src/hotspot/cpu/ppc/assembler_ppc.hpp
changeset 47216 71c04702a3d5
parent 46809 057f21a10f5f
child 47521 122833427b36
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * Copyright (c) 2012, 2017 SAP SE. All rights reserved.
       
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     5  *
       
     6  * This code is free software; you can redistribute it and/or modify it
       
     7  * under the terms of the GNU General Public License version 2 only, as
       
     8  * published by the Free Software Foundation.
       
     9  *
       
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    13  * version 2 for more details (a copy is included in the LICENSE file that
       
    14  * accompanied this code).
       
    15  *
       
    16  * You should have received a copy of the GNU General Public License version
       
    17  * 2 along with this work; if not, write to the Free Software Foundation,
       
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    19  *
       
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    21  * or visit www.oracle.com if you need additional information or have any
       
    22  * questions.
       
    23  *
       
    24  */
       
    25 
       
    26 #ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
       
    27 #define CPU_PPC_VM_ASSEMBLER_PPC_HPP
       
    28 
       
    29 #include "asm/register.hpp"
       
    30 
       
    31 // Address is an abstraction used to represent a memory location
       
    32 // as used in assembler instructions.
       
    33 // PPC instructions grok either baseReg + indexReg or baseReg + disp.
       
    34 class Address VALUE_OBJ_CLASS_SPEC {
       
    35  private:
       
    36   Register _base;         // Base register.
       
    37   Register _index;        // Index register.
       
    38   intptr_t _disp;         // Displacement.
       
    39 
       
    40  public:
       
    41   Address(Register b, Register i, address d = 0)
       
    42     : _base(b), _index(i), _disp((intptr_t)d) {
       
    43     assert(i == noreg || d == 0, "can't have both");
       
    44   }
       
    45 
       
    46   Address(Register b, address d = 0)
       
    47     : _base(b), _index(noreg), _disp((intptr_t)d) {}
       
    48 
       
    49   Address(Register b, intptr_t d)
       
    50     : _base(b), _index(noreg), _disp(d) {}
       
    51 
       
    52   Address(Register b, RegisterOrConstant roc)
       
    53     : _base(b), _index(noreg), _disp(0) {
       
    54     if (roc.is_constant()) _disp = roc.as_constant(); else _index = roc.as_register();
       
    55   }
       
    56 
       
    57   Address()
       
    58     : _base(noreg), _index(noreg), _disp(0) {}
       
    59 
       
    60   // accessors
       
    61   Register base()  const { return _base; }
       
    62   Register index() const { return _index; }
       
    63   int      disp()  const { return (int)_disp; }
       
    64   bool     is_const() const { return _base == noreg && _index == noreg; }
       
    65 };
       
    66 
       
    67 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
       
    68  private:
       
    69   address          _address;
       
    70   RelocationHolder _rspec;
       
    71 
       
    72   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
       
    73     switch (rtype) {
       
    74     case relocInfo::external_word_type:
       
    75       return external_word_Relocation::spec(addr);
       
    76     case relocInfo::internal_word_type:
       
    77       return internal_word_Relocation::spec(addr);
       
    78     case relocInfo::opt_virtual_call_type:
       
    79       return opt_virtual_call_Relocation::spec();
       
    80     case relocInfo::static_call_type:
       
    81       return static_call_Relocation::spec();
       
    82     case relocInfo::runtime_call_type:
       
    83       return runtime_call_Relocation::spec();
       
    84     case relocInfo::none:
       
    85       return RelocationHolder();
       
    86     default:
       
    87       ShouldNotReachHere();
       
    88       return RelocationHolder();
       
    89     }
       
    90   }
       
    91 
       
    92  protected:
       
    93   // creation
       
    94   AddressLiteral() : _address(NULL), _rspec(NULL) {}
       
    95 
       
    96  public:
       
    97   AddressLiteral(address addr, RelocationHolder const& rspec)
       
    98     : _address(addr),
       
    99       _rspec(rspec) {}
       
   100 
       
   101   AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
       
   102     : _address((address) addr),
       
   103       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
       
   104 
       
   105   AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
       
   106     : _address((address) addr),
       
   107       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
       
   108 
       
   109   intptr_t value() const { return (intptr_t) _address; }
       
   110 
       
   111   const RelocationHolder& rspec() const { return _rspec; }
       
   112 };
       
   113 
       
   114 // Argument is an abstraction used to represent an outgoing
       
   115 // actual argument or an incoming formal parameter, whether
       
   116 // it resides in memory or in a register, in a manner consistent
       
   117 // with the PPC Application Binary Interface, or ABI. This is
       
   118 // often referred to as the native or C calling convention.
       
   119 
       
   120 class Argument VALUE_OBJ_CLASS_SPEC {
       
   121  private:
       
   122   int _number;  // The number of the argument.
       
   123  public:
       
   124   enum {
       
   125     // Only 8 registers may contain integer parameters.
       
   126     n_register_parameters = 8,
       
   127     // Can have up to 8 floating registers.
       
   128     n_float_register_parameters = 8,
       
   129 
       
   130     // PPC C calling conventions.
       
   131     // The first eight arguments are passed in int regs if they are int.
       
   132     n_int_register_parameters_c = 8,
       
   133     // The first thirteen float arguments are passed in float regs.
       
   134     n_float_register_parameters_c = 13,
       
   135     // Only the first 8 parameters are not placed on the stack. Aix disassembly
       
   136     // shows that xlC places all float args after argument 8 on the stack AND
       
   137     // in a register. This is not documented, but we follow this convention, too.
       
   138     n_regs_not_on_stack_c = 8,
       
   139   };
       
   140   // creation
       
   141   Argument(int number) : _number(number) {}
       
   142 
       
   143   int  number() const { return _number; }
       
   144 
       
   145   // Locating register-based arguments:
       
   146   bool is_register() const { return _number < n_register_parameters; }
       
   147 
       
   148   Register as_register() const {
       
   149     assert(is_register(), "must be a register argument");
       
   150     return as_Register(number() + R3_ARG1->encoding());
       
   151   }
       
   152 };
       
   153 
       
   154 #if !defined(ABI_ELFv2)
       
   155 // A ppc64 function descriptor.
       
   156 struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
       
   157  private:
       
   158   address _entry;
       
   159   address _toc;
       
   160   address _env;
       
   161 
       
   162  public:
       
   163   inline address entry() const { return _entry; }
       
   164   inline address toc()   const { return _toc; }
       
   165   inline address env()   const { return _env; }
       
   166 
       
   167   inline void set_entry(address entry) { _entry = entry; }
       
   168   inline void set_toc(  address toc)   { _toc   = toc; }
       
   169   inline void set_env(  address env)   { _env   = env; }
       
   170 
       
   171   inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
       
   172   inline static ByteSize toc_offset()   { return byte_offset_of(FunctionDescriptor, _toc); }
       
   173   inline static ByteSize env_offset()   { return byte_offset_of(FunctionDescriptor, _env); }
       
   174 
       
   175   // Friend functions can be called without loading toc and env.
       
   176   enum {
       
   177     friend_toc = 0xcafe,
       
   178     friend_env = 0xc0de
       
   179   };
       
   180 
       
   181   inline bool is_friend_function() const {
       
   182     return (toc() == (address) friend_toc) && (env() == (address) friend_env);
       
   183   }
       
   184 
       
   185   // Constructor for stack-allocated instances.
       
   186   FunctionDescriptor() {
       
   187     _entry = (address) 0xbad;
       
   188     _toc   = (address) 0xbad;
       
   189     _env   = (address) 0xbad;
       
   190   }
       
   191 };
       
   192 #endif
       
   193 
       
   194 
       
   195 // The PPC Assembler: Pure assembler doing NO optimizations on the
       
   196 // instruction level; i.e., what you write is what you get. The
       
   197 // Assembler is generating code into a CodeBuffer.
       
   198 
       
   199 class Assembler : public AbstractAssembler {
       
   200  protected:
       
   201   // Displacement routines
       
   202   static int  patched_branch(int dest_pos, int inst, int inst_pos);
       
   203   static int  branch_destination(int inst, int pos);
       
   204 
       
   205   friend class AbstractAssembler;
       
   206 
       
   207   // Code patchers need various routines like inv_wdisp()
       
   208   friend class NativeInstruction;
       
   209   friend class NativeGeneralJump;
       
   210   friend class Relocation;
       
   211 
       
   212  public:
       
   213 
       
   214   enum shifts {
       
   215     XO_21_29_SHIFT = 2,
       
   216     XO_21_30_SHIFT = 1,
       
   217     XO_27_29_SHIFT = 2,
       
   218     XO_30_31_SHIFT = 0,
       
   219     SPR_5_9_SHIFT  = 11u, // SPR_5_9 field in bits 11 -- 15
       
   220     SPR_0_4_SHIFT  = 16u, // SPR_0_4 field in bits 16 -- 20
       
   221     RS_SHIFT       = 21u, // RS field in bits 21 -- 25
       
   222     OPCODE_SHIFT   = 26u, // opcode in bits 26 -- 31
       
   223   };
       
   224 
       
   225   enum opcdxos_masks {
       
   226     XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
       
   227     ADDI_OPCODE_MASK    = (63u << OPCODE_SHIFT),
       
   228     ADDIS_OPCODE_MASK   = (63u << OPCODE_SHIFT),
       
   229     BXX_OPCODE_MASK     = (63u << OPCODE_SHIFT),
       
   230     BCXX_OPCODE_MASK    = (63u << OPCODE_SHIFT),
       
   231     // trap instructions
       
   232     TDI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
       
   233     TWI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
       
   234     TD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
       
   235     TW_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
       
   236     LD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
       
   237     STD_OPCODE_MASK     = LD_OPCODE_MASK,
       
   238     STDU_OPCODE_MASK    = STD_OPCODE_MASK,
       
   239     STDX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
       
   240     STDUX_OPCODE_MASK   = STDX_OPCODE_MASK,
       
   241     STW_OPCODE_MASK     = (63u << OPCODE_SHIFT),
       
   242     STWU_OPCODE_MASK    = STW_OPCODE_MASK,
       
   243     STWX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
       
   244     STWUX_OPCODE_MASK   = STWX_OPCODE_MASK,
       
   245     MTCTR_OPCODE_MASK   = ~(31u << RS_SHIFT),
       
   246     ORI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
       
   247     ORIS_OPCODE_MASK    = (63u << OPCODE_SHIFT),
       
   248     RLDICR_OPCODE_MASK  = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
       
   249   };
       
   250 
       
   251   enum opcdxos {
       
   252     ADD_OPCODE    = (31u << OPCODE_SHIFT | 266u << 1),
       
   253     ADDC_OPCODE   = (31u << OPCODE_SHIFT |  10u << 1),
       
   254     ADDI_OPCODE   = (14u << OPCODE_SHIFT),
       
   255     ADDIS_OPCODE  = (15u << OPCODE_SHIFT),
       
   256     ADDIC__OPCODE = (13u << OPCODE_SHIFT),
       
   257     ADDE_OPCODE   = (31u << OPCODE_SHIFT | 138u << 1),
       
   258     ADDME_OPCODE  = (31u << OPCODE_SHIFT | 234u << 1),
       
   259     ADDZE_OPCODE  = (31u << OPCODE_SHIFT | 202u << 1),
       
   260     SUBF_OPCODE   = (31u << OPCODE_SHIFT |  40u << 1),
       
   261     SUBFC_OPCODE  = (31u << OPCODE_SHIFT |   8u << 1),
       
   262     SUBFE_OPCODE  = (31u << OPCODE_SHIFT | 136u << 1),
       
   263     SUBFIC_OPCODE = (8u  << OPCODE_SHIFT),
       
   264     SUBFME_OPCODE = (31u << OPCODE_SHIFT | 232u << 1),
       
   265     SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
       
   266     DIVW_OPCODE   = (31u << OPCODE_SHIFT | 491u << 1),
       
   267     MULLW_OPCODE  = (31u << OPCODE_SHIFT | 235u << 1),
       
   268     MULHW_OPCODE  = (31u << OPCODE_SHIFT |  75u << 1),
       
   269     MULHWU_OPCODE = (31u << OPCODE_SHIFT |  11u << 1),
       
   270     MULLI_OPCODE  = (7u  << OPCODE_SHIFT),
       
   271     AND_OPCODE    = (31u << OPCODE_SHIFT |  28u << 1),
       
   272     ANDI_OPCODE   = (28u << OPCODE_SHIFT),
       
   273     ANDIS_OPCODE  = (29u << OPCODE_SHIFT),
       
   274     ANDC_OPCODE   = (31u << OPCODE_SHIFT |  60u << 1),
       
   275     ORC_OPCODE    = (31u << OPCODE_SHIFT | 412u << 1),
       
   276     OR_OPCODE     = (31u << OPCODE_SHIFT | 444u << 1),
       
   277     ORI_OPCODE    = (24u << OPCODE_SHIFT),
       
   278     ORIS_OPCODE   = (25u << OPCODE_SHIFT),
       
   279     XOR_OPCODE    = (31u << OPCODE_SHIFT | 316u << 1),
       
   280     XORI_OPCODE   = (26u << OPCODE_SHIFT),
       
   281     XORIS_OPCODE  = (27u << OPCODE_SHIFT),
       
   282 
       
   283     NEG_OPCODE    = (31u << OPCODE_SHIFT | 104u << 1),
       
   284 
       
   285     RLWINM_OPCODE = (21u << OPCODE_SHIFT),
       
   286     CLRRWI_OPCODE = RLWINM_OPCODE,
       
   287     CLRLWI_OPCODE = RLWINM_OPCODE,
       
   288 
       
   289     RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
       
   290 
       
   291     SLW_OPCODE    = (31u << OPCODE_SHIFT |  24u << 1),
       
   292     SLWI_OPCODE   = RLWINM_OPCODE,
       
   293     SRW_OPCODE    = (31u << OPCODE_SHIFT | 536u << 1),
       
   294     SRWI_OPCODE   = RLWINM_OPCODE,
       
   295     SRAW_OPCODE   = (31u << OPCODE_SHIFT | 792u << 1),
       
   296     SRAWI_OPCODE  = (31u << OPCODE_SHIFT | 824u << 1),
       
   297 
       
   298     CMP_OPCODE    = (31u << OPCODE_SHIFT |   0u << 1),
       
   299     CMPI_OPCODE   = (11u << OPCODE_SHIFT),
       
   300     CMPL_OPCODE   = (31u << OPCODE_SHIFT |  32u << 1),
       
   301     CMPLI_OPCODE  = (10u << OPCODE_SHIFT),
       
   302 
       
   303     ISEL_OPCODE   = (31u << OPCODE_SHIFT |  15u << 1),
       
   304 
       
   305     // Special purpose registers
       
   306     MTSPR_OPCODE  = (31u << OPCODE_SHIFT | 467u << 1),
       
   307     MFSPR_OPCODE  = (31u << OPCODE_SHIFT | 339u << 1),
       
   308 
       
   309     MTXER_OPCODE  = (MTSPR_OPCODE | 1 << SPR_0_4_SHIFT),
       
   310     MFXER_OPCODE  = (MFSPR_OPCODE | 1 << SPR_0_4_SHIFT),
       
   311 
       
   312     MTDSCR_OPCODE = (MTSPR_OPCODE | 3 << SPR_0_4_SHIFT),
       
   313     MFDSCR_OPCODE = (MFSPR_OPCODE | 3 << SPR_0_4_SHIFT),
       
   314 
       
   315     MTLR_OPCODE   = (MTSPR_OPCODE | 8 << SPR_0_4_SHIFT),
       
   316     MFLR_OPCODE   = (MFSPR_OPCODE | 8 << SPR_0_4_SHIFT),
       
   317 
       
   318     MTCTR_OPCODE  = (MTSPR_OPCODE | 9 << SPR_0_4_SHIFT),
       
   319     MFCTR_OPCODE  = (MFSPR_OPCODE | 9 << SPR_0_4_SHIFT),
       
   320 
       
   321     // Attention: Higher and lower half are inserted in reversed order.
       
   322     MTTFHAR_OPCODE   = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
       
   323     MFTFHAR_OPCODE   = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
       
   324     MTTFIAR_OPCODE   = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
       
   325     MFTFIAR_OPCODE   = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
       
   326     MTTEXASR_OPCODE  = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
       
   327     MFTEXASR_OPCODE  = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
       
   328     MTTEXASRU_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
       
   329     MFTEXASRU_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
       
   330 
       
   331     MTVRSAVE_OPCODE  = (MTSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
       
   332     MFVRSAVE_OPCODE  = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
       
   333 
       
   334     MFTB_OPCODE   = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 12 << SPR_0_4_SHIFT),
       
   335 
       
   336     MTCRF_OPCODE  = (31u << OPCODE_SHIFT | 144u << 1),
       
   337     MFCR_OPCODE   = (31u << OPCODE_SHIFT | 19u << 1),
       
   338     MCRF_OPCODE   = (19u << OPCODE_SHIFT | 0u << 1),
       
   339 
       
   340     // condition register logic instructions
       
   341     CRAND_OPCODE  = (19u << OPCODE_SHIFT | 257u << 1),
       
   342     CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
       
   343     CROR_OPCODE   = (19u << OPCODE_SHIFT | 449u << 1),
       
   344     CRXOR_OPCODE  = (19u << OPCODE_SHIFT | 193u << 1),
       
   345     CRNOR_OPCODE  = (19u << OPCODE_SHIFT |  33u << 1),
       
   346     CREQV_OPCODE  = (19u << OPCODE_SHIFT | 289u << 1),
       
   347     CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
       
   348     CRORC_OPCODE  = (19u << OPCODE_SHIFT | 417u << 1),
       
   349 
       
   350     BCLR_OPCODE   = (19u << OPCODE_SHIFT | 16u << 1),
       
   351     BXX_OPCODE      = (18u << OPCODE_SHIFT),
       
   352     BCXX_OPCODE     = (16u << OPCODE_SHIFT),
       
   353 
       
   354     // CTR-related opcodes
       
   355     BCCTR_OPCODE  = (19u << OPCODE_SHIFT | 528u << 1),
       
   356 
       
   357     LWZ_OPCODE   = (32u << OPCODE_SHIFT),
       
   358     LWZX_OPCODE  = (31u << OPCODE_SHIFT |  23u << 1),
       
   359     LWZU_OPCODE  = (33u << OPCODE_SHIFT),
       
   360     LWBRX_OPCODE = (31u << OPCODE_SHIFT |  534 << 1),
       
   361 
       
   362     LHA_OPCODE   = (42u << OPCODE_SHIFT),
       
   363     LHAX_OPCODE  = (31u << OPCODE_SHIFT | 343u << 1),
       
   364     LHAU_OPCODE  = (43u << OPCODE_SHIFT),
       
   365 
       
   366     LHZ_OPCODE   = (40u << OPCODE_SHIFT),
       
   367     LHZX_OPCODE  = (31u << OPCODE_SHIFT | 279u << 1),
       
   368     LHZU_OPCODE  = (41u << OPCODE_SHIFT),
       
   369     LHBRX_OPCODE = (31u << OPCODE_SHIFT |  790 << 1),
       
   370 
       
   371     LBZ_OPCODE   = (34u << OPCODE_SHIFT),
       
   372     LBZX_OPCODE  = (31u << OPCODE_SHIFT |  87u << 1),
       
   373     LBZU_OPCODE  = (35u << OPCODE_SHIFT),
       
   374 
       
   375     STW_OPCODE   = (36u << OPCODE_SHIFT),
       
   376     STWX_OPCODE  = (31u << OPCODE_SHIFT | 151u << 1),
       
   377     STWU_OPCODE  = (37u << OPCODE_SHIFT),
       
   378     STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
       
   379     STWBRX_OPCODE = (31u << OPCODE_SHIFT | 662u << 1),
       
   380 
       
   381     STH_OPCODE   = (44u << OPCODE_SHIFT),
       
   382     STHX_OPCODE  = (31u << OPCODE_SHIFT | 407u << 1),
       
   383     STHU_OPCODE  = (45u << OPCODE_SHIFT),
       
   384     STHBRX_OPCODE = (31u << OPCODE_SHIFT | 918u << 1),
       
   385 
       
   386     STB_OPCODE   = (38u << OPCODE_SHIFT),
       
   387     STBX_OPCODE  = (31u << OPCODE_SHIFT | 215u << 1),
       
   388     STBU_OPCODE  = (39u << OPCODE_SHIFT),
       
   389 
       
   390     EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
       
   391     EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
       
   392     EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1),               // X-FORM
       
   393 
       
   394     // 32 bit opcode encodings
       
   395 
       
   396     LWA_OPCODE    = (58u << OPCODE_SHIFT |   2u << XO_30_31_SHIFT), // DS-FORM
       
   397     LWAX_OPCODE   = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
       
   398 
       
   399     CNTLZW_OPCODE = (31u << OPCODE_SHIFT |  26u << XO_21_30_SHIFT), // X-FORM
       
   400 
       
   401     // 64 bit opcode encodings
       
   402 
       
   403     LD_OPCODE     = (58u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
       
   404     LDU_OPCODE    = (58u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
       
   405     LDX_OPCODE    = (31u << OPCODE_SHIFT |  21u << XO_21_30_SHIFT), // X-FORM
       
   406     LDBRX_OPCODE  = (31u << OPCODE_SHIFT | 532u << 1),              // X-FORM
       
   407 
       
   408     STD_OPCODE    = (62u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
       
   409     STDU_OPCODE   = (62u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
       
   410     STDUX_OPCODE  = (31u << OPCODE_SHIFT | 181u << 1),              // X-FORM
       
   411     STDX_OPCODE   = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
       
   412     STDBRX_OPCODE = (31u << OPCODE_SHIFT | 660u << 1),              // X-FORM
       
   413 
       
   414     RLDICR_OPCODE = (30u << OPCODE_SHIFT |   1u << XO_27_29_SHIFT), // MD-FORM
       
   415     RLDICL_OPCODE = (30u << OPCODE_SHIFT |   0u << XO_27_29_SHIFT), // MD-FORM
       
   416     RLDIC_OPCODE  = (30u << OPCODE_SHIFT |   2u << XO_27_29_SHIFT), // MD-FORM
       
   417     RLDIMI_OPCODE = (30u << OPCODE_SHIFT |   3u << XO_27_29_SHIFT), // MD-FORM
       
   418 
       
   419     SRADI_OPCODE  = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
       
   420 
       
   421     SLD_OPCODE    = (31u << OPCODE_SHIFT |  27u << 1),              // X-FORM
       
   422     SRD_OPCODE    = (31u << OPCODE_SHIFT | 539u << 1),              // X-FORM
       
   423     SRAD_OPCODE   = (31u << OPCODE_SHIFT | 794u << 1),              // X-FORM
       
   424 
       
   425     MULLD_OPCODE  = (31u << OPCODE_SHIFT | 233u << 1),              // XO-FORM
       
   426     MULHD_OPCODE  = (31u << OPCODE_SHIFT |  73u << 1),              // XO-FORM
       
   427     MULHDU_OPCODE = (31u << OPCODE_SHIFT |   9u << 1),              // XO-FORM
       
   428     DIVD_OPCODE   = (31u << OPCODE_SHIFT | 489u << 1),              // XO-FORM
       
   429 
       
   430     CNTLZD_OPCODE = (31u << OPCODE_SHIFT |  58u << XO_21_30_SHIFT), // X-FORM
       
   431     NAND_OPCODE   = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
       
   432     NOR_OPCODE    = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
       
   433 
       
   434 
       
   435     // opcodes only used for floating arithmetic
       
   436     FADD_OPCODE   = (63u << OPCODE_SHIFT |  21u << 1),
       
   437     FADDS_OPCODE  = (59u << OPCODE_SHIFT |  21u << 1),
       
   438     FCMPU_OPCODE  = (63u << OPCODE_SHIFT |  00u << 1),
       
   439     FDIV_OPCODE   = (63u << OPCODE_SHIFT |  18u << 1),
       
   440     FDIVS_OPCODE  = (59u << OPCODE_SHIFT |  18u << 1),
       
   441     FMR_OPCODE    = (63u << OPCODE_SHIFT |  72u << 1),
       
   442     // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
       
   443     // on Power7.  Do not use.
       
   444     // MFFGPR_OPCODE  = (31u << OPCODE_SHIFT | 607u << 1),
       
   445     // MFTGPR_OPCODE  = (31u << OPCODE_SHIFT | 735u << 1),
       
   446     CMPB_OPCODE    = (31u << OPCODE_SHIFT |  508  << 1),
       
   447     POPCNTB_OPCODE = (31u << OPCODE_SHIFT |  122  << 1),
       
   448     POPCNTW_OPCODE = (31u << OPCODE_SHIFT |  378  << 1),
       
   449     POPCNTD_OPCODE = (31u << OPCODE_SHIFT |  506  << 1),
       
   450     FABS_OPCODE    = (63u << OPCODE_SHIFT |  264u << 1),
       
   451     FNABS_OPCODE   = (63u << OPCODE_SHIFT |  136u << 1),
       
   452     FMUL_OPCODE    = (63u << OPCODE_SHIFT |   25u << 1),
       
   453     FMULS_OPCODE   = (59u << OPCODE_SHIFT |   25u << 1),
       
   454     FNEG_OPCODE    = (63u << OPCODE_SHIFT |   40u << 1),
       
   455     FSUB_OPCODE    = (63u << OPCODE_SHIFT |   20u << 1),
       
   456     FSUBS_OPCODE   = (59u << OPCODE_SHIFT |   20u << 1),
       
   457 
       
   458     // PPC64-internal FPU conversion opcodes
       
   459     FCFID_OPCODE   = (63u << OPCODE_SHIFT |  846u << 1),
       
   460     FCFIDS_OPCODE  = (59u << OPCODE_SHIFT |  846u << 1),
       
   461     FCTID_OPCODE   = (63u << OPCODE_SHIFT |  814u << 1),
       
   462     FCTIDZ_OPCODE  = (63u << OPCODE_SHIFT |  815u << 1),
       
   463     FCTIW_OPCODE   = (63u << OPCODE_SHIFT |   14u << 1),
       
   464     FCTIWZ_OPCODE  = (63u << OPCODE_SHIFT |   15u << 1),
       
   465     FRSP_OPCODE    = (63u << OPCODE_SHIFT |   12u << 1),
       
   466 
       
   467     // Fused multiply-accumulate instructions.
       
   468     FMADD_OPCODE   = (63u << OPCODE_SHIFT |   29u << 1),
       
   469     FMADDS_OPCODE  = (59u << OPCODE_SHIFT |   29u << 1),
       
   470     FMSUB_OPCODE   = (63u << OPCODE_SHIFT |   28u << 1),
       
   471     FMSUBS_OPCODE  = (59u << OPCODE_SHIFT |   28u << 1),
       
   472     FNMADD_OPCODE  = (63u << OPCODE_SHIFT |   31u << 1),
       
   473     FNMADDS_OPCODE = (59u << OPCODE_SHIFT |   31u << 1),
       
   474     FNMSUB_OPCODE  = (63u << OPCODE_SHIFT |   30u << 1),
       
   475     FNMSUBS_OPCODE = (59u << OPCODE_SHIFT |   30u << 1),
       
   476 
       
   477     LFD_OPCODE     = (50u << OPCODE_SHIFT |   00u << 1),
       
   478     LFDU_OPCODE    = (51u << OPCODE_SHIFT |   00u << 1),
       
   479     LFDX_OPCODE    = (31u << OPCODE_SHIFT |  599u << 1),
       
   480     LFS_OPCODE     = (48u << OPCODE_SHIFT |   00u << 1),
       
   481     LFSU_OPCODE    = (49u << OPCODE_SHIFT |   00u << 1),
       
   482     LFSX_OPCODE    = (31u << OPCODE_SHIFT |  535u << 1),
       
   483 
       
   484     STFD_OPCODE    = (54u << OPCODE_SHIFT |   00u << 1),
       
   485     STFDU_OPCODE   = (55u << OPCODE_SHIFT |   00u << 1),
       
   486     STFDX_OPCODE   = (31u << OPCODE_SHIFT |  727u << 1),
       
   487     STFS_OPCODE    = (52u << OPCODE_SHIFT |   00u << 1),
       
   488     STFSU_OPCODE   = (53u << OPCODE_SHIFT |   00u << 1),
       
   489     STFSX_OPCODE   = (31u << OPCODE_SHIFT |  663u << 1),
       
   490 
       
   491     FSQRT_OPCODE   = (63u << OPCODE_SHIFT |   22u << 1),            // A-FORM
       
   492     FSQRTS_OPCODE  = (59u << OPCODE_SHIFT |   22u << 1),            // A-FORM
       
   493 
       
   494     // Vector instruction support for >= Power6
       
   495     // Vector Storage Access
       
   496     LVEBX_OPCODE   = (31u << OPCODE_SHIFT |    7u << 1),
       
   497     LVEHX_OPCODE   = (31u << OPCODE_SHIFT |   39u << 1),
       
   498     LVEWX_OPCODE   = (31u << OPCODE_SHIFT |   71u << 1),
       
   499     LVX_OPCODE     = (31u << OPCODE_SHIFT |  103u << 1),
       
   500     LVXL_OPCODE    = (31u << OPCODE_SHIFT |  359u << 1),
       
   501     STVEBX_OPCODE  = (31u << OPCODE_SHIFT |  135u << 1),
       
   502     STVEHX_OPCODE  = (31u << OPCODE_SHIFT |  167u << 1),
       
   503     STVEWX_OPCODE  = (31u << OPCODE_SHIFT |  199u << 1),
       
   504     STVX_OPCODE    = (31u << OPCODE_SHIFT |  231u << 1),
       
   505     STVXL_OPCODE   = (31u << OPCODE_SHIFT |  487u << 1),
       
   506     LVSL_OPCODE    = (31u << OPCODE_SHIFT |    6u << 1),
       
   507     LVSR_OPCODE    = (31u << OPCODE_SHIFT |   38u << 1),
       
   508 
       
   509     // Vector-Scalar (VSX) instruction support.
       
   510     LXVD2X_OPCODE  = (31u << OPCODE_SHIFT |  844u << 1),
       
   511     STXVD2X_OPCODE = (31u << OPCODE_SHIFT |  972u << 1),
       
   512     MTVSRD_OPCODE  = (31u << OPCODE_SHIFT |  179u << 1),
       
   513     MTVSRWZ_OPCODE = (31u << OPCODE_SHIFT |  243u << 1),
       
   514     MFVSRD_OPCODE  = (31u << OPCODE_SHIFT |   51u << 1),
       
   515     MTVSRWA_OPCODE = (31u << OPCODE_SHIFT |  211u << 1),
       
   516     MFVSRWZ_OPCODE = (31u << OPCODE_SHIFT |  115u << 1),
       
   517     XXPERMDI_OPCODE= (60u << OPCODE_SHIFT |   10u << 3),
       
   518     XXMRGHW_OPCODE = (60u << OPCODE_SHIFT |   18u << 3),
       
   519     XXMRGLW_OPCODE = (60u << OPCODE_SHIFT |   50u << 3),
       
   520 
       
   521     // Vector Permute and Formatting
       
   522     VPKPX_OPCODE   = (4u  << OPCODE_SHIFT |  782u     ),
       
   523     VPKSHSS_OPCODE = (4u  << OPCODE_SHIFT |  398u     ),
       
   524     VPKSWSS_OPCODE = (4u  << OPCODE_SHIFT |  462u     ),
       
   525     VPKSHUS_OPCODE = (4u  << OPCODE_SHIFT |  270u     ),
       
   526     VPKSWUS_OPCODE = (4u  << OPCODE_SHIFT |  334u     ),
       
   527     VPKUHUM_OPCODE = (4u  << OPCODE_SHIFT |   14u     ),
       
   528     VPKUWUM_OPCODE = (4u  << OPCODE_SHIFT |   78u     ),
       
   529     VPKUHUS_OPCODE = (4u  << OPCODE_SHIFT |  142u     ),
       
   530     VPKUWUS_OPCODE = (4u  << OPCODE_SHIFT |  206u     ),
       
   531     VUPKHPX_OPCODE = (4u  << OPCODE_SHIFT |  846u     ),
       
   532     VUPKHSB_OPCODE = (4u  << OPCODE_SHIFT |  526u     ),
       
   533     VUPKHSH_OPCODE = (4u  << OPCODE_SHIFT |  590u     ),
       
   534     VUPKLPX_OPCODE = (4u  << OPCODE_SHIFT |  974u     ),
       
   535     VUPKLSB_OPCODE = (4u  << OPCODE_SHIFT |  654u     ),
       
   536     VUPKLSH_OPCODE = (4u  << OPCODE_SHIFT |  718u     ),
       
   537 
       
   538     VMRGHB_OPCODE  = (4u  << OPCODE_SHIFT |   12u     ),
       
   539     VMRGHW_OPCODE  = (4u  << OPCODE_SHIFT |  140u     ),
       
   540     VMRGHH_OPCODE  = (4u  << OPCODE_SHIFT |   76u     ),
       
   541     VMRGLB_OPCODE  = (4u  << OPCODE_SHIFT |  268u     ),
       
   542     VMRGLW_OPCODE  = (4u  << OPCODE_SHIFT |  396u     ),
       
   543     VMRGLH_OPCODE  = (4u  << OPCODE_SHIFT |  332u     ),
       
   544 
       
   545     VSPLT_OPCODE   = (4u  << OPCODE_SHIFT |  524u     ),
       
   546     VSPLTH_OPCODE  = (4u  << OPCODE_SHIFT |  588u     ),
       
   547     VSPLTW_OPCODE  = (4u  << OPCODE_SHIFT |  652u     ),
       
   548     VSPLTISB_OPCODE= (4u  << OPCODE_SHIFT |  780u     ),
       
   549     VSPLTISH_OPCODE= (4u  << OPCODE_SHIFT |  844u     ),
       
   550     VSPLTISW_OPCODE= (4u  << OPCODE_SHIFT |  908u     ),
       
   551 
       
   552     VPERM_OPCODE   = (4u  << OPCODE_SHIFT |   43u     ),
       
   553     VSEL_OPCODE    = (4u  << OPCODE_SHIFT |   42u     ),
       
   554 
       
   555     VSL_OPCODE     = (4u  << OPCODE_SHIFT |  452u     ),
       
   556     VSLDOI_OPCODE  = (4u  << OPCODE_SHIFT |   44u     ),
       
   557     VSLO_OPCODE    = (4u  << OPCODE_SHIFT | 1036u     ),
       
   558     VSR_OPCODE     = (4u  << OPCODE_SHIFT |  708u     ),
       
   559     VSRO_OPCODE    = (4u  << OPCODE_SHIFT | 1100u     ),
       
   560 
       
   561     // Vector Integer
       
   562     VADDCUW_OPCODE = (4u  << OPCODE_SHIFT |  384u     ),
       
   563     VADDSHS_OPCODE = (4u  << OPCODE_SHIFT |  832u     ),
       
   564     VADDSBS_OPCODE = (4u  << OPCODE_SHIFT |  768u     ),
       
   565     VADDSWS_OPCODE = (4u  << OPCODE_SHIFT |  896u     ),
       
   566     VADDUBM_OPCODE = (4u  << OPCODE_SHIFT |    0u     ),
       
   567     VADDUWM_OPCODE = (4u  << OPCODE_SHIFT |  128u     ),
       
   568     VADDUHM_OPCODE = (4u  << OPCODE_SHIFT |   64u     ),
       
   569     VADDUDM_OPCODE = (4u  << OPCODE_SHIFT |  192u     ),
       
   570     VADDUBS_OPCODE = (4u  << OPCODE_SHIFT |  512u     ),
       
   571     VADDUWS_OPCODE = (4u  << OPCODE_SHIFT |  640u     ),
       
   572     VADDUHS_OPCODE = (4u  << OPCODE_SHIFT |  576u     ),
       
   573     VSUBCUW_OPCODE = (4u  << OPCODE_SHIFT | 1408u     ),
       
   574     VSUBSHS_OPCODE = (4u  << OPCODE_SHIFT | 1856u     ),
       
   575     VSUBSBS_OPCODE = (4u  << OPCODE_SHIFT | 1792u     ),
       
   576     VSUBSWS_OPCODE = (4u  << OPCODE_SHIFT | 1920u     ),
       
   577     VSUBUBM_OPCODE = (4u  << OPCODE_SHIFT | 1024u     ),
       
   578     VSUBUWM_OPCODE = (4u  << OPCODE_SHIFT | 1152u     ),
       
   579     VSUBUHM_OPCODE = (4u  << OPCODE_SHIFT | 1088u     ),
       
   580     VSUBUBS_OPCODE = (4u  << OPCODE_SHIFT | 1536u     ),
       
   581     VSUBUWS_OPCODE = (4u  << OPCODE_SHIFT | 1664u     ),
       
   582     VSUBUHS_OPCODE = (4u  << OPCODE_SHIFT | 1600u     ),
       
   583 
       
   584     VMULESB_OPCODE = (4u  << OPCODE_SHIFT |  776u     ),
       
   585     VMULEUB_OPCODE = (4u  << OPCODE_SHIFT |  520u     ),
       
   586     VMULESH_OPCODE = (4u  << OPCODE_SHIFT |  840u     ),
       
   587     VMULEUH_OPCODE = (4u  << OPCODE_SHIFT |  584u     ),
       
   588     VMULOSB_OPCODE = (4u  << OPCODE_SHIFT |  264u     ),
       
   589     VMULOUB_OPCODE = (4u  << OPCODE_SHIFT |    8u     ),
       
   590     VMULOSH_OPCODE = (4u  << OPCODE_SHIFT |  328u     ),
       
   591     VMULOUH_OPCODE = (4u  << OPCODE_SHIFT |   72u     ),
       
   592     VMHADDSHS_OPCODE=(4u  << OPCODE_SHIFT |   32u     ),
       
   593     VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT |   33u     ),
       
   594     VMLADDUHM_OPCODE=(4u  << OPCODE_SHIFT |   34u     ),
       
   595     VMSUBUHM_OPCODE= (4u  << OPCODE_SHIFT |   36u     ),
       
   596     VMSUMMBM_OPCODE= (4u  << OPCODE_SHIFT |   37u     ),
       
   597     VMSUMSHM_OPCODE= (4u  << OPCODE_SHIFT |   40u     ),
       
   598     VMSUMSHS_OPCODE= (4u  << OPCODE_SHIFT |   41u     ),
       
   599     VMSUMUHM_OPCODE= (4u  << OPCODE_SHIFT |   38u     ),
       
   600     VMSUMUHS_OPCODE= (4u  << OPCODE_SHIFT |   39u     ),
       
   601 
       
   602     VSUMSWS_OPCODE = (4u  << OPCODE_SHIFT | 1928u     ),
       
   603     VSUM2SWS_OPCODE= (4u  << OPCODE_SHIFT | 1672u     ),
       
   604     VSUM4SBS_OPCODE= (4u  << OPCODE_SHIFT | 1800u     ),
       
   605     VSUM4UBS_OPCODE= (4u  << OPCODE_SHIFT | 1544u     ),
       
   606     VSUM4SHS_OPCODE= (4u  << OPCODE_SHIFT | 1608u     ),
       
   607 
       
   608     VAVGSB_OPCODE  = (4u  << OPCODE_SHIFT | 1282u     ),
       
   609     VAVGSW_OPCODE  = (4u  << OPCODE_SHIFT | 1410u     ),
       
   610     VAVGSH_OPCODE  = (4u  << OPCODE_SHIFT | 1346u     ),
       
   611     VAVGUB_OPCODE  = (4u  << OPCODE_SHIFT | 1026u     ),
       
   612     VAVGUW_OPCODE  = (4u  << OPCODE_SHIFT | 1154u     ),
       
   613     VAVGUH_OPCODE  = (4u  << OPCODE_SHIFT | 1090u     ),
       
   614 
       
   615     VMAXSB_OPCODE  = (4u  << OPCODE_SHIFT |  258u     ),
       
   616     VMAXSW_OPCODE  = (4u  << OPCODE_SHIFT |  386u     ),
       
   617     VMAXSH_OPCODE  = (4u  << OPCODE_SHIFT |  322u     ),
       
   618     VMAXUB_OPCODE  = (4u  << OPCODE_SHIFT |    2u     ),
       
   619     VMAXUW_OPCODE  = (4u  << OPCODE_SHIFT |  130u     ),
       
   620     VMAXUH_OPCODE  = (4u  << OPCODE_SHIFT |   66u     ),
       
   621     VMINSB_OPCODE  = (4u  << OPCODE_SHIFT |  770u     ),
       
   622     VMINSW_OPCODE  = (4u  << OPCODE_SHIFT |  898u     ),
       
   623     VMINSH_OPCODE  = (4u  << OPCODE_SHIFT |  834u     ),
       
   624     VMINUB_OPCODE  = (4u  << OPCODE_SHIFT |  514u     ),
       
   625     VMINUW_OPCODE  = (4u  << OPCODE_SHIFT |  642u     ),
       
   626     VMINUH_OPCODE  = (4u  << OPCODE_SHIFT |  578u     ),
       
   627 
       
   628     VCMPEQUB_OPCODE= (4u  << OPCODE_SHIFT |    6u     ),
       
   629     VCMPEQUH_OPCODE= (4u  << OPCODE_SHIFT |   70u     ),
       
   630     VCMPEQUW_OPCODE= (4u  << OPCODE_SHIFT |  134u     ),
       
   631     VCMPGTSH_OPCODE= (4u  << OPCODE_SHIFT |  838u     ),
       
   632     VCMPGTSB_OPCODE= (4u  << OPCODE_SHIFT |  774u     ),
       
   633     VCMPGTSW_OPCODE= (4u  << OPCODE_SHIFT |  902u     ),
       
   634     VCMPGTUB_OPCODE= (4u  << OPCODE_SHIFT |  518u     ),
       
   635     VCMPGTUH_OPCODE= (4u  << OPCODE_SHIFT |  582u     ),
       
   636     VCMPGTUW_OPCODE= (4u  << OPCODE_SHIFT |  646u     ),
       
   637 
       
   638     VAND_OPCODE    = (4u  << OPCODE_SHIFT | 1028u     ),
       
   639     VANDC_OPCODE   = (4u  << OPCODE_SHIFT | 1092u     ),
       
   640     VNOR_OPCODE    = (4u  << OPCODE_SHIFT | 1284u     ),
       
   641     VOR_OPCODE     = (4u  << OPCODE_SHIFT | 1156u     ),
       
   642     VXOR_OPCODE    = (4u  << OPCODE_SHIFT | 1220u     ),
       
   643     VRLD_OPCODE    = (4u  << OPCODE_SHIFT |  196u     ),
       
   644     VRLB_OPCODE    = (4u  << OPCODE_SHIFT |    4u     ),
       
   645     VRLW_OPCODE    = (4u  << OPCODE_SHIFT |  132u     ),
       
   646     VRLH_OPCODE    = (4u  << OPCODE_SHIFT |   68u     ),
       
   647     VSLB_OPCODE    = (4u  << OPCODE_SHIFT |  260u     ),
       
   648     VSKW_OPCODE    = (4u  << OPCODE_SHIFT |  388u     ),
       
   649     VSLH_OPCODE    = (4u  << OPCODE_SHIFT |  324u     ),
       
   650     VSRB_OPCODE    = (4u  << OPCODE_SHIFT |  516u     ),
       
   651     VSRW_OPCODE    = (4u  << OPCODE_SHIFT |  644u     ),
       
   652     VSRH_OPCODE    = (4u  << OPCODE_SHIFT |  580u     ),
       
   653     VSRAB_OPCODE   = (4u  << OPCODE_SHIFT |  772u     ),
       
   654     VSRAW_OPCODE   = (4u  << OPCODE_SHIFT |  900u     ),
       
   655     VSRAH_OPCODE   = (4u  << OPCODE_SHIFT |  836u     ),
       
   656 
       
   657     // Vector Floating-Point
       
   658     // not implemented yet
       
   659 
       
   660     // Vector Status and Control
       
   661     MTVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1604u     ),
       
   662     MFVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1540u     ),
       
   663 
       
   664     // AES (introduced with Power 8)
       
   665     VCIPHER_OPCODE      = (4u  << OPCODE_SHIFT | 1288u),
       
   666     VCIPHERLAST_OPCODE  = (4u  << OPCODE_SHIFT | 1289u),
       
   667     VNCIPHER_OPCODE     = (4u  << OPCODE_SHIFT | 1352u),
       
   668     VNCIPHERLAST_OPCODE = (4u  << OPCODE_SHIFT | 1353u),
       
   669     VSBOX_OPCODE        = (4u  << OPCODE_SHIFT | 1480u),
       
   670 
       
   671     // SHA (introduced with Power 8)
       
   672     VSHASIGMAD_OPCODE   = (4u  << OPCODE_SHIFT | 1730u),
       
   673     VSHASIGMAW_OPCODE   = (4u  << OPCODE_SHIFT | 1666u),
       
   674 
       
   675     // Vector Binary Polynomial Multiplication (introduced with Power 8)
       
   676     VPMSUMB_OPCODE      = (4u  << OPCODE_SHIFT | 1032u),
       
   677     VPMSUMD_OPCODE      = (4u  << OPCODE_SHIFT | 1224u),
       
   678     VPMSUMH_OPCODE      = (4u  << OPCODE_SHIFT | 1096u),
       
   679     VPMSUMW_OPCODE      = (4u  << OPCODE_SHIFT | 1160u),
       
   680 
       
   681     // Vector Permute and Xor (introduced with Power 8)
       
   682     VPERMXOR_OPCODE     = (4u  << OPCODE_SHIFT |   45u),
       
   683 
       
   684     // Transactional Memory instructions (introduced with Power 8)
       
   685     TBEGIN_OPCODE    = (31u << OPCODE_SHIFT |  654u << 1),
       
   686     TEND_OPCODE      = (31u << OPCODE_SHIFT |  686u << 1),
       
   687     TABORT_OPCODE    = (31u << OPCODE_SHIFT |  910u << 1),
       
   688     TABORTWC_OPCODE  = (31u << OPCODE_SHIFT |  782u << 1),
       
   689     TABORTWCI_OPCODE = (31u << OPCODE_SHIFT |  846u << 1),
       
   690     TABORTDC_OPCODE  = (31u << OPCODE_SHIFT |  814u << 1),
       
   691     TABORTDCI_OPCODE = (31u << OPCODE_SHIFT |  878u << 1),
       
   692     TSR_OPCODE       = (31u << OPCODE_SHIFT |  750u << 1),
       
   693     TCHECK_OPCODE    = (31u << OPCODE_SHIFT |  718u << 1),
       
   694 
       
   695     // Icache and dcache related instructions
       
   696     DCBA_OPCODE    = (31u << OPCODE_SHIFT |  758u << 1),
       
   697     DCBZ_OPCODE    = (31u << OPCODE_SHIFT | 1014u << 1),
       
   698     DCBST_OPCODE   = (31u << OPCODE_SHIFT |   54u << 1),
       
   699     DCBF_OPCODE    = (31u << OPCODE_SHIFT |   86u << 1),
       
   700 
       
   701     DCBT_OPCODE    = (31u << OPCODE_SHIFT |  278u << 1),
       
   702     DCBTST_OPCODE  = (31u << OPCODE_SHIFT |  246u << 1),
       
   703     ICBI_OPCODE    = (31u << OPCODE_SHIFT |  982u << 1),
       
   704 
       
   705     // Instruction synchronization
       
   706     ISYNC_OPCODE   = (19u << OPCODE_SHIFT |  150u << 1),
       
   707     // Memory barriers
       
   708     SYNC_OPCODE    = (31u << OPCODE_SHIFT |  598u << 1),
       
   709     EIEIO_OPCODE   = (31u << OPCODE_SHIFT |  854u << 1),
       
   710 
       
   711     // Wait instructions for polling.
       
   712     WAIT_OPCODE    = (31u << OPCODE_SHIFT |   62u << 1),
       
   713 
       
   714     // Trap instructions
       
   715     TDI_OPCODE     = (2u  << OPCODE_SHIFT),
       
   716     TWI_OPCODE     = (3u  << OPCODE_SHIFT),
       
   717     TD_OPCODE      = (31u << OPCODE_SHIFT |   68u << 1),
       
   718     TW_OPCODE      = (31u << OPCODE_SHIFT |    4u << 1),
       
   719 
       
   720     // Atomics.
       
   721     LBARX_OPCODE   = (31u << OPCODE_SHIFT |   52u << 1),
       
   722     LHARX_OPCODE   = (31u << OPCODE_SHIFT |  116u << 1),
       
   723     LWARX_OPCODE   = (31u << OPCODE_SHIFT |   20u << 1),
       
   724     LDARX_OPCODE   = (31u << OPCODE_SHIFT |   84u << 1),
       
   725     LQARX_OPCODE   = (31u << OPCODE_SHIFT |  276u << 1),
       
   726     STBCX_OPCODE   = (31u << OPCODE_SHIFT |  694u << 1),
       
   727     STHCX_OPCODE   = (31u << OPCODE_SHIFT |  726u << 1),
       
   728     STWCX_OPCODE   = (31u << OPCODE_SHIFT |  150u << 1),
       
   729     STDCX_OPCODE   = (31u << OPCODE_SHIFT |  214u << 1),
       
   730     STQCX_OPCODE   = (31u << OPCODE_SHIFT |  182u << 1)
       
   731 
       
   732   };
       
   733 
       
   734   // Trap instructions TO bits
       
   735   enum trap_to_bits {
       
   736     // single bits
       
   737     traptoLessThanSigned      = 1 << 4, // 0, left end
       
   738     traptoGreaterThanSigned   = 1 << 3,
       
   739     traptoEqual               = 1 << 2,
       
   740     traptoLessThanUnsigned    = 1 << 1,
       
   741     traptoGreaterThanUnsigned = 1 << 0, // 4, right end
       
   742 
       
   743     // compound ones
       
   744     traptoUnconditional       = (traptoLessThanSigned |
       
   745                                  traptoGreaterThanSigned |
       
   746                                  traptoEqual |
       
   747                                  traptoLessThanUnsigned |
       
   748                                  traptoGreaterThanUnsigned)
       
   749   };
       
   750 
       
   751   // Branch hints BH field
       
   752   enum branch_hint_bh {
       
   753     // bclr cases:
       
   754     bhintbhBCLRisReturn            = 0,
       
   755     bhintbhBCLRisNotReturnButSame  = 1,
       
   756     bhintbhBCLRisNotPredictable    = 3,
       
   757 
       
   758     // bcctr cases:
       
   759     bhintbhBCCTRisNotReturnButSame = 0,
       
   760     bhintbhBCCTRisNotPredictable   = 3
       
   761   };
       
   762 
       
   763   // Branch prediction hints AT field
       
   764   enum branch_hint_at {
       
   765     bhintatNoHint     = 0,  // at=00
       
   766     bhintatIsNotTaken = 2,  // at=10
       
   767     bhintatIsTaken    = 3   // at=11
       
   768   };
       
   769 
       
   770   // Branch prediction hints
       
   771   enum branch_hint_concept {
       
   772     // Use the same encoding as branch_hint_at to simply code.
       
   773     bhintNoHint       = bhintatNoHint,
       
   774     bhintIsNotTaken   = bhintatIsNotTaken,
       
   775     bhintIsTaken      = bhintatIsTaken
       
   776   };
       
   777 
       
   778   // Used in BO field of branch instruction.
       
   779   enum branch_condition {
       
   780     bcondCRbiIs0      =  4, // bo=001at
       
   781     bcondCRbiIs1      = 12, // bo=011at
       
   782     bcondAlways       = 20  // bo=10100
       
   783   };
       
   784 
       
   785   // Branch condition with combined prediction hints.
       
   786   enum branch_condition_with_hint {
       
   787     bcondCRbiIs0_bhintNoHint     = bcondCRbiIs0 | bhintatNoHint,
       
   788     bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
       
   789     bcondCRbiIs0_bhintIsTaken    = bcondCRbiIs0 | bhintatIsTaken,
       
   790     bcondCRbiIs1_bhintNoHint     = bcondCRbiIs1 | bhintatNoHint,
       
   791     bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
       
   792     bcondCRbiIs1_bhintIsTaken    = bcondCRbiIs1 | bhintatIsTaken,
       
   793   };
       
   794 
       
   795   // Elemental Memory Barriers (>=Power 8)
       
   796   enum Elemental_Membar_mask_bits {
       
   797     StoreStore = 1 << 0,
       
   798     StoreLoad  = 1 << 1,
       
   799     LoadStore  = 1 << 2,
       
   800     LoadLoad   = 1 << 3
       
   801   };
       
   802 
       
   803   // Branch prediction hints.
       
   804   inline static int add_bhint_to_boint(const int bhint, const int boint) {
       
   805     switch (boint) {
       
   806       case bcondCRbiIs0:
       
   807       case bcondCRbiIs1:
       
   808         // branch_hint and branch_hint_at have same encodings
       
   809         assert(   (int)bhintNoHint     == (int)bhintatNoHint
       
   810                && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
       
   811                && (int)bhintIsTaken    == (int)bhintatIsTaken,
       
   812                "wrong encodings");
       
   813         assert((bhint & 0x03) == bhint, "wrong encodings");
       
   814         return (boint & ~0x03) | bhint;
       
   815       case bcondAlways:
       
   816         // no branch_hint
       
   817         return boint;
       
   818       default:
       
   819         ShouldNotReachHere();
       
   820         return 0;
       
   821     }
       
   822   }
       
   823 
       
   824   // Extract bcond from boint.
       
   825   inline static int inv_boint_bcond(const int boint) {
       
   826     int r_bcond = boint & ~0x03;
       
   827     assert(r_bcond == bcondCRbiIs0 ||
       
   828            r_bcond == bcondCRbiIs1 ||
       
   829            r_bcond == bcondAlways,
       
   830            "bad branch condition");
       
   831     return r_bcond;
       
   832   }
       
   833 
       
   834   // Extract bhint from boint.
       
   835   inline static int inv_boint_bhint(const int boint) {
       
   836     int r_bhint = boint & 0x03;
       
   837     assert(r_bhint == bhintatNoHint ||
       
   838            r_bhint == bhintatIsNotTaken ||
       
   839            r_bhint == bhintatIsTaken,
       
   840            "bad branch hint");
       
   841     return r_bhint;
       
   842   }
       
   843 
       
   844   // Calculate opposite of given bcond.
       
   845   inline static int opposite_bcond(const int bcond) {
       
   846     switch (bcond) {
       
   847       case bcondCRbiIs0:
       
   848         return bcondCRbiIs1;
       
   849       case bcondCRbiIs1:
       
   850         return bcondCRbiIs0;
       
   851       default:
       
   852         ShouldNotReachHere();
       
   853         return 0;
       
   854     }
       
   855   }
       
   856 
       
   857   // Calculate opposite of given bhint.
       
   858   inline static int opposite_bhint(const int bhint) {
       
   859     switch (bhint) {
       
   860       case bhintatNoHint:
       
   861         return bhintatNoHint;
       
   862       case bhintatIsNotTaken:
       
   863         return bhintatIsTaken;
       
   864       case bhintatIsTaken:
       
   865         return bhintatIsNotTaken;
       
   866       default:
       
   867         ShouldNotReachHere();
       
   868         return 0;
       
   869     }
       
   870   }
       
   871 
       
   872   // PPC branch instructions
       
   873   enum ppcops {
       
   874     b_op    = 18,
       
   875     bc_op   = 16,
       
   876     bcr_op  = 19
       
   877   };
       
   878 
       
   879   enum Condition {
       
   880     negative         = 0,
       
   881     less             = 0,
       
   882     positive         = 1,
       
   883     greater          = 1,
       
   884     zero             = 2,
       
   885     equal            = 2,
       
   886     summary_overflow = 3,
       
   887   };
       
   888 
       
   889  public:
       
   890   // Helper functions for groups of instructions
       
   891 
       
   892   enum Predict { pt = 1, pn = 0 }; // pt = predict taken
       
   893 
       
   894   // Instruction must start at passed address.
       
   895   static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
       
   896 
       
   897   // longest instructions
       
   898   static int instr_maxlen() { return BytesPerInstWord; }
       
   899 
       
   900   // Test if x is within signed immediate range for nbits.
       
   901   static bool is_simm(int x, unsigned int nbits) {
       
   902     assert(0 < nbits && nbits < 32, "out of bounds");
       
   903     const int   min      = -(((int)1) << nbits-1);
       
   904     const int   maxplus1 =  (((int)1) << nbits-1);
       
   905     return min <= x && x < maxplus1;
       
   906   }
       
   907 
       
   908   static bool is_simm(jlong x, unsigned int nbits) {
       
   909     assert(0 < nbits && nbits < 64, "out of bounds");
       
   910     const jlong min      = -(((jlong)1) << nbits-1);
       
   911     const jlong maxplus1 =  (((jlong)1) << nbits-1);
       
   912     return min <= x && x < maxplus1;
       
   913   }
       
   914 
       
   915   // Test if x is within unsigned immediate range for nbits.
       
   916   static bool is_uimm(int x, unsigned int nbits) {
       
   917     assert(0 < nbits && nbits < 32, "out of bounds");
       
   918     const unsigned int maxplus1 = (((unsigned int)1) << nbits);
       
   919     return (unsigned int)x < maxplus1;
       
   920   }
       
   921 
       
   922   static bool is_uimm(jlong x, unsigned int nbits) {
       
   923     assert(0 < nbits && nbits < 64, "out of bounds");
       
   924     const julong maxplus1 = (((julong)1) << nbits);
       
   925     return (julong)x < maxplus1;
       
   926   }
       
   927 
       
   928  protected:
       
   929   // helpers
       
   930 
       
   931   // X is supposed to fit in a field "nbits" wide
       
   932   // and be sign-extended. Check the range.
       
   933   static void assert_signed_range(intptr_t x, int nbits) {
       
   934     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
       
   935            "value out of range");
       
   936   }
       
   937 
       
   938   static void assert_signed_word_disp_range(intptr_t x, int nbits) {
       
   939     assert((x & 3) == 0, "not word aligned");
       
   940     assert_signed_range(x, nbits + 2);
       
   941   }
       
   942 
       
   943   static void assert_unsigned_const(int x, int nbits) {
       
   944     assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
       
   945   }
       
   946 
       
   947   static int fmask(juint hi_bit, juint lo_bit) {
       
   948     assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
       
   949     return (1 << ( hi_bit-lo_bit + 1 )) - 1;
       
   950   }
       
   951 
       
   952   // inverse of u_field
       
   953   static int inv_u_field(int x, int hi_bit, int lo_bit) {
       
   954     juint r = juint(x) >> lo_bit;
       
   955     r &= fmask(hi_bit, lo_bit);
       
   956     return int(r);
       
   957   }
       
   958 
       
   959   // signed version: extract from field and sign-extend
       
   960   static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
       
   961     x = x << (31-hi_bit);
       
   962     x = x >> (31-hi_bit+lo_bit);
       
   963     return x;
       
   964   }
       
   965 
       
   966   static int u_field(int x, int hi_bit, int lo_bit) {
       
   967     assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
       
   968     int r = x << lo_bit;
       
   969     assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
       
   970     return r;
       
   971   }
       
   972 
       
   973   // Same as u_field for signed values
       
   974   static int s_field(int x, int hi_bit, int lo_bit) {
       
   975     int nbits = hi_bit - lo_bit + 1;
       
   976     assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
       
   977       "value out of range");
       
   978     x &= fmask(hi_bit, lo_bit);
       
   979     int r = x << lo_bit;
       
   980     return r;
       
   981   }
       
   982 
       
   983   // inv_op for ppc instructions
       
   984   static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
       
   985 
       
   986   // Determine target address from li, bd field of branch instruction.
       
   987   static intptr_t inv_li_field(int x) {
       
   988     intptr_t r = inv_s_field_ppc(x, 25, 2);
       
   989     r = (r << 2);
       
   990     return r;
       
   991   }
       
   992   static intptr_t inv_bd_field(int x, intptr_t pos) {
       
   993     intptr_t r = inv_s_field_ppc(x, 15, 2);
       
   994     r = (r << 2) + pos;
       
   995     return r;
       
   996   }
       
   997 
       
   998   #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
       
   999   #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
       
  1000   // Extract instruction fields from instruction words.
       
  1001  public:
       
  1002   static int inv_ra_field(int x)  { return inv_opp_u_field(x, 15, 11); }
       
  1003   static int inv_rb_field(int x)  { return inv_opp_u_field(x, 20, 16); }
       
  1004   static int inv_rt_field(int x)  { return inv_opp_u_field(x, 10,  6); }
       
  1005   static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
       
  1006   static int inv_rs_field(int x)  { return inv_opp_u_field(x, 10,  6); }
       
  1007   // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
       
  1008   // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
       
  1009   static int inv_ds_field(int x)  { return inv_opp_s_field(x, 29, 16) << 2; }
       
  1010   static int inv_d1_field(int x)  { return inv_opp_s_field(x, 31, 16); }
       
  1011   static int inv_si_field(int x)  { return inv_opp_s_field(x, 31, 16); }
       
  1012   static int inv_to_field(int x)  { return inv_opp_u_field(x, 10, 6);  }
       
  1013   static int inv_lk_field(int x)  { return inv_opp_u_field(x, 31, 31); }
       
  1014   static int inv_bo_field(int x)  { return inv_opp_u_field(x, 10,  6); }
       
  1015   static int inv_bi_field(int x)  { return inv_opp_u_field(x, 15, 11); }
       
  1016 
       
  1017   #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
       
  1018   #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
       
  1019 
       
  1020   // instruction fields
       
  1021   static int aa(       int         x)  { return  opp_u_field(x,             30, 30); }
       
  1022   static int ba(       int         x)  { return  opp_u_field(x,             15, 11); }
       
  1023   static int bb(       int         x)  { return  opp_u_field(x,             20, 16); }
       
  1024   static int bc(       int         x)  { return  opp_u_field(x,             25, 21); }
       
  1025   static int bd(       int         x)  { return  opp_s_field(x,             29, 16); }
       
  1026   static int bf( ConditionRegister cr) { return  bf(cr->encoding()); }
       
  1027   static int bf(       int         x)  { return  opp_u_field(x,              8,  6); }
       
  1028   static int bfa(ConditionRegister cr) { return  bfa(cr->encoding()); }
       
  1029   static int bfa(      int         x)  { return  opp_u_field(x,             13, 11); }
       
  1030   static int bh(       int         x)  { return  opp_u_field(x,             20, 19); }
       
  1031   static int bi(       int         x)  { return  opp_u_field(x,             15, 11); }
       
  1032   static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
       
  1033   static int bo(       int         x)  { return  opp_u_field(x,             10,  6); }
       
  1034   static int bt(       int         x)  { return  opp_u_field(x,             10,  6); }
       
  1035   static int d1(       int         x)  { return  opp_s_field(x,             31, 16); }
       
  1036   static int ds(       int         x)  { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
       
  1037   static int eh(       int         x)  { return  opp_u_field(x,             31, 31); }
       
  1038   static int flm(      int         x)  { return  opp_u_field(x,             14,  7); }
       
  1039   static int fra(    FloatRegister r)  { return  fra(r->encoding());}
       
  1040   static int frb(    FloatRegister r)  { return  frb(r->encoding());}
       
  1041   static int frc(    FloatRegister r)  { return  frc(r->encoding());}
       
  1042   static int frs(    FloatRegister r)  { return  frs(r->encoding());}
       
  1043   static int frt(    FloatRegister r)  { return  frt(r->encoding());}
       
  1044   static int fra(      int         x)  { return  opp_u_field(x,             15, 11); }
       
  1045   static int frb(      int         x)  { return  opp_u_field(x,             20, 16); }
       
  1046   static int frc(      int         x)  { return  opp_u_field(x,             25, 21); }
       
  1047   static int frs(      int         x)  { return  opp_u_field(x,             10,  6); }
       
  1048   static int frt(      int         x)  { return  opp_u_field(x,             10,  6); }
       
  1049   static int fxm(      int         x)  { return  opp_u_field(x,             19, 12); }
       
  1050   static int l10(      int         x)  { return  opp_u_field(x,             10, 10); }
       
  1051   static int l15(      int         x)  { return  opp_u_field(x,             15, 15); }
       
  1052   static int l910(     int         x)  { return  opp_u_field(x,             10,  9); }
       
  1053   static int e1215(    int         x)  { return  opp_u_field(x,             15, 12); }
       
  1054   static int lev(      int         x)  { return  opp_u_field(x,             26, 20); }
       
  1055   static int li(       int         x)  { return  opp_s_field(x,             29,  6); }
       
  1056   static int lk(       int         x)  { return  opp_u_field(x,             31, 31); }
       
  1057   static int mb2125(   int         x)  { return  opp_u_field(x,             25, 21); }
       
  1058   static int me2630(   int         x)  { return  opp_u_field(x,             30, 26); }
       
  1059   static int mb2126(   int         x)  { return  opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
       
  1060   static int me2126(   int         x)  { return  mb2126(x); }
       
  1061   static int nb(       int         x)  { return  opp_u_field(x,             20, 16); }
       
  1062   //static int opcd(   int         x)  { return  opp_u_field(x,              5,  0); } // is contained in our opcodes
       
  1063   static int oe(       int         x)  { return  opp_u_field(x,             21, 21); }
       
  1064   static int ra(       Register    r)  { return  ra(r->encoding()); }
       
  1065   static int ra(       int         x)  { return  opp_u_field(x,             15, 11); }
       
  1066   static int rb(       Register    r)  { return  rb(r->encoding()); }
       
  1067   static int rb(       int         x)  { return  opp_u_field(x,             20, 16); }
       
  1068   static int rc(       int         x)  { return  opp_u_field(x,             31, 31); }
       
  1069   static int rs(       Register    r)  { return  rs(r->encoding()); }
       
  1070   static int rs(       int         x)  { return  opp_u_field(x,             10,  6); }
       
  1071   // we don't want to use R0 in memory accesses, because it has value `0' then
       
  1072   static int ra0mem(   Register    r)  { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
       
  1073   static int ra0mem(   int         x)  { assert(x != 0,  "cannot use register 0 in memory access");  return ra(x); }
       
  1074 
       
  1075   // register r is target
       
  1076   static int rt(       Register    r)  { return rs(r); }
       
  1077   static int rt(       int         x)  { return rs(x); }
       
  1078   static int rta(      Register    r)  { return ra(r); }
       
  1079   static int rta0mem(  Register    r)  { rta(r); return ra0mem(r); }
       
  1080 
       
  1081   static int sh1620(   int         x)  { return  opp_u_field(x,             20, 16); }
       
  1082   static int sh30(     int         x)  { return  opp_u_field(x,             30, 30); }
       
  1083   static int sh162030( int         x)  { return  sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
       
  1084   static int si(       int         x)  { return  opp_s_field(x,             31, 16); }
       
  1085   static int spr(      int         x)  { return  opp_u_field(x,             20, 11); }
       
  1086   static int sr(       int         x)  { return  opp_u_field(x,             15, 12); }
       
  1087   static int tbr(      int         x)  { return  opp_u_field(x,             20, 11); }
       
  1088   static int th(       int         x)  { return  opp_u_field(x,             10,  7); }
       
  1089   static int thct(     int         x)  { assert((x&8) == 0, "must be valid cache specification");  return th(x); }
       
  1090   static int thds(     int         x)  { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
       
  1091   static int to(       int         x)  { return  opp_u_field(x,             10,  6); }
       
  1092   static int u(        int         x)  { return  opp_u_field(x,             19, 16); }
       
  1093   static int ui(       int         x)  { return  opp_u_field(x,             31, 16); }
       
  1094 
       
  1095   // Support vector instructions for >= Power6.
       
  1096   static int vra(      int         x)  { return  opp_u_field(x,             15, 11); }
       
  1097   static int vrb(      int         x)  { return  opp_u_field(x,             20, 16); }
       
  1098   static int vrc(      int         x)  { return  opp_u_field(x,             25, 21); }
       
  1099   static int vrs(      int         x)  { return  opp_u_field(x,             10,  6); }
       
  1100   static int vrt(      int         x)  { return  opp_u_field(x,             10,  6); }
       
  1101 
       
  1102   static int vra(   VectorRegister r)  { return  vra(r->encoding());}
       
  1103   static int vrb(   VectorRegister r)  { return  vrb(r->encoding());}
       
  1104   static int vrc(   VectorRegister r)  { return  vrc(r->encoding());}
       
  1105   static int vrs(   VectorRegister r)  { return  vrs(r->encoding());}
       
  1106   static int vrt(   VectorRegister r)  { return  vrt(r->encoding());}
       
  1107 
       
  1108   // Only used on SHA sigma instructions (VX-form)
       
  1109   static int vst(      int         x)  { return  opp_u_field(x,             16, 16); }
       
  1110   static int vsix(     int         x)  { return  opp_u_field(x,             20, 17); }
       
  1111 
       
  1112   // Support Vector-Scalar (VSX) instructions.
       
  1113   static int vsra(      int         x)  { return  opp_u_field(x & 0x1F,     15, 11) | opp_u_field((x & 0x20) >> 5, 29, 29); }
       
  1114   static int vsrb(      int         x)  { return  opp_u_field(x & 0x1F,     20, 16) | opp_u_field((x & 0x20) >> 5, 30, 30); }
       
  1115   static int vsrs(      int         x)  { return  opp_u_field(x & 0x1F,     10,  6) | opp_u_field((x & 0x20) >> 5, 31, 31); }
       
  1116   static int vsrt(      int         x)  { return  vsrs(x); }
       
  1117   static int vsdm(      int         x)  { return  opp_u_field(x,            23, 22); }
       
  1118 
       
  1119   static int vsra(   VectorSRegister r)  { return  vsra(r->encoding());}
       
  1120   static int vsrb(   VectorSRegister r)  { return  vsrb(r->encoding());}
       
  1121   static int vsrs(   VectorSRegister r)  { return  vsrs(r->encoding());}
       
  1122   static int vsrt(   VectorSRegister r)  { return  vsrt(r->encoding());}
       
  1123 
       
  1124   static int vsplt_uim( int        x)  { return  opp_u_field(x,             15, 12); } // for vsplt* instructions
       
  1125   static int vsplti_sim(int        x)  { return  opp_u_field(x,             15, 11); } // for vsplti* instructions
       
  1126   static int vsldoi_shb(int        x)  { return  opp_u_field(x,             25, 22); } // for vsldoi instruction
       
  1127   static int vcmp_rc(   int        x)  { return  opp_u_field(x,             21, 21); } // for vcmp* instructions
       
  1128 
       
  1129   //static int xo1(     int        x)  { return  opp_u_field(x,             29, 21); }// is contained in our opcodes
       
  1130   //static int xo2(     int        x)  { return  opp_u_field(x,             30, 21); }// is contained in our opcodes
       
  1131   //static int xo3(     int        x)  { return  opp_u_field(x,             30, 22); }// is contained in our opcodes
       
  1132   //static int xo4(     int        x)  { return  opp_u_field(x,             30, 26); }// is contained in our opcodes
       
  1133   //static int xo5(     int        x)  { return  opp_u_field(x,             29, 27); }// is contained in our opcodes
       
  1134   //static int xo6(     int        x)  { return  opp_u_field(x,             30, 27); }// is contained in our opcodes
       
  1135   //static int xo7(     int        x)  { return  opp_u_field(x,             31, 30); }// is contained in our opcodes
       
  1136 
       
  1137  protected:
       
  1138   // Compute relative address for branch.
       
  1139   static intptr_t disp(intptr_t x, intptr_t off) {
       
  1140     int xx = x - off;
       
  1141     xx = xx >> 2;
       
  1142     return xx;
       
  1143   }
       
  1144 
       
  1145  public:
       
  1146   // signed immediate, in low bits, nbits long
       
  1147   static int simm(int x, int nbits) {
       
  1148     assert_signed_range(x, nbits);
       
  1149     return x & ((1 << nbits) - 1);
       
  1150   }
       
  1151 
       
  1152   // unsigned immediate, in low bits, nbits long
       
  1153   static int uimm(int x, int nbits) {
       
  1154     assert_unsigned_const(x, nbits);
       
  1155     return x & ((1 << nbits) - 1);
       
  1156   }
       
  1157 
       
  1158   static void set_imm(int* instr, short s) {
       
  1159     // imm is always in the lower 16 bits of the instruction,
       
  1160     // so this is endian-neutral. Same for the get_imm below.
       
  1161     uint32_t w = *(uint32_t *)instr;
       
  1162     *instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
       
  1163   }
       
  1164 
       
  1165   static int get_imm(address a, int instruction_number) {
       
  1166     return (short)((int *)a)[instruction_number];
       
  1167   }
       
  1168 
       
  1169   static inline int hi16_signed(  int x) { return (int)(int16_t)(x >> 16); }
       
  1170   static inline int lo16_unsigned(int x) { return x & 0xffff; }
       
  1171 
       
  1172  protected:
       
  1173 
       
  1174   // Extract the top 32 bits in a 64 bit word.
       
  1175   static int32_t hi32(int64_t x) {
       
  1176     int32_t r = int32_t((uint64_t)x >> 32);
       
  1177     return r;
       
  1178   }
       
  1179 
       
  1180  public:
       
  1181 
       
  1182   static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
       
  1183     return ((addr + (a - 1)) & ~(a - 1));
       
  1184   }
       
  1185 
       
  1186   static inline bool is_aligned(unsigned int addr, unsigned int a) {
       
  1187     return (0 == addr % a);
       
  1188   }
       
  1189 
       
  1190   void flush() {
       
  1191     AbstractAssembler::flush();
       
  1192   }
       
  1193 
       
  1194   inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
       
  1195   inline void emit_data(int);
       
  1196   inline void emit_data(int, RelocationHolder const&);
       
  1197   inline void emit_data(int, relocInfo::relocType rtype);
       
  1198 
       
  1199   // Emit an address.
       
  1200   inline address emit_addr(const address addr = NULL);
       
  1201 
       
  1202 #if !defined(ABI_ELFv2)
       
  1203   // Emit a function descriptor with the specified entry point, TOC,
       
  1204   // and ENV. If the entry point is NULL, the descriptor will point
       
  1205   // just past the descriptor.
       
  1206   // Use values from friend functions as defaults.
       
  1207   inline address emit_fd(address entry = NULL,
       
  1208                          address toc = (address) FunctionDescriptor::friend_toc,
       
  1209                          address env = (address) FunctionDescriptor::friend_env);
       
  1210 #endif
       
  1211 
       
  1212   /////////////////////////////////////////////////////////////////////////////////////
       
  1213   // PPC instructions
       
  1214   /////////////////////////////////////////////////////////////////////////////////////
       
  1215 
       
  1216   // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
       
  1217   // immediates. The normal instruction encoders enforce that r0 is not
       
  1218   // passed to them. Use either extended mnemonics encoders or the special ra0
       
  1219   // versions.
       
  1220 
       
  1221   // Issue an illegal instruction.
       
  1222   inline void illtrap();
       
  1223   static inline bool is_illtrap(int x);
       
  1224 
       
  1225   // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
       
  1226   inline void addi( Register d, Register a, int si16);
       
  1227   inline void addis(Register d, Register a, int si16);
       
  1228  private:
       
  1229   inline void addi_r0ok( Register d, Register a, int si16);
       
  1230   inline void addis_r0ok(Register d, Register a, int si16);
       
  1231  public:
       
  1232   inline void addic_( Register d, Register a, int si16);
       
  1233   inline void subfic( Register d, Register a, int si16);
       
  1234   inline void add(    Register d, Register a, Register b);
       
  1235   inline void add_(   Register d, Register a, Register b);
       
  1236   inline void subf(   Register d, Register a, Register b);  // d = b - a    "Sub_from", as in ppc spec.
       
  1237   inline void sub(    Register d, Register a, Register b);  // d = a - b    Swap operands of subf for readability.
       
  1238   inline void subf_(  Register d, Register a, Register b);
       
  1239   inline void addc(   Register d, Register a, Register b);
       
  1240   inline void addc_(  Register d, Register a, Register b);
       
  1241   inline void subfc(  Register d, Register a, Register b);
       
  1242   inline void subfc_( Register d, Register a, Register b);
       
  1243   inline void adde(   Register d, Register a, Register b);
       
  1244   inline void adde_(  Register d, Register a, Register b);
       
  1245   inline void subfe(  Register d, Register a, Register b);
       
  1246   inline void subfe_( Register d, Register a, Register b);
       
  1247   inline void addme(  Register d, Register a);
       
  1248   inline void addme_( Register d, Register a);
       
  1249   inline void subfme( Register d, Register a);
       
  1250   inline void subfme_(Register d, Register a);
       
  1251   inline void addze(  Register d, Register a);
       
  1252   inline void addze_( Register d, Register a);
       
  1253   inline void subfze( Register d, Register a);
       
  1254   inline void subfze_(Register d, Register a);
       
  1255   inline void neg(    Register d, Register a);
       
  1256   inline void neg_(   Register d, Register a);
       
  1257   inline void mulli(  Register d, Register a, int si16);
       
  1258   inline void mulld(  Register d, Register a, Register b);
       
  1259   inline void mulld_( Register d, Register a, Register b);
       
  1260   inline void mullw(  Register d, Register a, Register b);
       
  1261   inline void mullw_( Register d, Register a, Register b);
       
  1262   inline void mulhw(  Register d, Register a, Register b);
       
  1263   inline void mulhw_( Register d, Register a, Register b);
       
  1264   inline void mulhwu( Register d, Register a, Register b);
       
  1265   inline void mulhwu_(Register d, Register a, Register b);
       
  1266   inline void mulhd(  Register d, Register a, Register b);
       
  1267   inline void mulhd_( Register d, Register a, Register b);
       
  1268   inline void mulhdu( Register d, Register a, Register b);
       
  1269   inline void mulhdu_(Register d, Register a, Register b);
       
  1270   inline void divd(   Register d, Register a, Register b);
       
  1271   inline void divd_(  Register d, Register a, Register b);
       
  1272   inline void divw(   Register d, Register a, Register b);
       
  1273   inline void divw_(  Register d, Register a, Register b);
       
  1274 
       
  1275   // Fixed-Point Arithmetic Instructions with Overflow detection
       
  1276   inline void addo(    Register d, Register a, Register b);
       
  1277   inline void addo_(   Register d, Register a, Register b);
       
  1278   inline void subfo(   Register d, Register a, Register b);
       
  1279   inline void subfo_(  Register d, Register a, Register b);
       
  1280   inline void addco(   Register d, Register a, Register b);
       
  1281   inline void addco_(  Register d, Register a, Register b);
       
  1282   inline void subfco(  Register d, Register a, Register b);
       
  1283   inline void subfco_( Register d, Register a, Register b);
       
  1284   inline void addeo(   Register d, Register a, Register b);
       
  1285   inline void addeo_(  Register d, Register a, Register b);
       
  1286   inline void subfeo(  Register d, Register a, Register b);
       
  1287   inline void subfeo_( Register d, Register a, Register b);
       
  1288   inline void addmeo(  Register d, Register a);
       
  1289   inline void addmeo_( Register d, Register a);
       
  1290   inline void subfmeo( Register d, Register a);
       
  1291   inline void subfmeo_(Register d, Register a);
       
  1292   inline void addzeo(  Register d, Register a);
       
  1293   inline void addzeo_( Register d, Register a);
       
  1294   inline void subfzeo( Register d, Register a);
       
  1295   inline void subfzeo_(Register d, Register a);
       
  1296   inline void nego(    Register d, Register a);
       
  1297   inline void nego_(   Register d, Register a);
       
  1298   inline void mulldo(  Register d, Register a, Register b);
       
  1299   inline void mulldo_( Register d, Register a, Register b);
       
  1300   inline void mullwo(  Register d, Register a, Register b);
       
  1301   inline void mullwo_( Register d, Register a, Register b);
       
  1302   inline void divdo(   Register d, Register a, Register b);
       
  1303   inline void divdo_(  Register d, Register a, Register b);
       
  1304   inline void divwo(   Register d, Register a, Register b);
       
  1305   inline void divwo_(  Register d, Register a, Register b);
       
  1306 
       
  1307   // extended mnemonics
       
  1308   inline void li(   Register d, int si16);
       
  1309   inline void lis(  Register d, int si16);
       
  1310   inline void addir(Register d, int si16, Register a);
       
  1311 
       
  1312   static bool is_addi(int x) {
       
  1313      return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
       
  1314   }
       
  1315   static bool is_addis(int x) {
       
  1316      return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
       
  1317   }
       
  1318   static bool is_bxx(int x) {
       
  1319      return BXX_OPCODE == (x & BXX_OPCODE_MASK);
       
  1320   }
       
  1321   static bool is_b(int x) {
       
  1322      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
       
  1323   }
       
  1324   static bool is_bl(int x) {
       
  1325      return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
       
  1326   }
       
  1327   static bool is_bcxx(int x) {
       
  1328      return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
       
  1329   }
       
  1330   static bool is_bxx_or_bcxx(int x) {
       
  1331      return is_bxx(x) || is_bcxx(x);
       
  1332   }
       
  1333   static bool is_bctrl(int x) {
       
  1334      return x == 0x4e800421;
       
  1335   }
       
  1336   static bool is_bctr(int x) {
       
  1337      return x == 0x4e800420;
       
  1338   }
       
  1339   static bool is_bclr(int x) {
       
  1340      return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
       
  1341   }
       
  1342   static bool is_li(int x) {
       
  1343      return is_addi(x) && inv_ra_field(x)==0;
       
  1344   }
       
  1345   static bool is_lis(int x) {
       
  1346      return is_addis(x) && inv_ra_field(x)==0;
       
  1347   }
       
  1348   static bool is_mtctr(int x) {
       
  1349      return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
       
  1350   }
       
  1351   static bool is_ld(int x) {
       
  1352      return LD_OPCODE == (x & LD_OPCODE_MASK);
       
  1353   }
       
  1354   static bool is_std(int x) {
       
  1355      return STD_OPCODE == (x & STD_OPCODE_MASK);
       
  1356   }
       
  1357   static bool is_stdu(int x) {
       
  1358      return STDU_OPCODE == (x & STDU_OPCODE_MASK);
       
  1359   }
       
  1360   static bool is_stdx(int x) {
       
  1361      return STDX_OPCODE == (x & STDX_OPCODE_MASK);
       
  1362   }
       
  1363   static bool is_stdux(int x) {
       
  1364      return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
       
  1365   }
       
  1366   static bool is_stwx(int x) {
       
  1367      return STWX_OPCODE == (x & STWX_OPCODE_MASK);
       
  1368   }
       
  1369   static bool is_stwux(int x) {
       
  1370      return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
       
  1371   }
       
  1372   static bool is_stw(int x) {
       
  1373      return STW_OPCODE == (x & STW_OPCODE_MASK);
       
  1374   }
       
  1375   static bool is_stwu(int x) {
       
  1376      return STWU_OPCODE == (x & STWU_OPCODE_MASK);
       
  1377   }
       
  1378   static bool is_ori(int x) {
       
  1379      return ORI_OPCODE == (x & ORI_OPCODE_MASK);
       
  1380   };
       
  1381   static bool is_oris(int x) {
       
  1382      return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
       
  1383   };
       
  1384   static bool is_rldicr(int x) {
       
  1385      return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
       
  1386   };
       
  1387   static bool is_nop(int x) {
       
  1388     return x == 0x60000000;
       
  1389   }
       
  1390   // endgroup opcode for Power6
       
  1391   static bool is_endgroup(int x) {
       
  1392     return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
       
  1393   }
       
  1394 
       
  1395 
       
  1396  private:
       
  1397   // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
       
  1398   inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
       
  1399   inline void cmp(  ConditionRegister bf, int l, Register a, Register b);
       
  1400   inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
       
  1401   inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
       
  1402 
       
  1403  public:
       
  1404   // extended mnemonics of Compare Instructions
       
  1405   inline void cmpwi( ConditionRegister crx, Register a, int si16);
       
  1406   inline void cmpdi( ConditionRegister crx, Register a, int si16);
       
  1407   inline void cmpw(  ConditionRegister crx, Register a, Register b);
       
  1408   inline void cmpd(  ConditionRegister crx, Register a, Register b);
       
  1409   inline void cmplwi(ConditionRegister crx, Register a, int ui16);
       
  1410   inline void cmpldi(ConditionRegister crx, Register a, int ui16);
       
  1411   inline void cmplw( ConditionRegister crx, Register a, Register b);
       
  1412   inline void cmpld( ConditionRegister crx, Register a, Register b);
       
  1413 
       
  1414   inline void isel(   Register d, Register a, Register b, int bc);
       
  1415   // Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
       
  1416   inline void isel(   Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
       
  1417   // Set d = 0 if (cr.cc) equals 1, otherwise b.
       
  1418   inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
       
  1419 
       
  1420   // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
       
  1421          void andi(   Register a, Register s, long ui16);   // optimized version
       
  1422   inline void andi_(  Register a, Register s, int ui16);
       
  1423   inline void andis_( Register a, Register s, int ui16);
       
  1424   inline void ori(    Register a, Register s, int ui16);
       
  1425   inline void oris(   Register a, Register s, int ui16);
       
  1426   inline void xori(   Register a, Register s, int ui16);
       
  1427   inline void xoris(  Register a, Register s, int ui16);
       
  1428   inline void andr(   Register a, Register s, Register b);  // suffixed by 'r' as 'and' is C++ keyword
       
  1429   inline void and_(   Register a, Register s, Register b);
       
  1430   // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
       
  1431   // SMT-priority change instruction (see SMT instructions below).
       
  1432   inline void or_unchecked(Register a, Register s, Register b);
       
  1433   inline void orr(    Register a, Register s, Register b);  // suffixed by 'r' as 'or' is C++ keyword
       
  1434   inline void or_(    Register a, Register s, Register b);
       
  1435   inline void xorr(   Register a, Register s, Register b);  // suffixed by 'r' as 'xor' is C++ keyword
       
  1436   inline void xor_(   Register a, Register s, Register b);
       
  1437   inline void nand(   Register a, Register s, Register b);
       
  1438   inline void nand_(  Register a, Register s, Register b);
       
  1439   inline void nor(    Register a, Register s, Register b);
       
  1440   inline void nor_(   Register a, Register s, Register b);
       
  1441   inline void andc(   Register a, Register s, Register b);
       
  1442   inline void andc_(  Register a, Register s, Register b);
       
  1443   inline void orc(    Register a, Register s, Register b);
       
  1444   inline void orc_(   Register a, Register s, Register b);
       
  1445   inline void extsb(  Register a, Register s);
       
  1446   inline void extsb_( Register a, Register s);
       
  1447   inline void extsh(  Register a, Register s);
       
  1448   inline void extsh_( Register a, Register s);
       
  1449   inline void extsw(  Register a, Register s);
       
  1450   inline void extsw_( Register a, Register s);
       
  1451 
       
  1452   // extended mnemonics
       
  1453   inline void nop();
       
  1454   // NOP for FP and BR units (different versions to allow them to be in one group)
       
  1455   inline void fpnop0();
       
  1456   inline void fpnop1();
       
  1457   inline void brnop0();
       
  1458   inline void brnop1();
       
  1459   inline void brnop2();
       
  1460 
       
  1461   inline void mr(      Register d, Register s);
       
  1462   inline void ori_opt( Register d, int ui16);
       
  1463   inline void oris_opt(Register d, int ui16);
       
  1464 
       
  1465   // endgroup opcode for Power6
       
  1466   inline void endgroup();
       
  1467 
       
  1468   // count instructions
       
  1469   inline void cntlzw(  Register a, Register s);
       
  1470   inline void cntlzw_( Register a, Register s);
       
  1471   inline void cntlzd(  Register a, Register s);
       
  1472   inline void cntlzd_( Register a, Register s);
       
  1473 
       
  1474   // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
       
  1475   inline void sld(     Register a, Register s, Register b);
       
  1476   inline void sld_(    Register a, Register s, Register b);
       
  1477   inline void slw(     Register a, Register s, Register b);
       
  1478   inline void slw_(    Register a, Register s, Register b);
       
  1479   inline void srd(     Register a, Register s, Register b);
       
  1480   inline void srd_(    Register a, Register s, Register b);
       
  1481   inline void srw(     Register a, Register s, Register b);
       
  1482   inline void srw_(    Register a, Register s, Register b);
       
  1483   inline void srad(    Register a, Register s, Register b);
       
  1484   inline void srad_(   Register a, Register s, Register b);
       
  1485   inline void sraw(    Register a, Register s, Register b);
       
  1486   inline void sraw_(   Register a, Register s, Register b);
       
  1487   inline void sradi(   Register a, Register s, int sh6);
       
  1488   inline void sradi_(  Register a, Register s, int sh6);
       
  1489   inline void srawi(   Register a, Register s, int sh5);
       
  1490   inline void srawi_(  Register a, Register s, int sh5);
       
  1491 
       
  1492   // extended mnemonics for Shift Instructions
       
  1493   inline void sldi(    Register a, Register s, int sh6);
       
  1494   inline void sldi_(   Register a, Register s, int sh6);
       
  1495   inline void slwi(    Register a, Register s, int sh5);
       
  1496   inline void slwi_(   Register a, Register s, int sh5);
       
  1497   inline void srdi(    Register a, Register s, int sh6);
       
  1498   inline void srdi_(   Register a, Register s, int sh6);
       
  1499   inline void srwi(    Register a, Register s, int sh5);
       
  1500   inline void srwi_(   Register a, Register s, int sh5);
       
  1501 
       
  1502   inline void clrrdi(  Register a, Register s, int ui6);
       
  1503   inline void clrrdi_( Register a, Register s, int ui6);
       
  1504   inline void clrldi(  Register a, Register s, int ui6);
       
  1505   inline void clrldi_( Register a, Register s, int ui6);
       
  1506   inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
       
  1507   inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
       
  1508   inline void extrdi(  Register a, Register s, int n, int b);
       
  1509   // testbit with condition register
       
  1510   inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
       
  1511 
       
  1512   // rotate instructions
       
  1513   inline void rotldi(  Register a, Register s, int n);
       
  1514   inline void rotrdi(  Register a, Register s, int n);
       
  1515   inline void rotlwi(  Register a, Register s, int n);
       
  1516   inline void rotrwi(  Register a, Register s, int n);
       
  1517 
       
  1518   // Rotate Instructions
       
  1519   inline void rldic(   Register a, Register s, int sh6, int mb6);
       
  1520   inline void rldic_(  Register a, Register s, int sh6, int mb6);
       
  1521   inline void rldicr(  Register a, Register s, int sh6, int mb6);
       
  1522   inline void rldicr_( Register a, Register s, int sh6, int mb6);
       
  1523   inline void rldicl(  Register a, Register s, int sh6, int mb6);
       
  1524   inline void rldicl_( Register a, Register s, int sh6, int mb6);
       
  1525   inline void rlwinm(  Register a, Register s, int sh5, int mb5, int me5);
       
  1526   inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
       
  1527   inline void rldimi(  Register a, Register s, int sh6, int mb6);
       
  1528   inline void rldimi_( Register a, Register s, int sh6, int mb6);
       
  1529   inline void rlwimi(  Register a, Register s, int sh5, int mb5, int me5);
       
  1530   inline void insrdi(  Register a, Register s, int n,   int b);
       
  1531   inline void insrwi(  Register a, Register s, int n,   int b);
       
  1532 
       
  1533   // PPC 1, section 3.3.2 Fixed-Point Load Instructions
       
  1534   // 4 bytes
       
  1535   inline void lwzx( Register d, Register s1, Register s2);
       
  1536   inline void lwz(  Register d, int si16,    Register s1);
       
  1537   inline void lwzu( Register d, int si16,    Register s1);
       
  1538 
       
  1539   // 4 bytes
       
  1540   inline void lwax( Register d, Register s1, Register s2);
       
  1541   inline void lwa(  Register d, int si16,    Register s1);
       
  1542 
       
  1543   // 4 bytes reversed
       
  1544   inline void lwbrx( Register d, Register s1, Register s2);
       
  1545 
       
  1546   // 2 bytes
       
  1547   inline void lhzx( Register d, Register s1, Register s2);
       
  1548   inline void lhz(  Register d, int si16,    Register s1);
       
  1549   inline void lhzu( Register d, int si16,    Register s1);
       
  1550 
       
  1551   // 2 bytes reversed
       
  1552   inline void lhbrx( Register d, Register s1, Register s2);
       
  1553 
       
  1554   // 2 bytes
       
  1555   inline void lhax( Register d, Register s1, Register s2);
       
  1556   inline void lha(  Register d, int si16,    Register s1);
       
  1557   inline void lhau( Register d, int si16,    Register s1);
       
  1558 
       
  1559   // 1 byte
       
  1560   inline void lbzx( Register d, Register s1, Register s2);
       
  1561   inline void lbz(  Register d, int si16,    Register s1);
       
  1562   inline void lbzu( Register d, int si16,    Register s1);
       
  1563 
       
  1564   // 8 bytes
       
  1565   inline void ldx(  Register d, Register s1, Register s2);
       
  1566   inline void ld(   Register d, int si16,    Register s1);
       
  1567   inline void ldu(  Register d, int si16,    Register s1);
       
  1568 
       
  1569   // 8 bytes reversed
       
  1570   inline void ldbrx( Register d, Register s1, Register s2);
       
  1571 
       
  1572   // For convenience. Load pointer into d from b+s1.
       
  1573   inline void ld_ptr(Register d, int b, Register s1);
       
  1574   DEBUG_ONLY(inline void ld_ptr(Register d, ByteSize b, Register s1);)
       
  1575 
       
  1576   //  PPC 1, section 3.3.3 Fixed-Point Store Instructions
       
  1577   inline void stwx( Register d, Register s1, Register s2);
       
  1578   inline void stw(  Register d, int si16,    Register s1);
       
  1579   inline void stwu( Register d, int si16,    Register s1);
       
  1580   inline void stwbrx( Register d, Register s1, Register s2);
       
  1581 
       
  1582   inline void sthx( Register d, Register s1, Register s2);
       
  1583   inline void sth(  Register d, int si16,    Register s1);
       
  1584   inline void sthu( Register d, int si16,    Register s1);
       
  1585   inline void sthbrx( Register d, Register s1, Register s2);
       
  1586 
       
  1587   inline void stbx( Register d, Register s1, Register s2);
       
  1588   inline void stb(  Register d, int si16,    Register s1);
       
  1589   inline void stbu( Register d, int si16,    Register s1);
       
  1590 
       
  1591   inline void stdx( Register d, Register s1, Register s2);
       
  1592   inline void std(  Register d, int si16,    Register s1);
       
  1593   inline void stdu( Register d, int si16,    Register s1);
       
  1594   inline void stdux(Register s, Register a,  Register b);
       
  1595   inline void stdbrx( Register d, Register s1, Register s2);
       
  1596 
       
  1597   inline void st_ptr(Register d, int si16,    Register s1);
       
  1598   DEBUG_ONLY(inline void st_ptr(Register d, ByteSize b, Register s1);)
       
  1599 
       
  1600   // PPC 1, section 3.3.13 Move To/From System Register Instructions
       
  1601   inline void mtlr( Register s1);
       
  1602   inline void mflr( Register d);
       
  1603   inline void mtctr(Register s1);
       
  1604   inline void mfctr(Register d);
       
  1605   inline void mtcrf(int fxm, Register s);
       
  1606   inline void mfcr( Register d);
       
  1607   inline void mcrf( ConditionRegister crd, ConditionRegister cra);
       
  1608   inline void mtcr( Register s);
       
  1609 
       
  1610   // Special purpose registers
       
  1611   // Exception Register
       
  1612   inline void mtxer(Register s1);
       
  1613   inline void mfxer(Register d);
       
  1614   // Vector Register Save Register
       
  1615   inline void mtvrsave(Register s1);
       
  1616   inline void mfvrsave(Register d);
       
  1617   // Timebase
       
  1618   inline void mftb(Register d);
       
  1619   // Introduced with Power 8:
       
  1620   // Data Stream Control Register
       
  1621   inline void mtdscr(Register s1);
       
  1622   inline void mfdscr(Register d );
       
  1623   // Transactional Memory Registers
       
  1624   inline void mftfhar(Register d);
       
  1625   inline void mftfiar(Register d);
       
  1626   inline void mftexasr(Register d);
       
  1627   inline void mftexasru(Register d);
       
  1628 
       
  1629   // TEXASR bit description
       
  1630   enum transaction_failure_reason {
       
  1631     // Upper half (TEXASRU):
       
  1632     tm_failure_persistent =  7, // The failure is likely to recur on each execution.
       
  1633     tm_disallowed         =  8, // The instruction is not permitted.
       
  1634     tm_nesting_of         =  9, // The maximum transaction level was exceeded.
       
  1635     tm_footprint_of       = 10, // The tracking limit for transactional storage accesses was exceeded.
       
  1636     tm_self_induced_cf    = 11, // A self-induced conflict occurred in Suspended state.
       
  1637     tm_non_trans_cf       = 12, // A conflict occurred with a non-transactional access by another processor.
       
  1638     tm_trans_cf           = 13, // A conflict occurred with another transaction.
       
  1639     tm_translation_cf     = 14, // A conflict occurred with a TLB invalidation.
       
  1640     tm_inst_fetch_cf      = 16, // An instruction fetch was performed from a block that was previously written transactionally.
       
  1641     tm_tabort             = 31, // Termination was caused by the execution of an abort instruction.
       
  1642     // Lower half:
       
  1643     tm_suspended          = 32, // Failure was recorded in Suspended state.
       
  1644     tm_failure_summary    = 36, // Failure has been detected and recorded.
       
  1645     tm_tfiar_exact        = 37, // Value in the TFIAR is exact.
       
  1646     tm_rot                = 38, // Rollback-only transaction.
       
  1647   };
       
  1648 
       
  1649   // PPC 1, section 2.4.1 Branch Instructions
       
  1650   inline void b(  address a, relocInfo::relocType rt = relocInfo::none);
       
  1651   inline void b(  Label& L);
       
  1652   inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
       
  1653   inline void bl( Label& L);
       
  1654   inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
       
  1655   inline void bc( int boint, int biint, Label& L);
       
  1656   inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
       
  1657   inline void bcl(int boint, int biint, Label& L);
       
  1658 
       
  1659   inline void bclr(  int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
       
  1660   inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
       
  1661   inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
       
  1662                          relocInfo::relocType rt = relocInfo::none);
       
  1663   inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
       
  1664                          relocInfo::relocType rt = relocInfo::none);
       
  1665 
       
  1666   // helper function for b, bcxx
       
  1667   inline bool is_within_range_of_b(address a, address pc);
       
  1668   inline bool is_within_range_of_bcxx(address a, address pc);
       
  1669 
       
  1670   // get the destination of a bxx branch (b, bl, ba, bla)
       
  1671   static inline address  bxx_destination(address baddr);
       
  1672   static inline address  bxx_destination(int instr, address pc);
       
  1673   static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
       
  1674 
       
  1675   // extended mnemonics for branch instructions
       
  1676   inline void blt(ConditionRegister crx, Label& L);
       
  1677   inline void bgt(ConditionRegister crx, Label& L);
       
  1678   inline void beq(ConditionRegister crx, Label& L);
       
  1679   inline void bso(ConditionRegister crx, Label& L);
       
  1680   inline void bge(ConditionRegister crx, Label& L);
       
  1681   inline void ble(ConditionRegister crx, Label& L);
       
  1682   inline void bne(ConditionRegister crx, Label& L);
       
  1683   inline void bns(ConditionRegister crx, Label& L);
       
  1684 
       
  1685   // Branch instructions with static prediction hints.
       
  1686   inline void blt_predict_taken(    ConditionRegister crx, Label& L);
       
  1687   inline void bgt_predict_taken(    ConditionRegister crx, Label& L);
       
  1688   inline void beq_predict_taken(    ConditionRegister crx, Label& L);
       
  1689   inline void bso_predict_taken(    ConditionRegister crx, Label& L);
       
  1690   inline void bge_predict_taken(    ConditionRegister crx, Label& L);
       
  1691   inline void ble_predict_taken(    ConditionRegister crx, Label& L);
       
  1692   inline void bne_predict_taken(    ConditionRegister crx, Label& L);
       
  1693   inline void bns_predict_taken(    ConditionRegister crx, Label& L);
       
  1694   inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
       
  1695   inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
       
  1696   inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
       
  1697   inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
       
  1698   inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
       
  1699   inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
       
  1700   inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
       
  1701   inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
       
  1702 
       
  1703   // for use in conjunction with testbitdi:
       
  1704   inline void btrue( ConditionRegister crx, Label& L);
       
  1705   inline void bfalse(ConditionRegister crx, Label& L);
       
  1706 
       
  1707   inline void bltl(ConditionRegister crx, Label& L);
       
  1708   inline void bgtl(ConditionRegister crx, Label& L);
       
  1709   inline void beql(ConditionRegister crx, Label& L);
       
  1710   inline void bsol(ConditionRegister crx, Label& L);
       
  1711   inline void bgel(ConditionRegister crx, Label& L);
       
  1712   inline void blel(ConditionRegister crx, Label& L);
       
  1713   inline void bnel(ConditionRegister crx, Label& L);
       
  1714   inline void bnsl(ConditionRegister crx, Label& L);
       
  1715 
       
  1716   // extended mnemonics for Branch Instructions via LR
       
  1717   // We use `blr' for returns.
       
  1718   inline void blr(relocInfo::relocType rt = relocInfo::none);
       
  1719 
       
  1720   // extended mnemonics for Branch Instructions with CTR
       
  1721   // bdnz means `decrement CTR and jump to L if CTR is not zero'
       
  1722   inline void bdnz(Label& L);
       
  1723   // Decrement and branch if result is zero.
       
  1724   inline void bdz(Label& L);
       
  1725   // we use `bctr[l]' for jumps/calls in function descriptor glue
       
  1726   // code, e.g. calls to runtime functions
       
  1727   inline void bctr( relocInfo::relocType rt = relocInfo::none);
       
  1728   inline void bctrl(relocInfo::relocType rt = relocInfo::none);
       
  1729   // conditional jumps/branches via CTR
       
  1730   inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
       
  1731   inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
       
  1732   inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
       
  1733   inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
       
  1734 
       
  1735   // condition register logic instructions
       
  1736   // NOTE: There's a preferred form: d and s2 should point into the same condition register.
       
  1737   inline void crand( int d, int s1, int s2);
       
  1738   inline void crnand(int d, int s1, int s2);
       
  1739   inline void cror(  int d, int s1, int s2);
       
  1740   inline void crxor( int d, int s1, int s2);
       
  1741   inline void crnor( int d, int s1, int s2);
       
  1742   inline void creqv( int d, int s1, int s2);
       
  1743   inline void crandc(int d, int s1, int s2);
       
  1744   inline void crorc( int d, int s1, int s2);
       
  1745 
       
  1746   // More convenient version.
       
  1747   int condition_register_bit(ConditionRegister cr, Condition c) {
       
  1748     return 4 * (int)(intptr_t)cr + c;
       
  1749   }
       
  1750   void crand( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
       
  1751   void crnand(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
       
  1752   void cror(  ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
       
  1753   void crxor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
       
  1754   void crnor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
       
  1755   void creqv( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
       
  1756   void crandc(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
       
  1757   void crorc( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
       
  1758 
       
  1759   // icache and dcache related instructions
       
  1760   inline void icbi(  Register s1, Register s2);
       
  1761   //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
       
  1762   inline void dcbz(  Register s1, Register s2);
       
  1763   inline void dcbst( Register s1, Register s2);
       
  1764   inline void dcbf(  Register s1, Register s2);
       
  1765 
       
  1766   enum ct_cache_specification {
       
  1767     ct_primary_cache   = 0,
       
  1768     ct_secondary_cache = 2
       
  1769   };
       
  1770   // dcache read hint
       
  1771   inline void dcbt(    Register s1, Register s2);
       
  1772   inline void dcbtct(  Register s1, Register s2, int ct);
       
  1773   inline void dcbtds(  Register s1, Register s2, int ds);
       
  1774   // dcache write hint
       
  1775   inline void dcbtst(  Register s1, Register s2);
       
  1776   inline void dcbtstct(Register s1, Register s2, int ct);
       
  1777 
       
  1778   //  machine barrier instructions:
       
  1779   //
       
  1780   //  - sync    two-way memory barrier, aka fence
       
  1781   //  - lwsync  orders  Store|Store,
       
  1782   //                     Load|Store,
       
  1783   //                     Load|Load,
       
  1784   //            but not Store|Load
       
  1785   //  - eieio   orders memory accesses for device memory (only)
       
  1786   //  - isync   invalidates speculatively executed instructions
       
  1787   //            From the Power ISA 2.06 documentation:
       
  1788   //             "[...] an isync instruction prevents the execution of
       
  1789   //            instructions following the isync until instructions
       
  1790   //            preceding the isync have completed, [...]"
       
  1791   //            From IBM's AIX assembler reference:
       
  1792   //             "The isync [...] instructions causes the processor to
       
  1793   //            refetch any instructions that might have been fetched
       
  1794   //            prior to the isync instruction. The instruction isync
       
  1795   //            causes the processor to wait for all previous instructions
       
  1796   //            to complete. Then any instructions already fetched are
       
  1797   //            discarded and instruction processing continues in the
       
  1798   //            environment established by the previous instructions."
       
  1799   //
       
  1800   //  semantic barrier instructions:
       
  1801   //  (as defined in orderAccess.hpp)
       
  1802   //
       
  1803   //  - release  orders Store|Store,       (maps to lwsync)
       
  1804   //                     Load|Store
       
  1805   //  - acquire  orders  Load|Store,       (maps to lwsync)
       
  1806   //                     Load|Load
       
  1807   //  - fence    orders Store|Store,       (maps to sync)
       
  1808   //                     Load|Store,
       
  1809   //                     Load|Load,
       
  1810   //                    Store|Load
       
  1811   //
       
  1812  private:
       
  1813   inline void sync(int l);
       
  1814  public:
       
  1815   inline void sync();
       
  1816   inline void lwsync();
       
  1817   inline void ptesync();
       
  1818   inline void eieio();
       
  1819   inline void isync();
       
  1820   inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
       
  1821 
       
  1822   // Wait instructions for polling. Attention: May result in SIGILL.
       
  1823   inline void wait();
       
  1824   inline void waitrsv(); // >=Power7
       
  1825 
       
  1826   // atomics
       
  1827   inline void lbarx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
       
  1828   inline void lharx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
       
  1829   inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
       
  1830   inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
       
  1831   inline void lqarx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
       
  1832   inline bool lxarx_hint_exclusive_access();
       
  1833   inline void lbarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
       
  1834   inline void lharx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
       
  1835   inline void lwarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
       
  1836   inline void ldarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
       
  1837   inline void lqarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
       
  1838   inline void stbcx_( Register s, Register a, Register b);
       
  1839   inline void sthcx_( Register s, Register a, Register b);
       
  1840   inline void stwcx_( Register s, Register a, Register b);
       
  1841   inline void stdcx_( Register s, Register a, Register b);
       
  1842   inline void stqcx_( Register s, Register a, Register b);
       
  1843 
       
  1844   // Instructions for adjusting thread priority for simultaneous
       
  1845   // multithreading (SMT) on Power5.
       
  1846  private:
       
  1847   inline void smt_prio_very_low();
       
  1848   inline void smt_prio_medium_high();
       
  1849   inline void smt_prio_high();
       
  1850 
       
  1851  public:
       
  1852   inline void smt_prio_low();
       
  1853   inline void smt_prio_medium_low();
       
  1854   inline void smt_prio_medium();
       
  1855   // >= Power7
       
  1856   inline void smt_yield();
       
  1857   inline void smt_mdoio();
       
  1858   inline void smt_mdoom();
       
  1859   // >= Power8
       
  1860   inline void smt_miso();
       
  1861 
       
  1862   // trap instructions
       
  1863   inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
       
  1864   // NOT FOR DIRECT USE!!
       
  1865  protected:
       
  1866   inline void tdi_unchecked(int tobits, Register a, int si16);
       
  1867   inline void twi_unchecked(int tobits, Register a, int si16);
       
  1868   inline void tdi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
       
  1869   inline void twi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
       
  1870   inline void td(           int tobits, Register a, Register b); // asserts UseSIGTRAP
       
  1871   inline void tw(           int tobits, Register a, Register b); // asserts UseSIGTRAP
       
  1872 
       
  1873   static bool is_tdi(int x, int tobits, int ra, int si16) {
       
  1874      return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
       
  1875          && (tobits == inv_to_field(x))
       
  1876          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
       
  1877          && (si16 == inv_si_field(x));
       
  1878   }
       
  1879 
       
  1880   static bool is_twi(int x, int tobits, int ra, int si16) {
       
  1881      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
       
  1882          && (tobits == inv_to_field(x))
       
  1883          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
       
  1884          && (si16 == inv_si_field(x));
       
  1885   }
       
  1886 
       
  1887   static bool is_twi(int x, int tobits, int ra) {
       
  1888      return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
       
  1889          && (tobits == inv_to_field(x))
       
  1890          && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
       
  1891   }
       
  1892 
       
  1893   static bool is_td(int x, int tobits, int ra, int rb) {
       
  1894      return (TD_OPCODE == (x & TD_OPCODE_MASK))
       
  1895          && (tobits == inv_to_field(x))
       
  1896          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
       
  1897          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
       
  1898   }
       
  1899 
       
  1900   static bool is_tw(int x, int tobits, int ra, int rb) {
       
  1901      return (TW_OPCODE == (x & TW_OPCODE_MASK))
       
  1902          && (tobits == inv_to_field(x))
       
  1903          && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
       
  1904          && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
       
  1905   }
       
  1906 
       
  1907  public:
       
  1908   // PPC floating point instructions
       
  1909   // PPC 1, section 4.6.2 Floating-Point Load Instructions
       
  1910   inline void lfs(  FloatRegister d, int si16,   Register a);
       
  1911   inline void lfsu( FloatRegister d, int si16,   Register a);
       
  1912   inline void lfsx( FloatRegister d, Register a, Register b);
       
  1913   inline void lfd(  FloatRegister d, int si16,   Register a);
       
  1914   inline void lfdu( FloatRegister d, int si16,   Register a);
       
  1915   inline void lfdx( FloatRegister d, Register a, Register b);
       
  1916 
       
  1917   // PPC 1, section 4.6.3 Floating-Point Store Instructions
       
  1918   inline void stfs(  FloatRegister s, int si16,   Register a);
       
  1919   inline void stfsu( FloatRegister s, int si16,   Register a);
       
  1920   inline void stfsx( FloatRegister s, Register a, Register b);
       
  1921   inline void stfd(  FloatRegister s, int si16,   Register a);
       
  1922   inline void stfdu( FloatRegister s, int si16,   Register a);
       
  1923   inline void stfdx( FloatRegister s, Register a, Register b);
       
  1924 
       
  1925   // PPC 1, section 4.6.4 Floating-Point Move Instructions
       
  1926   inline void fmr(  FloatRegister d, FloatRegister b);
       
  1927   inline void fmr_( FloatRegister d, FloatRegister b);
       
  1928 
       
  1929   //  inline void mffgpr( FloatRegister d, Register b);
       
  1930   //  inline void mftgpr( Register d, FloatRegister b);
       
  1931   inline void cmpb(   Register a, Register s, Register b);
       
  1932   inline void popcntb(Register a, Register s);
       
  1933   inline void popcntw(Register a, Register s);
       
  1934   inline void popcntd(Register a, Register s);
       
  1935 
       
  1936   inline void fneg(  FloatRegister d, FloatRegister b);
       
  1937   inline void fneg_( FloatRegister d, FloatRegister b);
       
  1938   inline void fabs(  FloatRegister d, FloatRegister b);
       
  1939   inline void fabs_( FloatRegister d, FloatRegister b);
       
  1940   inline void fnabs( FloatRegister d, FloatRegister b);
       
  1941   inline void fnabs_(FloatRegister d, FloatRegister b);
       
  1942 
       
  1943   // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
       
  1944   inline void fadd(  FloatRegister d, FloatRegister a, FloatRegister b);
       
  1945   inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
       
  1946   inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
       
  1947   inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
       
  1948   inline void fsub(  FloatRegister d, FloatRegister a, FloatRegister b);
       
  1949   inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
       
  1950   inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
       
  1951   inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
       
  1952   inline void fmul(  FloatRegister d, FloatRegister a, FloatRegister c);
       
  1953   inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
       
  1954   inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
       
  1955   inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
       
  1956   inline void fdiv(  FloatRegister d, FloatRegister a, FloatRegister b);
       
  1957   inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
       
  1958   inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
       
  1959   inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
       
  1960 
       
  1961   // Fused multiply-accumulate instructions.
       
  1962   // WARNING: Use only when rounding between the 2 parts is not desired.
       
  1963   // Some floating point tck tests will fail if used incorrectly.
       
  1964   inline void fmadd(   FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1965   inline void fmadd_(  FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1966   inline void fmadds(  FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1967   inline void fmadds_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1968   inline void fmsub(   FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1969   inline void fmsub_(  FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1970   inline void fmsubs(  FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1971   inline void fmsubs_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1972   inline void fnmadd(  FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1973   inline void fnmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1974   inline void fnmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1975   inline void fnmadds_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1976   inline void fnmsub(  FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1977   inline void fnmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1978   inline void fnmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1979   inline void fnmsubs_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
       
  1980 
       
  1981   // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
       
  1982   inline void frsp(  FloatRegister d, FloatRegister b);
       
  1983   inline void fctid( FloatRegister d, FloatRegister b);
       
  1984   inline void fctidz(FloatRegister d, FloatRegister b);
       
  1985   inline void fctiw( FloatRegister d, FloatRegister b);
       
  1986   inline void fctiwz(FloatRegister d, FloatRegister b);
       
  1987   inline void fcfid( FloatRegister d, FloatRegister b);
       
  1988   inline void fcfids(FloatRegister d, FloatRegister b);
       
  1989 
       
  1990   // PPC 1, section 4.6.7 Floating-Point Compare Instructions
       
  1991   inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
       
  1992 
       
  1993   inline void fsqrt( FloatRegister d, FloatRegister b);
       
  1994   inline void fsqrts(FloatRegister d, FloatRegister b);
       
  1995 
       
  1996   // Vector instructions for >= Power6.
       
  1997   inline void lvebx(    VectorRegister d, Register s1, Register s2);
       
  1998   inline void lvehx(    VectorRegister d, Register s1, Register s2);
       
  1999   inline void lvewx(    VectorRegister d, Register s1, Register s2);
       
  2000   inline void lvx(      VectorRegister d, Register s1, Register s2);
       
  2001   inline void lvxl(     VectorRegister d, Register s1, Register s2);
       
  2002   inline void stvebx(   VectorRegister d, Register s1, Register s2);
       
  2003   inline void stvehx(   VectorRegister d, Register s1, Register s2);
       
  2004   inline void stvewx(   VectorRegister d, Register s1, Register s2);
       
  2005   inline void stvx(     VectorRegister d, Register s1, Register s2);
       
  2006   inline void stvxl(    VectorRegister d, Register s1, Register s2);
       
  2007   inline void lvsl(     VectorRegister d, Register s1, Register s2);
       
  2008   inline void lvsr(     VectorRegister d, Register s1, Register s2);
       
  2009   inline void vpkpx(    VectorRegister d, VectorRegister a, VectorRegister b);
       
  2010   inline void vpkshss(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2011   inline void vpkswss(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2012   inline void vpkshus(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2013   inline void vpkswus(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2014   inline void vpkuhum(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2015   inline void vpkuwum(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2016   inline void vpkuhus(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2017   inline void vpkuwus(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2018   inline void vupkhpx(  VectorRegister d, VectorRegister b);
       
  2019   inline void vupkhsb(  VectorRegister d, VectorRegister b);
       
  2020   inline void vupkhsh(  VectorRegister d, VectorRegister b);
       
  2021   inline void vupklpx(  VectorRegister d, VectorRegister b);
       
  2022   inline void vupklsb(  VectorRegister d, VectorRegister b);
       
  2023   inline void vupklsh(  VectorRegister d, VectorRegister b);
       
  2024   inline void vmrghb(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2025   inline void vmrghw(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2026   inline void vmrghh(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2027   inline void vmrglb(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2028   inline void vmrglw(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2029   inline void vmrglh(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2030   inline void vsplt(    VectorRegister d, int ui4,          VectorRegister b);
       
  2031   inline void vsplth(   VectorRegister d, int ui3,          VectorRegister b);
       
  2032   inline void vspltw(   VectorRegister d, int ui2,          VectorRegister b);
       
  2033   inline void vspltisb( VectorRegister d, int si5);
       
  2034   inline void vspltish( VectorRegister d, int si5);
       
  2035   inline void vspltisw( VectorRegister d, int si5);
       
  2036   inline void vperm(    VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
       
  2037   inline void vsel(     VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
       
  2038   inline void vsl(      VectorRegister d, VectorRegister a, VectorRegister b);
       
  2039   inline void vsldoi(   VectorRegister d, VectorRegister a, VectorRegister b, int ui4);
       
  2040   inline void vslo(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2041   inline void vsr(      VectorRegister d, VectorRegister a, VectorRegister b);
       
  2042   inline void vsro(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2043   inline void vaddcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2044   inline void vaddshs(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2045   inline void vaddsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2046   inline void vaddsws(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2047   inline void vaddubm(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2048   inline void vadduwm(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2049   inline void vadduhm(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2050   inline void vaddudm(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2051   inline void vaddubs(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2052   inline void vadduws(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2053   inline void vadduhs(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2054   inline void vsubcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2055   inline void vsubshs(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2056   inline void vsubsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2057   inline void vsubsws(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2058   inline void vsububm(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2059   inline void vsubuwm(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2060   inline void vsubuhm(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2061   inline void vsububs(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2062   inline void vsubuws(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2063   inline void vsubuhs(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2064   inline void vmulesb(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2065   inline void vmuleub(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2066   inline void vmulesh(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2067   inline void vmuleuh(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2068   inline void vmulosb(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2069   inline void vmuloub(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2070   inline void vmulosh(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2071   inline void vmulouh(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2072   inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
       
  2073   inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
       
  2074   inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
       
  2075   inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
       
  2076   inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
       
  2077   inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
       
  2078   inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
       
  2079   inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
       
  2080   inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
       
  2081   inline void vsumsws(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2082   inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2083   inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2084   inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2085   inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2086   inline void vavgsb(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2087   inline void vavgsw(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2088   inline void vavgsh(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2089   inline void vavgub(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2090   inline void vavguw(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2091   inline void vavguh(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2092   inline void vmaxsb(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2093   inline void vmaxsw(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2094   inline void vmaxsh(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2095   inline void vmaxub(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2096   inline void vmaxuw(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2097   inline void vmaxuh(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2098   inline void vminsb(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2099   inline void vminsw(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2100   inline void vminsh(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2101   inline void vminub(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2102   inline void vminuw(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2103   inline void vminuh(   VectorRegister d, VectorRegister a, VectorRegister b);
       
  2104   inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2105   inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2106   inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2107   inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2108   inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2109   inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2110   inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2111   inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2112   inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2113   inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
       
  2114   inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
       
  2115   inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
       
  2116   inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
       
  2117   inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
       
  2118   inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
       
  2119   inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
       
  2120   inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
       
  2121   inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
       
  2122   inline void vand(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2123   inline void vandc(    VectorRegister d, VectorRegister a, VectorRegister b);
       
  2124   inline void vnor(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2125   inline void vor(      VectorRegister d, VectorRegister a, VectorRegister b);
       
  2126   inline void vmr(      VectorRegister d, VectorRegister a);
       
  2127   inline void vxor(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2128   inline void vrld(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2129   inline void vrlb(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2130   inline void vrlw(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2131   inline void vrlh(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2132   inline void vslb(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2133   inline void vskw(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2134   inline void vslh(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2135   inline void vsrb(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2136   inline void vsrw(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2137   inline void vsrh(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2138   inline void vsrab(    VectorRegister d, VectorRegister a, VectorRegister b);
       
  2139   inline void vsraw(    VectorRegister d, VectorRegister a, VectorRegister b);
       
  2140   inline void vsrah(    VectorRegister d, VectorRegister a, VectorRegister b);
       
  2141   // Vector Floating-Point not implemented yet
       
  2142   inline void mtvscr(   VectorRegister b);
       
  2143   inline void mfvscr(   VectorRegister d);
       
  2144 
       
  2145   // Vector-Scalar (VSX) instructions.
       
  2146   inline void lxvd2x(   VectorSRegister d, Register a);
       
  2147   inline void lxvd2x(   VectorSRegister d, Register a, Register b);
       
  2148   inline void stxvd2x(  VectorSRegister d, Register a);
       
  2149   inline void stxvd2x(  VectorSRegister d, Register a, Register b);
       
  2150   inline void mtvrwz(   VectorRegister  d, Register a);
       
  2151   inline void mfvrwz(   Register        a, VectorRegister d);
       
  2152   inline void mtvrd(    VectorRegister  d, Register a);
       
  2153   inline void mfvrd(    Register        a, VectorRegister d);
       
  2154   inline void xxpermdi( VectorSRegister d, VectorSRegister a, VectorSRegister b, int dm);
       
  2155   inline void xxmrghw(  VectorSRegister d, VectorSRegister a, VectorSRegister b);
       
  2156   inline void xxmrglw(  VectorSRegister d, VectorSRegister a, VectorSRegister b);
       
  2157 
       
  2158   // VSX Extended Mnemonics
       
  2159   inline void xxspltd(  VectorSRegister d, VectorSRegister a, int x);
       
  2160   inline void xxmrghd(  VectorSRegister d, VectorSRegister a, VectorSRegister b);
       
  2161   inline void xxmrgld(  VectorSRegister d, VectorSRegister a, VectorSRegister b);
       
  2162   inline void xxswapd(  VectorSRegister d, VectorSRegister a);
       
  2163 
       
  2164   // Vector-Scalar (VSX) instructions.
       
  2165   inline void mtfprd(   FloatRegister   d, Register a);
       
  2166   inline void mtfprwa(  FloatRegister   d, Register a);
       
  2167   inline void mffprd(   Register        a, FloatRegister d);
       
  2168 
       
  2169   // AES (introduced with Power 8)
       
  2170   inline void vcipher(     VectorRegister d, VectorRegister a, VectorRegister b);
       
  2171   inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b);
       
  2172   inline void vncipher(    VectorRegister d, VectorRegister a, VectorRegister b);
       
  2173   inline void vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b);
       
  2174   inline void vsbox(       VectorRegister d, VectorRegister a);
       
  2175 
       
  2176   // SHA (introduced with Power 8)
       
  2177   // Not yet implemented.
       
  2178 
       
  2179   // Vector Binary Polynomial Multiplication (introduced with Power 8)
       
  2180   inline void vpmsumb(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2181   inline void vpmsumd(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2182   inline void vpmsumh(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2183   inline void vpmsumw(  VectorRegister d, VectorRegister a, VectorRegister b);
       
  2184 
       
  2185   // Vector Permute and Xor (introduced with Power 8)
       
  2186   inline void vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
       
  2187 
       
  2188   // Transactional Memory instructions (introduced with Power 8)
       
  2189   inline void tbegin_();    // R=0
       
  2190   inline void tbeginrot_(); // R=1 Rollback-Only Transaction
       
  2191   inline void tend_();    // A=0
       
  2192   inline void tendall_(); // A=1
       
  2193   inline void tabort_();
       
  2194   inline void tabort_(Register a);
       
  2195   inline void tabortwc_(int t, Register a, Register b);
       
  2196   inline void tabortwci_(int t, Register a, int si);
       
  2197   inline void tabortdc_(int t, Register a, Register b);
       
  2198   inline void tabortdci_(int t, Register a, int si);
       
  2199   inline void tsuspend_(); // tsr with L=0
       
  2200   inline void tresume_();  // tsr with L=1
       
  2201   inline void tcheck(int f);
       
  2202 
       
  2203   static bool is_tbegin(int x) {
       
  2204     return TBEGIN_OPCODE == (x & (0x3f << OPCODE_SHIFT | 0x3ff << 1));
       
  2205   }
       
  2206 
       
  2207   // The following encoders use r0 as second operand. These instructions
       
  2208   // read r0 as '0'.
       
  2209   inline void lwzx( Register d, Register s2);
       
  2210   inline void lwz(  Register d, int si16);
       
  2211   inline void lwax( Register d, Register s2);
       
  2212   inline void lwa(  Register d, int si16);
       
  2213   inline void lwbrx(Register d, Register s2);
       
  2214   inline void lhzx( Register d, Register s2);
       
  2215   inline void lhz(  Register d, int si16);
       
  2216   inline void lhax( Register d, Register s2);
       
  2217   inline void lha(  Register d, int si16);
       
  2218   inline void lhbrx(Register d, Register s2);
       
  2219   inline void lbzx( Register d, Register s2);
       
  2220   inline void lbz(  Register d, int si16);
       
  2221   inline void ldx(  Register d, Register s2);
       
  2222   inline void ld(   Register d, int si16);
       
  2223   inline void ldbrx(Register d, Register s2);
       
  2224   inline void stwx( Register d, Register s2);
       
  2225   inline void stw(  Register d, int si16);
       
  2226   inline void stwbrx( Register d, Register s2);
       
  2227   inline void sthx( Register d, Register s2);
       
  2228   inline void sth(  Register d, int si16);
       
  2229   inline void sthbrx( Register d, Register s2);
       
  2230   inline void stbx( Register d, Register s2);
       
  2231   inline void stb(  Register d, int si16);
       
  2232   inline void stdx( Register d, Register s2);
       
  2233   inline void std(  Register d, int si16);
       
  2234   inline void stdbrx( Register d, Register s2);
       
  2235 
       
  2236   // PPC 2, section 3.2.1 Instruction Cache Instructions
       
  2237   inline void icbi(    Register s2);
       
  2238   // PPC 2, section 3.2.2 Data Cache Instructions
       
  2239   //inlinevoid dcba(   Register s2); // Instruction for embedded processor only.
       
  2240   inline void dcbz(    Register s2);
       
  2241   inline void dcbst(   Register s2);
       
  2242   inline void dcbf(    Register s2);
       
  2243   // dcache read hint
       
  2244   inline void dcbt(    Register s2);
       
  2245   inline void dcbtct(  Register s2, int ct);
       
  2246   inline void dcbtds(  Register s2, int ds);
       
  2247   // dcache write hint
       
  2248   inline void dcbtst(  Register s2);
       
  2249   inline void dcbtstct(Register s2, int ct);
       
  2250 
       
  2251   // Atomics: use ra0mem to disallow R0 as base.
       
  2252   inline void lbarx_unchecked(Register d, Register b, int eh1);
       
  2253   inline void lharx_unchecked(Register d, Register b, int eh1);
       
  2254   inline void lwarx_unchecked(Register d, Register b, int eh1);
       
  2255   inline void ldarx_unchecked(Register d, Register b, int eh1);
       
  2256   inline void lqarx_unchecked(Register d, Register b, int eh1);
       
  2257   inline void lbarx( Register d, Register b, bool hint_exclusive_access);
       
  2258   inline void lharx( Register d, Register b, bool hint_exclusive_access);
       
  2259   inline void lwarx( Register d, Register b, bool hint_exclusive_access);
       
  2260   inline void ldarx( Register d, Register b, bool hint_exclusive_access);
       
  2261   inline void lqarx( Register d, Register b, bool hint_exclusive_access);
       
  2262   inline void stbcx_(Register s, Register b);
       
  2263   inline void sthcx_(Register s, Register b);
       
  2264   inline void stwcx_(Register s, Register b);
       
  2265   inline void stdcx_(Register s, Register b);
       
  2266   inline void stqcx_(Register s, Register b);
       
  2267   inline void lfs(   FloatRegister d, int si16);
       
  2268   inline void lfsx(  FloatRegister d, Register b);
       
  2269   inline void lfd(   FloatRegister d, int si16);
       
  2270   inline void lfdx(  FloatRegister d, Register b);
       
  2271   inline void stfs(  FloatRegister s, int si16);
       
  2272   inline void stfsx( FloatRegister s, Register b);
       
  2273   inline void stfd(  FloatRegister s, int si16);
       
  2274   inline void stfdx( FloatRegister s, Register b);
       
  2275   inline void lvebx( VectorRegister d, Register s2);
       
  2276   inline void lvehx( VectorRegister d, Register s2);
       
  2277   inline void lvewx( VectorRegister d, Register s2);
       
  2278   inline void lvx(   VectorRegister d, Register s2);
       
  2279   inline void lvxl(  VectorRegister d, Register s2);
       
  2280   inline void stvebx(VectorRegister d, Register s2);
       
  2281   inline void stvehx(VectorRegister d, Register s2);
       
  2282   inline void stvewx(VectorRegister d, Register s2);
       
  2283   inline void stvx(  VectorRegister d, Register s2);
       
  2284   inline void stvxl( VectorRegister d, Register s2);
       
  2285   inline void lvsl(  VectorRegister d, Register s2);
       
  2286   inline void lvsr(  VectorRegister d, Register s2);
       
  2287 
       
  2288   // RegisterOrConstant versions.
       
  2289   // These emitters choose between the versions using two registers and
       
  2290   // those with register and immediate, depending on the content of roc.
       
  2291   // If the constant is not encodable as immediate, instructions to
       
  2292   // load the constant are emitted beforehand. Store instructions need a
       
  2293   // tmp reg if the constant is not encodable as immediate.
       
  2294   // Size unpredictable.
       
  2295   void ld(  Register d, RegisterOrConstant roc, Register s1 = noreg);
       
  2296   void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
       
  2297   void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
       
  2298   void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
       
  2299   void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
       
  2300   void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
       
  2301   void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
       
  2302   void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
       
  2303   void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
       
  2304   void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
       
  2305   void add( Register d, RegisterOrConstant roc, Register s1);
       
  2306   void subf(Register d, RegisterOrConstant roc, Register s1);
       
  2307   void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
       
  2308   // Load pointer d from s1+roc.
       
  2309   void ld_ptr(Register d, RegisterOrConstant roc, Register s1 = noreg) { ld(d, roc, s1); }
       
  2310 
       
  2311   // Emit several instructions to load a 64 bit constant. This issues a fixed
       
  2312   // instruction pattern so that the constant can be patched later on.
       
  2313   enum {
       
  2314     load_const_size = 5 * BytesPerInstWord
       
  2315   };
       
  2316          void load_const(Register d, long a,            Register tmp = noreg);
       
  2317   inline void load_const(Register d, void* a,           Register tmp = noreg);
       
  2318   inline void load_const(Register d, Label& L,          Register tmp = noreg);
       
  2319   inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
       
  2320   inline void load_const32(Register d, int i); // load signed int (patchable)
       
  2321 
       
  2322   // Load a 64 bit constant, optimized, not identifyable.
       
  2323   // Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
       
  2324   // 16 bit immediate offset. This is useful if the offset can be encoded in
       
  2325   // a succeeding instruction.
       
  2326          int load_const_optimized(Register d, long a,  Register tmp = noreg, bool return_simm16_rest = false);
       
  2327   inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
       
  2328     return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
       
  2329   }
       
  2330 
       
  2331   // If return_simm16_rest, the return value needs to get added afterwards.
       
  2332          int add_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false);
       
  2333   inline int add_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
       
  2334     return add_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
       
  2335   }
       
  2336 
       
  2337   // If return_simm16_rest, the return value needs to get added afterwards.
       
  2338   inline int sub_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false) {
       
  2339     return add_const_optimized(d, s, -x, tmp, return_simm16_rest);
       
  2340   }
       
  2341   inline int sub_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
       
  2342     return sub_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
       
  2343   }
       
  2344 
       
  2345   // Creation
       
  2346   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
       
  2347 #ifdef CHECK_DELAY
       
  2348     delay_state = no_delay;
       
  2349 #endif
       
  2350   }
       
  2351 
       
  2352   // Testing
       
  2353 #ifndef PRODUCT
       
  2354   void test_asm();
       
  2355 #endif
       
  2356 };
       
  2357 
       
  2358 
       
  2359 #endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP