctr(Register s1);
+ inline void mfctr(Register d);
+ inline void mtcrf(int fxm, Register s);
+ inline void mfcr( Register d);
+ inline void mcrf( ConditionRegister crd, ConditionRegister cra);
+ inline void mtcr( Register s);
+
+ // Special purpose registers
+ // Exception Register
+ inline void mtxer(Register s1);
+ inline void mfxer(Register d);
+ // Vector Register Save Register
+ inline void mtvrsave(Register s1);
+ inline void mfvrsave(Register d);
+ // Timebase
+ inline void mftb(Register d);
+ // Introduced with Power 8:
+ // Data Stream Control Register
+ inline void mtdscr(Register s1);
+ inline void mfdscr(Register d );
+ // Transactional Memory Registers
+ inline void mftfhar(Register d);
+ inline void mftfiar(Register d);
+ inline void mftexasr(Register d);
+ inline void mftexasru(Register d);
+
+ // TEXASR bit description
+ enum transaction_failure_reason {
+ // Upper half (TEXASRU):
+ tm_failure_persistent = 7, // The failure is likely to recur on each execution.
+ tm_disallowed = 8, // The instruction is not permitted.
+ tm_nesting_of = 9, // The maximum transaction level was exceeded.
+ tm_footprint_of = 10, // The tracking limit for transactional storage accesses was exceeded.
+ tm_self_induced_cf = 11, // A self-induced conflict occurred in Suspended state.
+ tm_non_trans_cf = 12, // A conflict occurred with a non-transactional access by another processor.
+ tm_trans_cf = 13, // A conflict occurred with another transaction.
+ tm_translation_cf = 14, // A conflict occurred with a TLB invalidation.
+ tm_inst_fetch_cf = 16, // An instruction fetch was performed from a block that was previously written transactionally.
+ tm_tabort = 31, // Termination was caused by the execution of an abort instruction.
+ // Lower half:
+ tm_suspended = 32, // Failure was recorded in Suspended state.
+ tm_failure_summary = 36, // Failure has been detected and recorded.
+ tm_tfiar_exact = 37, // Value in the TFIAR is exact.
+ tm_rot = 38, // Rollback-only transaction.
+ };
+
+ // PPC 1, section 2.4.1 Branch Instructions
+ inline void b( address a, relocInfo::relocType rt = relocInfo::none);
+ inline void b( Label& L);
+ inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
+ inline void bl( Label& L);
+ inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
+ inline void bc( int boint, int biint, Label& L);
+ inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
+ inline void bcl(int boint, int biint, Label& L);
+
+ inline void bclr( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
+ inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
+ inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
+ relocInfo::relocType rt = relocInfo::none);
+ inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
+ relocInfo::relocType rt = relocInfo::none);
+
+ // helper function for b, bcxx
+ inline bool is_within_range_of_b(address a, address pc);
+ inline bool is_within_range_of_bcxx(address a, address pc);
+
+ // get the destination of a bxx branch (b, bl, ba, bla)
+ static inline address bxx_destination(address baddr);
+ static inline address bxx_destination(int instr, address pc);
+ static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
+
+ // extended mnemonics for branch instructions
+ inline void blt(ConditionRegister crx, Label& L);
+ inline void bgt(ConditionRegister crx, Label& L);
+ inline void beq(ConditionRegister crx, Label& L);
+ inline void bso(ConditionRegister crx, Label& L);
+ inline void bge(ConditionRegister crx, Label& L);
+ inline void ble(ConditionRegister crx, Label& L);
+ inline void bne(ConditionRegister crx, Label& L);
+ inline void bns(ConditionRegister crx, Label& L);
+
+ // Branch instructions with static prediction hints.
+ inline void blt_predict_taken( ConditionRegister crx, Label& L);
+ inline void bgt_predict_taken( ConditionRegister crx, Label& L);
+ inline void beq_predict_taken( ConditionRegister crx, Label& L);
+ inline void bso_predict_taken( ConditionRegister crx, Label& L);
+ inline void bge_predict_taken( ConditionRegister crx, Label& L);
+ inline void ble_predict_taken( ConditionRegister crx, Label& L);
+ inline void bne_predict_taken( ConditionRegister crx, Label& L);
+ inline void bns_predict_taken( ConditionRegister crx, Label& L);
+ inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
+ inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
+ inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
+ inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
+ inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
+ inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
+ inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
+ inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
+
+ // for use in conjunction with testbitdi:
+ inline void btrue( ConditionRegister crx, Label& L);
+ inline void bfalse(ConditionRegister crx, Label& L);
+
+ inline void bltl(ConditionRegister crx, Label& L);
+ inline void bgtl(ConditionRegister crx, Label& L);
+ inline void beql(ConditionRegister crx, Label& L);
+ inline void bsol(ConditionRegister crx, Label& L);
+ inline void bgel(ConditionRegister crx, Label& L);
+ inline void blel(ConditionRegister crx, Label& L);
+ inline void bnel(ConditionRegister crx, Label& L);
+ inline void bnsl(ConditionRegister crx, Label& L);
+
+ // extended mnemonics for Branch Instructions via LR
+ // We use `blr' for returns.
+ inline void blr(relocInfo::relocType rt = relocInfo::none);
+
+ // extended mnemonics for Branch Instructions with CTR
+ // bdnz means `decrement CTR and jump to L if CTR is not zero'
+ inline void bdnz(Label& L);
+ // Decrement and branch if result is zero.
+ inline void bdz(Label& L);
+ // we use `bctr[l]' for jumps/calls in function descriptor glue
+ // code, e.g. calls to runtime functions
+ inline void bctr( relocInfo::relocType rt = relocInfo::none);
+ inline void bctrl(relocInfo::relocType rt = relocInfo::none);
+ // conditional jumps/branches via CTR
+ inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
+ inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
+ inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
+ inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
+
+ // condition register logic instructions
+ // NOTE: There's a preferred form: d and s2 should point into the same condition register.
+ inline void crand( int d, int s1, int s2);
+ inline void crnand(int d, int s1, int s2);
+ inline void cror( int d, int s1, int s2);
+ inline void crxor( int d, int s1, int s2);
+ inline void crnor( int d, int s1, int s2);
+ inline void creqv( int d, int s1, int s2);
+ inline void crandc(int d, int s1, int s2);
+ inline void crorc( int d, int s1, int s2);
+
+ // More convenient version.
+ int condition_register_bit(ConditionRegister cr, Condition c) {
+ return 4 * (int)(intptr_t)cr + c;
+ }
+ void crand( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
+ void crnand(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
+ void cror( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
+ void crxor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
+ void crnor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
+ void creqv( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
+ void crandc(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
+ void crorc( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
+
+ // icache and dcache related instructions
+ inline void icbi( Register s1, Register s2);
+ //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
+ inline void dcbz( Register s1, Register s2);
+ inline void dcbst( Register s1, Register s2);
+ inline void dcbf( Register s1, Register s2);
+
+ enum ct_cache_specification {
+ ct_primary_cache = 0,
+ ct_secondary_cache = 2
+ };
+ // dcache read hint
+ inline void dcbt( Register s1, Register s2);
+ inline void dcbtct( Register s1, Register s2, int ct);
+ inline void dcbtds( Register s1, Register s2, int ds);
+ // dcache write hint
+ inline void dcbtst( Register s1, Register s2);
+ inline void dcbtstct(Register s1, Register s2, int ct);
+
+ // machine barrier instructions:
+ //
+ // - sync two-way memory barrier, aka fence
+ // - lwsync orders Store|Store,
+ // Load|Store,
+ // Load|Load,
+ // but not Store|Load
+ // - eieio orders memory accesses for device memory (only)
+ // - isync invalidates speculatively executed instructions
+ // From the Power ISA 2.06 documentation:
+ // "[...] an isync instruction prevents the execution of
+ // instructions following the isync until instructions
+ // preceding the isync have completed, [...]"
+ // From IBM's AIX assembler reference:
+ // "The isync [...] instructions causes the processor to
+ // refetch any instructions that might have been fetched
+ // prior to the isync instruction. The instruction isync
+ // causes the processor to wait for all previous instructions
+ // to complete. Then any instructions already fetched are
+ // discarded and instruction processing continues in the
+ // environment established by the previous instructions."
+ //
+ // semantic barrier instructions:
+ // (as defined in orderAccess.hpp)
+ //
+ // - release orders Store|Store, (maps to lwsync)
+ // Load|Store
+ // - acquire orders Load|Store, (maps to lwsync)
+ // Load|Load
+ // - fence orders Store|Store, (maps to sync)
+ // Load|Store,
+ // Load|Load,
+ // Store|Load
+ //
+ private:
+ inline void sync(int l);
+ public:
+ inline void sync();
+ inline void lwsync();
+ inline void ptesync();
+ inline void eieio();
+ inline void isync();
+ inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
+
+ // Wait instructions for polling. Attention: May result in SIGILL.
+ inline void wait();
+ inline void waitrsv(); // >=Power7
+
+ // atomics
+ inline void lbarx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
+ inline void lharx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
+ inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
+ inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
+ inline void lqarx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
+ inline bool lxarx_hint_exclusive_access();
+ inline void lbarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
+ inline void lharx( Register d, Register a, Register b, bool hint_exclusive_access = false);
+ inline void lwarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
+ inline void ldarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
+ inline void lqarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
+ inline void stbcx_( Register s, Register a, Register b);
+ inline void sthcx_( Register s, Register a, Register b);
+ inline void stwcx_( Register s, Register a, Register b);
+ inline void stdcx_( Register s, Register a, Register b);
+ inline void stqcx_( Register s, Register a, Register b);
+
+ // Instructions for adjusting thread priority for simultaneous
+ // multithreading (SMT) on Power5.
+ private:
+ inline void smt_prio_very_low();
+ inline void smt_prio_medium_high();
+ inline void smt_prio_high();
+
+ public:
+ inline void smt_prio_low();
+ inline void smt_prio_medium_low();
+ inline void smt_prio_medium();
+ // >= Power7
+ inline void smt_yield();
+ inline void smt_mdoio();
+ inline void smt_mdoom();
+ // >= Power8
+ inline void smt_miso();
+
+ // trap instructions
+ inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
+ // NOT FOR DIRECT USE!!
+ protected:
+ inline void tdi_unchecked(int tobits, Register a, int si16);
+ inline void twi_unchecked(int tobits, Register a, int si16);
+ inline void tdi( int tobits, Register a, int si16); // asserts UseSIGTRAP
+ inline void twi( int tobits, Register a, int si16); // asserts UseSIGTRAP
+ inline void td( int tobits, Register a, Register b); // asserts UseSIGTRAP
+ inline void tw( int tobits, Register a, Register b); // asserts UseSIGTRAP
+
+ static bool is_tdi(int x, int tobits, int ra, int si16) {
+ return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
+ && (tobits == inv_to_field(x))
+ && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
+ && (si16 == inv_si_field(x));
+ }
+
+ static bool is_twi(int x, int tobits, int ra, int si16) {
+ return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
+ && (tobits == inv_to_field(x))
+ && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
+ && (si16 == inv_si_field(x));
+ }
+
+ static bool is_twi(int x, int tobits, int ra) {
+ return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
+ && (tobits == inv_to_field(x))
+ && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
+ }
+
+ static bool is_td(int x, int tobits, int ra, int rb) {
+ return (TD_OPCODE == (x & TD_OPCODE_MASK))
+ && (tobits == inv_to_field(x))
+ && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
+ && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
+ }
+
+ static bool is_tw(int x, int tobits, int ra, int rb) {
+ return (TW_OPCODE == (x & TW_OPCODE_MASK))
+ && (tobits == inv_to_field(x))
+ && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
+ && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
+ }
+
+ public:
+ // PPC floating point instructions
+ // PPC 1, section 4.6.2 Floating-Point Load Instructions
+ inline void lfs( FloatRegister d, int si16, Register a);
+ inline void lfsu( FloatRegister d, int si16, Register a);
+ inline void lfsx( FloatRegister d, Register a, Register b);
+ inline void lfd( FloatRegister d, int si16, Register a);
+ inline void lfdu( FloatRegister d, int si16, Register a);
+ inline void lfdx( FloatRegister d, Register a, Register b);
+
+ // PPC 1, section 4.6.3 Floating-Point Store Instructions
+ inline void stfs( FloatRegister s, int si16, Register a);
+ inline void stfsu( FloatRegister s, int si16, Register a);
+ inline void stfsx( FloatRegister s, Register a, Register b);
+ inline void stfd( FloatRegister s, int si16, Register a);
+ inline void stfdu( FloatRegister s, int si16, Register a);
+ inline void stfdx( FloatRegister s, Register a, Register b);
+
+ // PPC 1, section 4.6.4 Floating-Point Move Instructions
+ inline void fmr( FloatRegister d, FloatRegister b);
+ inline void fmr_( FloatRegister d, FloatRegister b);
+
+ // inline void mffgpr( FloatRegister d, Register b);
+ // inline void mftgpr( Register d, FloatRegister b);
+ inline void cmpb( Register a, Register s, Register b);
+ inline void popcntb(Register a, Register s);
+ inline void popcntw(Register a, Register s);
+ inline void popcntd(Register a, Register s);
+
+ inline void fneg( FloatRegister d, FloatRegister b);
+ inline void fneg_( FloatRegister d, FloatRegister b);
+ inline void fabs( FloatRegister d, FloatRegister b);
+ inline void fabs_( FloatRegister d, FloatRegister b);
+ inline void fnabs( FloatRegister d, FloatRegister b);
+ inline void fnabs_(FloatRegister d, FloatRegister b);
+
+ // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
+ inline void fadd( FloatRegister d, FloatRegister a, FloatRegister b);
+ inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
+ inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
+ inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
+ inline void fsub( FloatRegister d, FloatRegister a, FloatRegister b);
+ inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
+ inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
+ inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
+ inline void fmul( FloatRegister d, FloatRegister a, FloatRegister c);
+ inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
+ inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
+ inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
+ inline void fdiv( FloatRegister d, FloatRegister a, FloatRegister b);
+ inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
+ inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
+ inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
+
+ // Fused multiply-accumulate instructions.
+ // WARNING: Use only when rounding between the 2 parts is not desired.
+ // Some floating point tck tests will fail if used incorrectly.
+ inline void fmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fmadds_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fmsubs_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fnmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fnmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fnmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fnmadds_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fnmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fnmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fnmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+ inline void fnmsubs_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
+
+ // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
+ inline void frsp( FloatRegister d, FloatRegister b);
+ inline void fctid( FloatRegister d, FloatRegister b);
+ inline void fctidz(FloatRegister d, FloatRegister b);
+ inline void fctiw( FloatRegister d, FloatRegister b);
+ inline void fctiwz(FloatRegister d, FloatRegister b);
+ inline void fcfid( FloatRegister d, FloatRegister b);
+ inline void fcfids(FloatRegister d, FloatRegister b);
+
+ // PPC 1, section 4.6.7 Floating-Point Compare Instructions
+ inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
+
+ inline void fsqrt( FloatRegister d, FloatRegister b);
+ inline void fsqrts(FloatRegister d, FloatRegister b);
+
+ // Vector instructions for >= Power6.
+ inline void lvebx( VectorRegister d, Register s1, Register s2);
+ inline void lvehx( VectorRegister d, Register s1, Register s2);
+ inline void lvewx( VectorRegister d, Register s1, Register s2);
+ inline void lvx( VectorRegister d, Register s1, Register s2);
+ inline void lvxl( VectorRegister d, Register s1, Register s2);
+ inline void stvebx( VectorRegister d, Register s1, Register s2);
+ inline void stvehx( VectorRegister d, Register s1, Register s2);
+ inline void stvewx( VectorRegister d, Register s1, Register s2);
+ inline void stvx( VectorRegister d, Register s1, Register s2);
+ inline void stvxl( VectorRegister d, Register s1, Register s2);
+ inline void lvsl( VectorRegister d, Register s1, Register s2);
+ inline void lvsr( VectorRegister d, Register s1, Register s2);
+ inline void vpkpx( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vpkshss( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vpkswss( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vpkshus( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vpkswus( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vpkuhum( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vpkuwum( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vpkuhus( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vpkuwus( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vupkhpx( VectorRegister d, VectorRegister b);
+ inline void vupkhsb( VectorRegister d, VectorRegister b);
+ inline void vupkhsh( VectorRegister d, VectorRegister b);
+ inline void vupklpx( VectorRegister d, VectorRegister b);
+ inline void vupklsb( VectorRegister d, VectorRegister b);
+ inline void vupklsh( VectorRegister d, VectorRegister b);
+ inline void vmrghb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmrghw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmrghh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmrglb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmrglw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmrglh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsplt( VectorRegister d, int ui4, VectorRegister b);
+ inline void vsplth( VectorRegister d, int ui3, VectorRegister b);
+ inline void vspltw( VectorRegister d, int ui2, VectorRegister b);
+ inline void vspltisb( VectorRegister d, int si5);
+ inline void vspltish( VectorRegister d, int si5);
+ inline void vspltisw( VectorRegister d, int si5);
+ inline void vperm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
+ inline void vsel( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
+ inline void vsl( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsldoi( VectorRegister d, VectorRegister a, VectorRegister b, int ui4);
+ inline void vslo( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsr( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsro( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vaddcuw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vaddshs( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vaddsbs( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vaddsws( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vaddubm( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vadduwm( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vadduhm( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vaddudm( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vaddubs( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vadduws( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vadduhs( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsubcuw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsubshs( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsubsbs( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsubsws( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsububm( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsubuwm( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsubuhm( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsububs( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsubuws( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsubuhs( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmulesb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmuleub( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmulesh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmuleuh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmulosb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmuloub( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmulosh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmulouh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
+ inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
+ inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
+ inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
+ inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
+ inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
+ inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
+ inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
+ inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
+ inline void vsumsws( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vavgsb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vavgsw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vavgsh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vavgub( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vavguw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vavguh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmaxsb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmaxsw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmaxsh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmaxub( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmaxuw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmaxuh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vminsb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vminsw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vminsh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vminub( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vminuw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vminuh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vand( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vandc( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vnor( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vor( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vmr( VectorRegister d, VectorRegister a);
+ inline void vxor( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vrld( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vrlb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vrlw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vrlh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vslb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vskw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vslh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsrb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsrw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsrh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsrab( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsraw( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsrah( VectorRegister d, VectorRegister a, VectorRegister b);
+ // Vector Floating-Point not implemented yet
+ inline void mtvscr( VectorRegister b);
+ inline void mfvscr( VectorRegister d);
+
+ // Vector-Scalar (VSX) instructions.
+ inline void lxvd2x( VectorSRegister d, Register a);
+ inline void lxvd2x( VectorSRegister d, Register a, Register b);
+ inline void stxvd2x( VectorSRegister d, Register a);
+ inline void stxvd2x( VectorSRegister d, Register a, Register b);
+ inline void mtvrwz( VectorRegister d, Register a);
+ inline void mfvrwz( Register a, VectorRegister d);
+ inline void mtvrd( VectorRegister d, Register a);
+ inline void mfvrd( Register a, VectorRegister d);
+ inline void xxpermdi( VectorSRegister d, VectorSRegister a, VectorSRegister b, int dm);
+ inline void xxmrghw( VectorSRegister d, VectorSRegister a, VectorSRegister b);
+ inline void xxmrglw( VectorSRegister d, VectorSRegister a, VectorSRegister b);
+
+ // VSX Extended Mnemonics
+ inline void xxspltd( VectorSRegister d, VectorSRegister a, int x);
+ inline void xxmrghd( VectorSRegister d, VectorSRegister a, VectorSRegister b);
+ inline void xxmrgld( VectorSRegister d, VectorSRegister a, VectorSRegister b);
+ inline void xxswapd( VectorSRegister d, VectorSRegister a);
+
+ // Vector-Scalar (VSX) instructions.
+ inline void mtfprd( FloatRegister d, Register a);
+ inline void mtfprwa( FloatRegister d, Register a);
+ inline void mffprd( Register a, FloatRegister d);
+
+ // AES (introduced with Power 8)
+ inline void vcipher( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vncipher( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vsbox( VectorRegister d, VectorRegister a);
+
+ // SHA (introduced with Power 8)
+ // Not yet implemented.
+
+ // Vector Binary Polynomial Multiplication (introduced with Power 8)
+ inline void vpmsumb( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vpmsumd( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vpmsumh( VectorRegister d, VectorRegister a, VectorRegister b);
+ inline void vpmsumw( VectorRegister d, VectorRegister a, VectorRegister b);
+
+ // Vector Permute and Xor (introduced with Power 8)
+ inline void vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
+
+ // Transactional Memory instructions (introduced with Power 8)
+ inline void tbegin_(); // R=0
+ inline void tbeginrot_(); // R=1 Rollback-Only Transaction
+ inline void tend_(); // A=0
+ inline void tendall_(); // A=1
+ inline void tabort_();
+ inline void tabort_(Register a);
+ inline void tabortwc_(int t, Register a, Register b);
+ inline void tabortwci_(int t, Register a, int si);
+ inline void tabortdc_(int t, Register a, Register b);
+ inline void tabortdci_(int t, Register a, int si);
+ inline void tsuspend_(); // tsr with L=0
+ inline void tresume_(); // tsr with L=1
+ inline void tcheck(int f);
+
+ static bool is_tbegin(int x) {
+ return TBEGIN_OPCODE == (x & (0x3f << OPCODE_SHIFT | 0x3ff << 1));
+ }
+
+ // The following encoders use r0 as second operand. These instructions
+ // read r0 as '0'.
+ inline void lwzx( Register d, Register s2);
+ inline void lwz( Register d, int si16);
+ inline void lwax( Register d, Register s2);
+ inline void lwa( Register d, int si16);
+ inline void lwbrx(Register d, Register s2);
+ inline void lhzx( Register d, Register s2);
+ inline void lhz( Register d, int si16);
+ inline void lhax( Register d, Register s2);
+ inline void lha( Register d, int si16);
+ inline void lhbrx(Register d, Register s2);
+ inline void lbzx( Register d, Register s2);
+ inline void lbz( Register d, int si16);
+ inline void ldx( Register d, Register s2);
+ inline void ld( Register d, int si16);
+ inline void ldbrx(Register d, Register s2);
+ inline void stwx( Register d, Register s2);
+ inline void stw( Register d, int si16);
+ inline void stwbrx( Register d, Register s2);
+ inline void sthx( Register d, Register s2);
+ inline void sth( Register d, int si16);
+ inline void sthbrx( Register d, Register s2);
+ inline void stbx( Register d, Register s2);
+ inline void stb( Register d, int si16);
+ inline void stdx( Register d, Register s2);
+ inline void std( Register d, int si16);
+ inline void stdbrx( Register d, Register s2);
+
+ // PPC 2, section 3.2.1 Instruction Cache Instructions
+ inline void icbi( Register s2);
+ // PPC 2, section 3.2.2 Data Cache Instructions
+ //inlinevoid dcba( Register s2); // Instruction for embedded processor only.
+ inline void dcbz( Register s2);
+ inline void dcbst( Register s2);
+ inline void dcbf( Register s2);
+ // dcache read hint
+ inline void dcbt( Register s2);
+ inline void dcbtct( Register s2, int ct);
+ inline void dcbtds( Register s2, int ds);
+ // dcache write hint
+ inline void dcbtst( Register s2);
+ inline void dcbtstct(Register s2, int ct);
+
+ // Atomics: use ra0mem to disallow R0 as base.
+ inline void lbarx_unchecked(Register d, Register b, int eh1);
+ inline void lharx_unchecked(Register d, Register b, int eh1);
+ inline void lwarx_unchecked(Register d, Register b, int eh1);
+ inline void ldarx_unchecked(Register d, Register b, int eh1);
+ inline void lqarx_unchecked(Register d, Register b, int eh1);
+ inline void lbarx( Register d, Register b, bool hint_exclusive_access);
+ inline void lharx( Register d, Register b, bool hint_exclusive_access);
+ inline void lwarx( Register d, Register b, bool hint_exclusive_access);
+ inline void ldarx( Register d, Register b, bool hint_exclusive_access);
+ inline void lqarx( Register d, Register b, bool hint_exclusive_access);
+ inline void stbcx_(Register s, Register b);
+ inline void sthcx_(Register s, Register b);
+ inline void stwcx_(Register s, Register b);
+ inline void stdcx_(Register s, Register b);
+ inline void stqcx_(Register s, Register b);
+ inline void lfs( FloatRegister d, int si16);
+ inline void lfsx( FloatRegister d, Register b);
+ inline void lfd( FloatRegister d, int si16);
+ inline void lfdx( FloatRegister d, Register b);
+ inline void stfs( FloatRegister s, int si16);
+ inline void stfsx( FloatRegister s, Register b);
+ inline void stfd( FloatRegister s, int si16);
+ inline void stfdx( FloatRegister s, Register b);
+ inline void lvebx( VectorRegister d, Register s2);
+ inline void lvehx( VectorRegister d, Register s2);
+ inline void lvewx( VectorRegister d, Register s2);
+ inline void lvx( VectorRegister d, Register s2);
+ inline void lvxl( VectorRegister d, Register s2);
+ inline void stvebx(VectorRegister d, Register s2);
+ inline void stvehx(VectorRegister d, Register s2);
+ inline void stvewx(VectorRegister d, Register s2);
+ inline void stvx( VectorRegister d, Register s2);
+ inline void stvxl( VectorRegister d, Register s2);
+ inline void lvsl( VectorRegister d, Register s2);
+ inline void lvsr( VectorRegister d, Register s2);
+
+ // RegisterOrConstant versions.
+ // These emitters choose between the versions using two registers and
+ // those with register and immediate, depending on the content of roc.
+ // If the constant is not encodable as immediate, instructions to
+ // load the constant are emitted beforehand. Store instructions need a
+ // tmp reg if the constant is not encodable as immediate.
+ // Size unpredictable.
+ void ld( Register d, RegisterOrConstant roc, Register s1 = noreg);
+ void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
+ void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
+ void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
+ void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
+ void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
+ void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
+ void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
+ void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
+ void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
+ void add( Register d, RegisterOrConstant roc, Register s1);
+ void subf(Register d, RegisterOrConstant roc, Register s1);
+ void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
+ // Load pointer d from s1+roc.
+ void ld_ptr(Register d, RegisterOrConstant roc, Register s1 = noreg) { ld(d, roc, s1); }
+
+ // Emit several instructions to load a 64 bit constant. This issues a fixed
+ // instruction pattern so that the constant can be patched later on.
+ enum {
+ load_const_size = 5 * BytesPerInstWord
+ };
+ void load_const(Register d, long a, Register tmp = noreg);
+ inline void load_const(Register d, void* a, Register tmp = noreg);
+ inline void load_const(Register d, Label& L, Register tmp = noreg);
+ inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
+ inline void load_const32(Register d, int i); // load signed int (patchable)
+
+ // Load a 64 bit constant, optimized, not identifyable.
+ // Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
+ // 16 bit immediate offset. This is useful if the offset can be encoded in
+ // a succeeding instruction.
+ int load_const_optimized(Register d, long a, Register tmp = noreg, bool return_simm16_rest = false);
+ inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
+ return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
+ }
+
+ // If return_simm16_rest, the return value needs to get added afterwards.
+ int add_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false);
+ inline int add_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
+ return add_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
+ }
+
+ // If return_simm16_rest, the return value needs to get added afterwards.
+ inline int sub_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false) {
+ return add_const_optimized(d, s, -x, tmp, return_simm16_rest);
+ }
+ inline int sub_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
+ return sub_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
+ }
+
+ // Creation
+ Assembler(CodeBuffer* code) : AbstractAssembler(code) {
+#ifdef CHECK_DELAY
+ delay_state = no_delay;
+#endif
+ }
+
+ // Testing
+#ifndef PRODUCT
+ void test_asm();
+#endif
+};
+
+
+#endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP