--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/utilities/growableArray.hpp Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,331 @@
+/*
+ * Copyright 1997-2005 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// A growable array.
+
+/*************************************************************************/
+/* */
+/* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING */
+/* */
+/* Should you use GrowableArrays to contain handles you must be certain */
+/* the the GrowableArray does not outlive the HandleMark that contains */
+/* the handles. Since GrowableArrays are typically resource allocated */
+/* the following is an example of INCORRECT CODE, */
+/* */
+/* ResourceMark rm; */
+/* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size); */
+/* if (blah) { */
+/* while (...) { */
+/* HandleMark hm; */
+/* ... */
+/* Handle h(THREAD, some_oop); */
+/* arr->append(h); */
+/* } */
+/* } */
+/* if (arr->length() != 0 ) { */
+/* oop bad_oop = arr->at(0)(); // Handle is BAD HERE. */
+/* ... */
+/* } */
+/* */
+/* If the GrowableArrays you are creating is C_Heap allocated then it */
+/* hould not old handles since the handles could trivially try and */
+/* outlive their HandleMark. In some situations you might need to do */
+/* this and it would be legal but be very careful and see if you can do */
+/* the code in some other manner. */
+/* */
+/*************************************************************************/
+
+// To call default constructor the placement operator new() is used.
+// It should be empty (it only returns the passed void* pointer).
+// The definition of placement operator new(size_t, void*) in the <new>.
+
+#include <new>
+
+// Need the correct linkage to call qsort without warnings
+extern "C" {
+ typedef int (*_sort_Fn)(const void *, const void *);
+}
+
+class GenericGrowableArray : public ResourceObj {
+ protected:
+ int _len; // current length
+ int _max; // maximum length
+ Arena* _arena; // Indicates where allocation occurs:
+ // 0 means default ResourceArea
+ // 1 means on C heap
+ // otherwise, allocate in _arena
+#ifdef ASSERT
+ int _nesting; // resource area nesting at creation
+ void set_nesting();
+ void check_nesting();
+#else
+#define set_nesting();
+#define check_nesting();
+#endif
+
+ // Where are we going to allocate memory?
+ bool on_C_heap() { return _arena == (Arena*)1; }
+ bool on_stack () { return _arena == NULL; }
+ bool on_arena () { return _arena > (Arena*)1; }
+
+ // This GA will use the resource stack for storage if c_heap==false,
+ // Else it will use the C heap. Use clear_and_deallocate to avoid leaks.
+ GenericGrowableArray(int initial_size, int initial_len, bool c_heap) {
+ _len = initial_len;
+ _max = initial_size;
+ assert(_len >= 0 && _len <= _max, "initial_len too big");
+ _arena = (c_heap ? (Arena*)1 : NULL);
+ set_nesting();
+ assert(!c_heap || allocated_on_C_heap(), "growable array must be on C heap if elements are");
+ }
+
+ // This GA will use the given arena for storage.
+ // Consider using new(arena) GrowableArray<T> to allocate the header.
+ GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
+ _len = initial_len;
+ _max = initial_size;
+ assert(_len >= 0 && _len <= _max, "initial_len too big");
+ _arena = arena;
+ assert(on_arena(), "arena has taken on reserved value 0 or 1");
+ }
+
+ void* raw_allocate(int elementSize);
+};
+
+template<class E> class GrowableArray : public GenericGrowableArray {
+ private:
+ E* _data; // data array
+
+ void grow(int j);
+ void raw_at_put_grow(int i, const E& p, const E& fill);
+ void clear_and_deallocate();
+ public:
+ GrowableArray(int initial_size, bool C_heap = false) : GenericGrowableArray(initial_size, 0, C_heap) {
+ _data = (E*)raw_allocate(sizeof(E));
+ for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
+ }
+
+ GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false) : GenericGrowableArray(initial_size, initial_len, C_heap) {
+ _data = (E*)raw_allocate(sizeof(E));
+ int i = 0;
+ for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
+ for (; i < _max; i++) ::new ((void*)&_data[i]) E();
+ }
+
+ GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
+ _data = (E*)raw_allocate(sizeof(E));
+ int i = 0;
+ for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
+ for (; i < _max; i++) ::new ((void*)&_data[i]) E();
+ }
+
+ GrowableArray() : GenericGrowableArray(2, 0, false) {
+ _data = (E*)raw_allocate(sizeof(E));
+ ::new ((void*)&_data[0]) E();
+ ::new ((void*)&_data[1]) E();
+ }
+
+ // Does nothing for resource and arena objects
+ ~GrowableArray() { if (on_C_heap()) clear_and_deallocate(); }
+
+ void clear() { _len = 0; }
+ int length() const { return _len; }
+ void trunc_to(int l) { assert(l <= _len,"cannot increase length"); _len = l; }
+ bool is_empty() const { return _len == 0; }
+ bool is_nonempty() const { return _len != 0; }
+ bool is_full() const { return _len == _max; }
+ DEBUG_ONLY(E* data_addr() const { return _data; })
+
+ void print();
+
+ void append(const E& elem) {
+ check_nesting();
+ if (_len == _max) grow(_len);
+ _data[_len++] = elem;
+ }
+
+ void append_if_missing(const E& elem) {
+ if (!contains(elem)) append(elem);
+ }
+
+ E at(int i) const {
+ assert(0 <= i && i < _len, "illegal index");
+ return _data[i];
+ }
+
+ E* adr_at(int i) const {
+ assert(0 <= i && i < _len, "illegal index");
+ return &_data[i];
+ }
+
+ E first() const {
+ assert(_len > 0, "empty list");
+ return _data[0];
+ }
+
+ E top() const {
+ assert(_len > 0, "empty list");
+ return _data[_len-1];
+ }
+
+ void push(const E& elem) { append(elem); }
+
+ E pop() {
+ assert(_len > 0, "empty list");
+ return _data[--_len];
+ }
+
+ void at_put(int i, const E& elem) {
+ assert(0 <= i && i < _len, "illegal index");
+ _data[i] = elem;
+ }
+
+ E at_grow(int i, const E& fill = E()) {
+ assert(0 <= i, "negative index");
+ check_nesting();
+ if (i >= _len) {
+ if (i >= _max) grow(i);
+ for (int j = _len; j <= i; j++)
+ _data[j] = fill;
+ _len = i+1;
+ }
+ return _data[i];
+ }
+
+ void at_put_grow(int i, const E& elem, const E& fill = E()) {
+ assert(0 <= i, "negative index");
+ check_nesting();
+ raw_at_put_grow(i, elem, fill);
+ }
+
+ bool contains(const E& elem) const {
+ for (int i = 0; i < _len; i++) {
+ if (_data[i] == elem) return true;
+ }
+ return false;
+ }
+
+ int find(const E& elem) const {
+ for (int i = 0; i < _len; i++) {
+ if (_data[i] == elem) return i;
+ }
+ return -1;
+ }
+
+ int find(void* token, bool f(void*, E)) const {
+ for (int i = 0; i < _len; i++) {
+ if (f(token, _data[i])) return i;
+ }
+ return -1;
+ }
+
+ int find_at_end(void* token, bool f(void*, E)) const {
+ // start at the end of the array
+ for (int i = _len-1; i >= 0; i--) {
+ if (f(token, _data[i])) return i;
+ }
+ return -1;
+ }
+
+ void remove(const E& elem) {
+ for (int i = 0; i < _len; i++) {
+ if (_data[i] == elem) {
+ for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
+ _len--;
+ return;
+ }
+ }
+ ShouldNotReachHere();
+ }
+
+ void remove_at(int index) {
+ assert(0 <= index && index < _len, "illegal index");
+ for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
+ _len--;
+ }
+
+ void appendAll(const GrowableArray<E>* l) {
+ for (int i = 0; i < l->_len; i++) {
+ raw_at_put_grow(_len, l->_data[i], 0);
+ }
+ }
+
+ void sort(int f(E*,E*)) {
+ qsort(_data, length(), sizeof(E), (_sort_Fn)f);
+ }
+ // sort by fixed-stride sub arrays:
+ void sort(int f(E*,E*), int stride) {
+ qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
+ }
+};
+
+// Global GrowableArray methods (one instance in the library per each 'E' type).
+
+template<class E> void GrowableArray<E>::grow(int j) {
+ // grow the array by doubling its size (amortized growth)
+ int old_max = _max;
+ if (_max == 0) _max = 1; // prevent endless loop
+ while (j >= _max) _max = _max*2;
+ // j < _max
+ E* newData = (E*)raw_allocate(sizeof(E));
+ int i = 0;
+ for ( ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
+ for ( ; i < _max; i++) ::new ((void*)&newData[i]) E();
+ for (i = 0; i < old_max; i++) _data[i].~E();
+ if (on_C_heap() && _data != NULL) {
+ FreeHeap(_data);
+ }
+ _data = newData;
+}
+
+template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
+ if (i >= _len) {
+ if (i >= _max) grow(i);
+ for (int j = _len; j < i; j++)
+ _data[j] = fill;
+ _len = i+1;
+ }
+ _data[i] = p;
+}
+
+// This function clears and deallocate the data in the growable array that
+// has been allocated on the C heap. It's not public - called by the
+// destructor.
+template<class E> void GrowableArray<E>::clear_and_deallocate() {
+ assert(on_C_heap(),
+ "clear_and_deallocate should only be called when on C heap");
+ clear();
+ if (_data != NULL) {
+ for (int i = 0; i < _max; i++) _data[i].~E();
+ FreeHeap(_data);
+ _data = NULL;
+ }
+}
+
+template<class E> void GrowableArray<E>::print() {
+ tty->print("Growable Array " INTPTR_FORMAT, this);
+ tty->print(": length %ld (_max %ld) { ", _len, _max);
+ for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
+ tty->print("}\n");
+}