--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/opto/subnode.hpp Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,501 @@
+/*
+ * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// Portions of code courtesy of Clifford Click
+
+//------------------------------SUBNode----------------------------------------
+// Class SUBTRACTION functionality. This covers all the usual 'subtract'
+// behaviors. Subtract-integer, -float, -double, binary xor, compare-integer,
+// -float, and -double are all inherited from this class. The compare
+// functions behave like subtract functions, except that all negative answers
+// are compressed into -1, and all positive answers compressed to 1.
+class SubNode : public Node {
+public:
+ SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
+ init_class_id(Class_Sub);
+ }
+
+ // Handle algebraic identities here. If we have an identity, return the Node
+ // we are equivalent to. We look for "add of zero" as an identity.
+ virtual Node *Identity( PhaseTransform *phase );
+
+ // Compute a new Type for this node. Basically we just do the pre-check,
+ // then call the virtual add() to set the type.
+ virtual const Type *Value( PhaseTransform *phase ) const;
+
+ // Supplied function returns the subtractend of the inputs.
+ // This also type-checks the inputs for sanity. Guaranteed never to
+ // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
+ virtual const Type *sub( const Type *, const Type * ) const = 0;
+
+ // Supplied function to return the additive identity type.
+ // This is returned whenever the subtracts inputs are the same.
+ virtual const Type *add_id() const = 0;
+
+};
+
+
+// NOTE: SubINode should be taken away and replaced by add and negate
+//------------------------------SubINode---------------------------------------
+// Subtract 2 integers
+class SubINode : public SubNode {
+public:
+ SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
+ virtual int Opcode() const;
+ virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+ virtual const Type *sub( const Type *, const Type * ) const;
+ const Type *add_id() const { return TypeInt::ZERO; }
+ const Type *bottom_type() const { return TypeInt::INT; }
+ virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+//------------------------------SubLNode---------------------------------------
+// Subtract 2 integers
+class SubLNode : public SubNode {
+public:
+ SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
+ virtual int Opcode() const;
+ virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+ virtual const Type *sub( const Type *, const Type * ) const;
+ const Type *add_id() const { return TypeLong::ZERO; }
+ const Type *bottom_type() const { return TypeLong::LONG; }
+ virtual uint ideal_reg() const { return Op_RegL; }
+};
+
+// NOTE: SubFPNode should be taken away and replaced by add and negate
+//------------------------------SubFPNode--------------------------------------
+// Subtract 2 floats or doubles
+class SubFPNode : public SubNode {
+protected:
+ SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
+public:
+ const Type *Value( PhaseTransform *phase ) const;
+};
+
+// NOTE: SubFNode should be taken away and replaced by add and negate
+//------------------------------SubFNode---------------------------------------
+// Subtract 2 doubles
+class SubFNode : public SubFPNode {
+public:
+ SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
+ virtual int Opcode() const;
+ virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+ virtual const Type *sub( const Type *, const Type * ) const;
+ const Type *add_id() const { return TypeF::ZERO; }
+ const Type *bottom_type() const { return Type::FLOAT; }
+ virtual uint ideal_reg() const { return Op_RegF; }
+};
+
+// NOTE: SubDNode should be taken away and replaced by add and negate
+//------------------------------SubDNode---------------------------------------
+// Subtract 2 doubles
+class SubDNode : public SubFPNode {
+public:
+ SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
+ virtual int Opcode() const;
+ virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+ virtual const Type *sub( const Type *, const Type * ) const;
+ const Type *add_id() const { return TypeD::ZERO; }
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+};
+
+//------------------------------CmpNode---------------------------------------
+// Compare 2 values, returning condition codes (-1, 0 or 1).
+class CmpNode : public SubNode {
+public:
+ CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
+ init_class_id(Class_Cmp);
+ }
+ virtual Node *Identity( PhaseTransform *phase );
+ const Type *add_id() const { return TypeInt::ZERO; }
+ const Type *bottom_type() const { return TypeInt::CC; }
+ virtual uint ideal_reg() const { return Op_RegFlags; }
+};
+
+//------------------------------CmpINode---------------------------------------
+// Compare 2 signed values, returning condition codes (-1, 0 or 1).
+class CmpINode : public CmpNode {
+public:
+ CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+ virtual int Opcode() const;
+ virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+ virtual const Type *sub( const Type *, const Type * ) const;
+};
+
+//------------------------------CmpUNode---------------------------------------
+// Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
+class CmpUNode : public CmpNode {
+public:
+ CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+ virtual int Opcode() const;
+ virtual const Type *sub( const Type *, const Type * ) const;
+};
+
+//------------------------------CmpPNode---------------------------------------
+// Compare 2 pointer values, returning condition codes (-1, 0 or 1).
+class CmpPNode : public CmpNode {
+public:
+ CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+ virtual int Opcode() const;
+ virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+ virtual const Type *sub( const Type *, const Type * ) const;
+};
+
+//------------------------------CmpLNode---------------------------------------
+// Compare 2 long values, returning condition codes (-1, 0 or 1).
+class CmpLNode : public CmpNode {
+public:
+ CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+ virtual int Opcode() const;
+ virtual const Type *sub( const Type *, const Type * ) const;
+};
+
+//------------------------------CmpL3Node--------------------------------------
+// Compare 2 long values, returning integer value (-1, 0 or 1).
+class CmpL3Node : public CmpLNode {
+public:
+ CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
+ // Since it is not consumed by Bools, it is not really a Cmp.
+ init_class_id(Class_Sub);
+ }
+ virtual int Opcode() const;
+ virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+//------------------------------CmpFNode---------------------------------------
+// Compare 2 float values, returning condition codes (-1, 0 or 1).
+// This implements the Java bytecode fcmpl, so unordered returns -1.
+// Operands may not commute.
+class CmpFNode : public CmpNode {
+public:
+ CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+ virtual int Opcode() const;
+ virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
+ const Type *Value( PhaseTransform *phase ) const;
+};
+
+//------------------------------CmpF3Node--------------------------------------
+// Compare 2 float values, returning integer value (-1, 0 or 1).
+// This implements the Java bytecode fcmpl, so unordered returns -1.
+// Operands may not commute.
+class CmpF3Node : public CmpFNode {
+public:
+ CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
+ // Since it is not consumed by Bools, it is not really a Cmp.
+ init_class_id(Class_Sub);
+ }
+ virtual int Opcode() const;
+ // Since it is not consumed by Bools, it is not really a Cmp.
+ virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+
+//------------------------------CmpDNode---------------------------------------
+// Compare 2 double values, returning condition codes (-1, 0 or 1).
+// This implements the Java bytecode dcmpl, so unordered returns -1.
+// Operands may not commute.
+class CmpDNode : public CmpNode {
+public:
+ CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
+ virtual int Opcode() const;
+ virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
+ const Type *Value( PhaseTransform *phase ) const;
+ virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+};
+
+//------------------------------CmpD3Node--------------------------------------
+// Compare 2 double values, returning integer value (-1, 0 or 1).
+// This implements the Java bytecode dcmpl, so unordered returns -1.
+// Operands may not commute.
+class CmpD3Node : public CmpDNode {
+public:
+ CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
+ // Since it is not consumed by Bools, it is not really a Cmp.
+ init_class_id(Class_Sub);
+ }
+ virtual int Opcode() const;
+ virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+
+//------------------------------BoolTest---------------------------------------
+// Convert condition codes to a boolean test value (0 or -1).
+// We pick the values as 3 bits; the low order 2 bits we compare against the
+// condition codes, the high bit flips the sense of the result.
+struct BoolTest VALUE_OBJ_CLASS_SPEC {
+ enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, illegal = 8 };
+ mask _test;
+ BoolTest( mask btm ) : _test(btm) {}
+ const Type *cc2logical( const Type *CC ) const;
+ // Commute the test. I use a small table lookup. The table is created as
+ // a simple char array where each element is the ASCII version of a 'mask'
+ // enum from above.
+ mask commute( ) const { return mask("038147858"[_test]-'0'); }
+ mask negate( ) const { return mask(_test^4); }
+ bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le); }
+#ifndef PRODUCT
+ void dump_on(outputStream *st) const;
+#endif
+};
+
+//------------------------------BoolNode---------------------------------------
+// A Node to convert a Condition Codes to a Logical result.
+class BoolNode : public Node {
+ virtual uint hash() const;
+ virtual uint cmp( const Node &n ) const;
+ virtual uint size_of() const;
+public:
+ const BoolTest _test;
+ BoolNode( Node *cc, BoolTest::mask t): _test(t), Node(0,cc) {
+ init_class_id(Class_Bool);
+ }
+ // Convert an arbitrary int value to a Bool or other suitable predicate.
+ static Node* make_predicate(Node* test_value, PhaseGVN* phase);
+ // Convert self back to an integer value.
+ Node* as_int_value(PhaseGVN* phase);
+ // Invert sense of self, returning new Bool.
+ BoolNode* negate(PhaseGVN* phase);
+ virtual int Opcode() const;
+ virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+ virtual const Type *Value( PhaseTransform *phase ) const;
+ virtual const Type *bottom_type() const { return TypeInt::BOOL; }
+ uint match_edge(uint idx) const { return 0; }
+ virtual uint ideal_reg() const { return Op_RegI; }
+
+ bool is_counted_loop_exit_test();
+#ifndef PRODUCT
+ virtual void dump_spec(outputStream *st) const;
+#endif
+};
+
+//------------------------------AbsNode----------------------------------------
+// Abstract class for absolute value. Mostly used to get a handy wrapper
+// for finding this pattern in the graph.
+class AbsNode : public Node {
+public:
+ AbsNode( Node *value ) : Node(0,value) {}
+};
+
+//------------------------------AbsINode---------------------------------------
+// Absolute value an integer. Since a naive graph involves control flow, we
+// "match" it in the ideal world (so the control flow can be removed).
+class AbsINode : public AbsNode {
+public:
+ AbsINode( Node *in1 ) : AbsNode(in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return TypeInt::INT; }
+ virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+//------------------------------AbsFNode---------------------------------------
+// Absolute value a float, a common float-point idiom with a cheap hardware
+// implemention on most chips. Since a naive graph involves control flow, we
+// "match" it in the ideal world (so the control flow can be removed).
+class AbsFNode : public AbsNode {
+public:
+ AbsFNode( Node *in1 ) : AbsNode(in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return Type::FLOAT; }
+ virtual uint ideal_reg() const { return Op_RegF; }
+};
+
+//------------------------------AbsDNode---------------------------------------
+// Absolute value a double, a common float-point idiom with a cheap hardware
+// implemention on most chips. Since a naive graph involves control flow, we
+// "match" it in the ideal world (so the control flow can be removed).
+class AbsDNode : public AbsNode {
+public:
+ AbsDNode( Node *in1 ) : AbsNode(in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+};
+
+
+//------------------------------CmpLTMaskNode----------------------------------
+// If p < q, return -1 else return 0. Nice for flow-free idioms.
+class CmpLTMaskNode : public Node {
+public:
+ CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return TypeInt::INT; }
+ virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+
+//------------------------------NegNode----------------------------------------
+class NegNode : public Node {
+public:
+ NegNode( Node *in1 ) : Node(0,in1) {}
+};
+
+//------------------------------NegFNode---------------------------------------
+// Negate value a float. Negating 0.0 returns -0.0, but subtracting from
+// zero returns +0.0 (per JVM spec on 'fneg' bytecode). As subtraction
+// cannot be used to replace negation we have to implement negation as ideal
+// node; note that negation and addition can replace subtraction.
+class NegFNode : public NegNode {
+public:
+ NegFNode( Node *in1 ) : NegNode(in1) {}
+ virtual int Opcode() const;
+ virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+ const Type *bottom_type() const { return Type::FLOAT; }
+ virtual uint ideal_reg() const { return Op_RegF; }
+};
+
+//------------------------------NegDNode---------------------------------------
+// Negate value a double. Negating 0.0 returns -0.0, but subtracting from
+// zero returns +0.0 (per JVM spec on 'dneg' bytecode). As subtraction
+// cannot be used to replace negation we have to implement negation as ideal
+// node; note that negation and addition can replace subtraction.
+class NegDNode : public NegNode {
+public:
+ NegDNode( Node *in1 ) : NegNode(in1) {}
+ virtual int Opcode() const;
+ virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+};
+
+//------------------------------CosDNode---------------------------------------
+// Cosinus of a double
+class CosDNode : public Node {
+public:
+ CosDNode( Node *in1 ) : Node(0, in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+ virtual const Type *Value( PhaseTransform *phase ) const;
+};
+
+//------------------------------CosDNode---------------------------------------
+// Sinus of a double
+class SinDNode : public Node {
+public:
+ SinDNode( Node *in1 ) : Node(0, in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+ virtual const Type *Value( PhaseTransform *phase ) const;
+};
+
+
+//------------------------------TanDNode---------------------------------------
+// tangens of a double
+class TanDNode : public Node {
+public:
+ TanDNode(Node *in1 ) : Node(0, in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+ virtual const Type *Value( PhaseTransform *phase ) const;
+};
+
+
+//------------------------------AtanDNode--------------------------------------
+// arcus tangens of a double
+class AtanDNode : public Node {
+public:
+ AtanDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+};
+
+
+//------------------------------SqrtDNode--------------------------------------
+// square root a double
+class SqrtDNode : public Node {
+public:
+ SqrtDNode(Node *c, Node *in1 ) : Node(c, in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+ virtual const Type *Value( PhaseTransform *phase ) const;
+};
+
+//------------------------------ExpDNode---------------------------------------
+// Exponentiate a double
+class ExpDNode : public Node {
+public:
+ ExpDNode( Node *c, Node *in1 ) : Node(c, in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+ virtual const Type *Value( PhaseTransform *phase ) const;
+};
+
+//------------------------------LogDNode---------------------------------------
+// Log_e of a double
+class LogDNode : public Node {
+public:
+ LogDNode( Node *in1 ) : Node(0, in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+ virtual const Type *Value( PhaseTransform *phase ) const;
+};
+
+//------------------------------Log10DNode---------------------------------------
+// Log_10 of a double
+class Log10DNode : public Node {
+public:
+ Log10DNode( Node *in1 ) : Node(0, in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+ virtual const Type *Value( PhaseTransform *phase ) const;
+};
+
+//------------------------------PowDNode---------------------------------------
+// Raise a double to a double power
+class PowDNode : public Node {
+public:
+ PowDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return Type::DOUBLE; }
+ virtual uint ideal_reg() const { return Op_RegD; }
+ virtual const Type *Value( PhaseTransform *phase ) const;
+};
+
+//-------------------------------ReverseBytesINode--------------------------------
+// reverse bytes of an integer
+class ReverseBytesINode : public Node {
+public:
+ ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return TypeInt::INT; }
+ virtual uint ideal_reg() const { return Op_RegI; }
+};
+
+//-------------------------------ReverseBytesLNode--------------------------------
+// reverse bytes of a long
+class ReverseBytesLNode : public Node {
+public:
+ ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
+ virtual int Opcode() const;
+ const Type *bottom_type() const { return TypeLong::LONG; }
+ virtual uint ideal_reg() const { return Op_RegL; }
+};