|
1 /* |
|
2 * Copyright 1997-2005 Sun Microsystems, Inc. All Rights Reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 * CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 * have any questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 // A growable array. |
|
26 |
|
27 /*************************************************************************/ |
|
28 /* */ |
|
29 /* WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING */ |
|
30 /* */ |
|
31 /* Should you use GrowableArrays to contain handles you must be certain */ |
|
32 /* the the GrowableArray does not outlive the HandleMark that contains */ |
|
33 /* the handles. Since GrowableArrays are typically resource allocated */ |
|
34 /* the following is an example of INCORRECT CODE, */ |
|
35 /* */ |
|
36 /* ResourceMark rm; */ |
|
37 /* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size); */ |
|
38 /* if (blah) { */ |
|
39 /* while (...) { */ |
|
40 /* HandleMark hm; */ |
|
41 /* ... */ |
|
42 /* Handle h(THREAD, some_oop); */ |
|
43 /* arr->append(h); */ |
|
44 /* } */ |
|
45 /* } */ |
|
46 /* if (arr->length() != 0 ) { */ |
|
47 /* oop bad_oop = arr->at(0)(); // Handle is BAD HERE. */ |
|
48 /* ... */ |
|
49 /* } */ |
|
50 /* */ |
|
51 /* If the GrowableArrays you are creating is C_Heap allocated then it */ |
|
52 /* hould not old handles since the handles could trivially try and */ |
|
53 /* outlive their HandleMark. In some situations you might need to do */ |
|
54 /* this and it would be legal but be very careful and see if you can do */ |
|
55 /* the code in some other manner. */ |
|
56 /* */ |
|
57 /*************************************************************************/ |
|
58 |
|
59 // To call default constructor the placement operator new() is used. |
|
60 // It should be empty (it only returns the passed void* pointer). |
|
61 // The definition of placement operator new(size_t, void*) in the <new>. |
|
62 |
|
63 #include <new> |
|
64 |
|
65 // Need the correct linkage to call qsort without warnings |
|
66 extern "C" { |
|
67 typedef int (*_sort_Fn)(const void *, const void *); |
|
68 } |
|
69 |
|
70 class GenericGrowableArray : public ResourceObj { |
|
71 protected: |
|
72 int _len; // current length |
|
73 int _max; // maximum length |
|
74 Arena* _arena; // Indicates where allocation occurs: |
|
75 // 0 means default ResourceArea |
|
76 // 1 means on C heap |
|
77 // otherwise, allocate in _arena |
|
78 #ifdef ASSERT |
|
79 int _nesting; // resource area nesting at creation |
|
80 void set_nesting(); |
|
81 void check_nesting(); |
|
82 #else |
|
83 #define set_nesting(); |
|
84 #define check_nesting(); |
|
85 #endif |
|
86 |
|
87 // Where are we going to allocate memory? |
|
88 bool on_C_heap() { return _arena == (Arena*)1; } |
|
89 bool on_stack () { return _arena == NULL; } |
|
90 bool on_arena () { return _arena > (Arena*)1; } |
|
91 |
|
92 // This GA will use the resource stack for storage if c_heap==false, |
|
93 // Else it will use the C heap. Use clear_and_deallocate to avoid leaks. |
|
94 GenericGrowableArray(int initial_size, int initial_len, bool c_heap) { |
|
95 _len = initial_len; |
|
96 _max = initial_size; |
|
97 assert(_len >= 0 && _len <= _max, "initial_len too big"); |
|
98 _arena = (c_heap ? (Arena*)1 : NULL); |
|
99 set_nesting(); |
|
100 assert(!c_heap || allocated_on_C_heap(), "growable array must be on C heap if elements are"); |
|
101 } |
|
102 |
|
103 // This GA will use the given arena for storage. |
|
104 // Consider using new(arena) GrowableArray<T> to allocate the header. |
|
105 GenericGrowableArray(Arena* arena, int initial_size, int initial_len) { |
|
106 _len = initial_len; |
|
107 _max = initial_size; |
|
108 assert(_len >= 0 && _len <= _max, "initial_len too big"); |
|
109 _arena = arena; |
|
110 assert(on_arena(), "arena has taken on reserved value 0 or 1"); |
|
111 } |
|
112 |
|
113 void* raw_allocate(int elementSize); |
|
114 }; |
|
115 |
|
116 template<class E> class GrowableArray : public GenericGrowableArray { |
|
117 private: |
|
118 E* _data; // data array |
|
119 |
|
120 void grow(int j); |
|
121 void raw_at_put_grow(int i, const E& p, const E& fill); |
|
122 void clear_and_deallocate(); |
|
123 public: |
|
124 GrowableArray(int initial_size, bool C_heap = false) : GenericGrowableArray(initial_size, 0, C_heap) { |
|
125 _data = (E*)raw_allocate(sizeof(E)); |
|
126 for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E(); |
|
127 } |
|
128 |
|
129 GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false) : GenericGrowableArray(initial_size, initial_len, C_heap) { |
|
130 _data = (E*)raw_allocate(sizeof(E)); |
|
131 int i = 0; |
|
132 for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler); |
|
133 for (; i < _max; i++) ::new ((void*)&_data[i]) E(); |
|
134 } |
|
135 |
|
136 GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) { |
|
137 _data = (E*)raw_allocate(sizeof(E)); |
|
138 int i = 0; |
|
139 for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler); |
|
140 for (; i < _max; i++) ::new ((void*)&_data[i]) E(); |
|
141 } |
|
142 |
|
143 GrowableArray() : GenericGrowableArray(2, 0, false) { |
|
144 _data = (E*)raw_allocate(sizeof(E)); |
|
145 ::new ((void*)&_data[0]) E(); |
|
146 ::new ((void*)&_data[1]) E(); |
|
147 } |
|
148 |
|
149 // Does nothing for resource and arena objects |
|
150 ~GrowableArray() { if (on_C_heap()) clear_and_deallocate(); } |
|
151 |
|
152 void clear() { _len = 0; } |
|
153 int length() const { return _len; } |
|
154 void trunc_to(int l) { assert(l <= _len,"cannot increase length"); _len = l; } |
|
155 bool is_empty() const { return _len == 0; } |
|
156 bool is_nonempty() const { return _len != 0; } |
|
157 bool is_full() const { return _len == _max; } |
|
158 DEBUG_ONLY(E* data_addr() const { return _data; }) |
|
159 |
|
160 void print(); |
|
161 |
|
162 void append(const E& elem) { |
|
163 check_nesting(); |
|
164 if (_len == _max) grow(_len); |
|
165 _data[_len++] = elem; |
|
166 } |
|
167 |
|
168 void append_if_missing(const E& elem) { |
|
169 if (!contains(elem)) append(elem); |
|
170 } |
|
171 |
|
172 E at(int i) const { |
|
173 assert(0 <= i && i < _len, "illegal index"); |
|
174 return _data[i]; |
|
175 } |
|
176 |
|
177 E* adr_at(int i) const { |
|
178 assert(0 <= i && i < _len, "illegal index"); |
|
179 return &_data[i]; |
|
180 } |
|
181 |
|
182 E first() const { |
|
183 assert(_len > 0, "empty list"); |
|
184 return _data[0]; |
|
185 } |
|
186 |
|
187 E top() const { |
|
188 assert(_len > 0, "empty list"); |
|
189 return _data[_len-1]; |
|
190 } |
|
191 |
|
192 void push(const E& elem) { append(elem); } |
|
193 |
|
194 E pop() { |
|
195 assert(_len > 0, "empty list"); |
|
196 return _data[--_len]; |
|
197 } |
|
198 |
|
199 void at_put(int i, const E& elem) { |
|
200 assert(0 <= i && i < _len, "illegal index"); |
|
201 _data[i] = elem; |
|
202 } |
|
203 |
|
204 E at_grow(int i, const E& fill = E()) { |
|
205 assert(0 <= i, "negative index"); |
|
206 check_nesting(); |
|
207 if (i >= _len) { |
|
208 if (i >= _max) grow(i); |
|
209 for (int j = _len; j <= i; j++) |
|
210 _data[j] = fill; |
|
211 _len = i+1; |
|
212 } |
|
213 return _data[i]; |
|
214 } |
|
215 |
|
216 void at_put_grow(int i, const E& elem, const E& fill = E()) { |
|
217 assert(0 <= i, "negative index"); |
|
218 check_nesting(); |
|
219 raw_at_put_grow(i, elem, fill); |
|
220 } |
|
221 |
|
222 bool contains(const E& elem) const { |
|
223 for (int i = 0; i < _len; i++) { |
|
224 if (_data[i] == elem) return true; |
|
225 } |
|
226 return false; |
|
227 } |
|
228 |
|
229 int find(const E& elem) const { |
|
230 for (int i = 0; i < _len; i++) { |
|
231 if (_data[i] == elem) return i; |
|
232 } |
|
233 return -1; |
|
234 } |
|
235 |
|
236 int find(void* token, bool f(void*, E)) const { |
|
237 for (int i = 0; i < _len; i++) { |
|
238 if (f(token, _data[i])) return i; |
|
239 } |
|
240 return -1; |
|
241 } |
|
242 |
|
243 int find_at_end(void* token, bool f(void*, E)) const { |
|
244 // start at the end of the array |
|
245 for (int i = _len-1; i >= 0; i--) { |
|
246 if (f(token, _data[i])) return i; |
|
247 } |
|
248 return -1; |
|
249 } |
|
250 |
|
251 void remove(const E& elem) { |
|
252 for (int i = 0; i < _len; i++) { |
|
253 if (_data[i] == elem) { |
|
254 for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j]; |
|
255 _len--; |
|
256 return; |
|
257 } |
|
258 } |
|
259 ShouldNotReachHere(); |
|
260 } |
|
261 |
|
262 void remove_at(int index) { |
|
263 assert(0 <= index && index < _len, "illegal index"); |
|
264 for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j]; |
|
265 _len--; |
|
266 } |
|
267 |
|
268 void appendAll(const GrowableArray<E>* l) { |
|
269 for (int i = 0; i < l->_len; i++) { |
|
270 raw_at_put_grow(_len, l->_data[i], 0); |
|
271 } |
|
272 } |
|
273 |
|
274 void sort(int f(E*,E*)) { |
|
275 qsort(_data, length(), sizeof(E), (_sort_Fn)f); |
|
276 } |
|
277 // sort by fixed-stride sub arrays: |
|
278 void sort(int f(E*,E*), int stride) { |
|
279 qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f); |
|
280 } |
|
281 }; |
|
282 |
|
283 // Global GrowableArray methods (one instance in the library per each 'E' type). |
|
284 |
|
285 template<class E> void GrowableArray<E>::grow(int j) { |
|
286 // grow the array by doubling its size (amortized growth) |
|
287 int old_max = _max; |
|
288 if (_max == 0) _max = 1; // prevent endless loop |
|
289 while (j >= _max) _max = _max*2; |
|
290 // j < _max |
|
291 E* newData = (E*)raw_allocate(sizeof(E)); |
|
292 int i = 0; |
|
293 for ( ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]); |
|
294 for ( ; i < _max; i++) ::new ((void*)&newData[i]) E(); |
|
295 for (i = 0; i < old_max; i++) _data[i].~E(); |
|
296 if (on_C_heap() && _data != NULL) { |
|
297 FreeHeap(_data); |
|
298 } |
|
299 _data = newData; |
|
300 } |
|
301 |
|
302 template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) { |
|
303 if (i >= _len) { |
|
304 if (i >= _max) grow(i); |
|
305 for (int j = _len; j < i; j++) |
|
306 _data[j] = fill; |
|
307 _len = i+1; |
|
308 } |
|
309 _data[i] = p; |
|
310 } |
|
311 |
|
312 // This function clears and deallocate the data in the growable array that |
|
313 // has been allocated on the C heap. It's not public - called by the |
|
314 // destructor. |
|
315 template<class E> void GrowableArray<E>::clear_and_deallocate() { |
|
316 assert(on_C_heap(), |
|
317 "clear_and_deallocate should only be called when on C heap"); |
|
318 clear(); |
|
319 if (_data != NULL) { |
|
320 for (int i = 0; i < _max; i++) _data[i].~E(); |
|
321 FreeHeap(_data); |
|
322 _data = NULL; |
|
323 } |
|
324 } |
|
325 |
|
326 template<class E> void GrowableArray<E>::print() { |
|
327 tty->print("Growable Array " INTPTR_FORMAT, this); |
|
328 tty->print(": length %ld (_max %ld) { ", _len, _max); |
|
329 for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i])); |
|
330 tty->print("}\n"); |
|
331 } |