--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/opto/addnode.cpp Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,871 @@
+/*
+ * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+// Portions of code courtesy of Clifford Click
+
+#include "incls/_precompiled.incl"
+#include "incls/_addnode.cpp.incl"
+
+#define MAXFLOAT ((float)3.40282346638528860e+38)
+
+// Classic Add functionality. This covers all the usual 'add' behaviors for
+// an algebraic ring. Add-integer, add-float, add-double, and binary-or are
+// all inherited from this class. The various identity values are supplied
+// by virtual functions.
+
+
+//=============================================================================
+//------------------------------hash-------------------------------------------
+// Hash function over AddNodes. Needs to be commutative; i.e., I swap
+// (commute) inputs to AddNodes willy-nilly so the hash function must return
+// the same value in the presence of edge swapping.
+uint AddNode::hash() const {
+ return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
+}
+
+//------------------------------Identity---------------------------------------
+// If either input is a constant 0, return the other input.
+Node *AddNode::Identity( PhaseTransform *phase ) {
+ const Type *zero = add_id(); // The additive identity
+ if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
+ if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
+ return this;
+}
+
+//------------------------------commute----------------------------------------
+// Commute operands to move loads and constants to the right.
+static bool commute( Node *add, int con_left, int con_right ) {
+ Node *in1 = add->in(1);
+ Node *in2 = add->in(2);
+
+ // Convert "1+x" into "x+1".
+ // Right is a constant; leave it
+ if( con_right ) return false;
+ // Left is a constant; move it right.
+ if( con_left ) {
+ add->swap_edges(1, 2);
+ return true;
+ }
+
+ // Convert "Load+x" into "x+Load".
+ // Now check for loads
+ if( in2->is_Load() ) return false;
+ // Left is a Load and Right is not; move it right.
+ if( in1->is_Load() ) {
+ add->swap_edges(1, 2);
+ return true;
+ }
+
+ PhiNode *phi;
+ // Check for tight loop increments: Loop-phi of Add of loop-phi
+ if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
+ return false;
+ if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
+ add->swap_edges(1, 2);
+ return true;
+ }
+
+ // Otherwise, sort inputs (commutativity) to help value numbering.
+ if( in1->_idx > in2->_idx ) {
+ add->swap_edges(1, 2);
+ return true;
+ }
+ return false;
+}
+
+//------------------------------Idealize---------------------------------------
+// If we get here, we assume we are associative!
+Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+ const Type *t1 = phase->type( in(1) );
+ const Type *t2 = phase->type( in(2) );
+ int con_left = t1->singleton();
+ int con_right = t2->singleton();
+
+ // Check for commutative operation desired
+ if( commute(this,con_left,con_right) ) return this;
+
+ AddNode *progress = NULL; // Progress flag
+
+ // Convert "(x+1)+2" into "x+(1+2)". If the right input is a
+ // constant, and the left input is an add of a constant, flatten the
+ // expression tree.
+ Node *add1 = in(1);
+ Node *add2 = in(2);
+ int add1_op = add1->Opcode();
+ int this_op = Opcode();
+ if( con_right && t2 != Type::TOP && // Right input is a constant?
+ add1_op == this_op ) { // Left input is an Add?
+
+ // Type of left _in right input
+ const Type *t12 = phase->type( add1->in(2) );
+ if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
+ // Check for rare case of closed data cycle which can happen inside
+ // unreachable loops. In these cases the computation is undefined.
+#ifdef ASSERT
+ Node *add11 = add1->in(1);
+ int add11_op = add11->Opcode();
+ if( (add1 == add1->in(1))
+ || (add11_op == this_op && add11->in(1) == add1) ) {
+ assert(false, "dead loop in AddNode::Ideal");
+ }
+#endif
+ // The Add of the flattened expression
+ Node *x1 = add1->in(1);
+ Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
+ PhaseIterGVN *igvn = phase->is_IterGVN();
+ if( igvn ) {
+ set_req_X(2,x2,igvn);
+ set_req_X(1,x1,igvn);
+ } else {
+ set_req(2,x2);
+ set_req(1,x1);
+ }
+ progress = this; // Made progress
+ add1 = in(1);
+ add1_op = add1->Opcode();
+ }
+ }
+
+ // Convert "(x+1)+y" into "(x+y)+1". Push constants down the expression tree.
+ if( add1_op == this_op && !con_right ) {
+ Node *a12 = add1->in(2);
+ const Type *t12 = phase->type( a12 );
+ if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
+ add2 = add1->clone();
+ add2->set_req(2, in(2));
+ add2 = phase->transform(add2);
+ set_req(1, add2);
+ set_req(2, a12);
+ progress = this;
+ add2 = a12;
+ }
+ }
+
+ // Convert "x+(y+1)" into "(x+y)+1". Push constants down the expression tree.
+ int add2_op = add2->Opcode();
+ if( add2_op == this_op && !con_left ) {
+ Node *a22 = add2->in(2);
+ const Type *t22 = phase->type( a22 );
+ if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
+ Node *addx = add2->clone();
+ addx->set_req(1, in(1));
+ addx->set_req(2, add2->in(1));
+ addx = phase->transform(addx);
+ set_req(1, addx);
+ set_req(2, a22);
+ progress = this;
+ }
+ }
+
+ return progress;
+}
+
+//------------------------------Value-----------------------------------------
+// An add node sums it's two _in. If one input is an RSD, we must mixin
+// the other input's symbols.
+const Type *AddNode::Value( PhaseTransform *phase ) const {
+ // Either input is TOP ==> the result is TOP
+ const Type *t1 = phase->type( in(1) );
+ const Type *t2 = phase->type( in(2) );
+ if( t1 == Type::TOP ) return Type::TOP;
+ if( t2 == Type::TOP ) return Type::TOP;
+
+ // Either input is BOTTOM ==> the result is the local BOTTOM
+ const Type *bot = bottom_type();
+ if( (t1 == bot) || (t2 == bot) ||
+ (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
+ return bot;
+
+ // Check for an addition involving the additive identity
+ const Type *tadd = add_of_identity( t1, t2 );
+ if( tadd ) return tadd;
+
+ return add_ring(t1,t2); // Local flavor of type addition
+}
+
+//------------------------------add_identity-----------------------------------
+// Check for addition of the identity
+const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
+ const Type *zero = add_id(); // The additive identity
+ if( t1->higher_equal( zero ) ) return t2;
+ if( t2->higher_equal( zero ) ) return t1;
+
+ return NULL;
+}
+
+
+//=============================================================================
+//------------------------------Idealize---------------------------------------
+Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
+ int op1 = in(1)->Opcode();
+ int op2 = in(2)->Opcode();
+ // Fold (con1-x)+con2 into (con1+con2)-x
+ if( op1 == Op_SubI ) {
+ const Type *t_sub1 = phase->type( in(1)->in(1) );
+ const Type *t_2 = phase->type( in(2) );
+ if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
+ return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
+ in(1)->in(2) );
+ // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
+ if( op2 == Op_SubI ) {
+ // Check for dead cycle: d = (a-b)+(c-d)
+ assert( in(1)->in(2) != this && in(2)->in(2) != this,
+ "dead loop in AddINode::Ideal" );
+ Node *sub = new (phase->C, 3) SubINode(NULL, NULL);
+ sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
+ sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
+ return sub;
+ }
+ }
+
+ // Convert "x+(0-y)" into "(x-y)"
+ if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
+ return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );
+
+ // Convert "(0-y)+x" into "(x-y)"
+ if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
+ return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );
+
+ // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
+ // Helps with array allocation math constant folding
+ // See 4790063:
+ // Unrestricted transformation is unsafe for some runtime values of 'x'
+ // ( x == 0, z == 1, y == -1 ) fails
+ // ( x == -5, z == 1, y == 1 ) fails
+ // Transform works for small z and small negative y when the addition
+ // (x + (y << z)) does not cross zero.
+ // Implement support for negative y and (x >= -(y << z))
+ // Have not observed cases where type information exists to support
+ // positive y and (x <= -(y << z))
+ if( op1 == Op_URShiftI && op2 == Op_ConI &&
+ in(1)->in(2)->Opcode() == Op_ConI ) {
+ jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
+ jint y = phase->type( in(2) )->is_int()->get_con();
+
+ if( z < 5 && -5 < y && y < 0 ) {
+ const Type *t_in11 = phase->type(in(1)->in(1));
+ if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
+ Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
+ return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
+ }
+ }
+ }
+
+ return AddNode::Ideal(phase, can_reshape);
+}
+
+
+//------------------------------Identity---------------------------------------
+// Fold (x-y)+y OR y+(x-y) into x
+Node *AddINode::Identity( PhaseTransform *phase ) {
+ if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
+ return in(1)->in(1);
+ }
+ else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
+ return in(2)->in(1);
+ }
+ return AddNode::Identity(phase);
+}
+
+
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs. Guaranteed never
+// to be passed a TOP or BOTTOM type, these are filtered out by
+// pre-check.
+const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
+ const TypeInt *r0 = t0->is_int(); // Handy access
+ const TypeInt *r1 = t1->is_int();
+ int lo = r0->_lo + r1->_lo;
+ int hi = r0->_hi + r1->_hi;
+ if( !(r0->is_con() && r1->is_con()) ) {
+ // Not both constants, compute approximate result
+ if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
+ lo = min_jint; hi = max_jint; // Underflow on the low side
+ }
+ if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
+ lo = min_jint; hi = max_jint; // Overflow on the high side
+ }
+ if( lo > hi ) { // Handle overflow
+ lo = min_jint; hi = max_jint;
+ }
+ } else {
+ // both constants, compute precise result using 'lo' and 'hi'
+ // Semantics define overflow and underflow for integer addition
+ // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
+ }
+ return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
+}
+
+
+//=============================================================================
+//------------------------------Idealize---------------------------------------
+Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+ int op1 = in(1)->Opcode();
+ int op2 = in(2)->Opcode();
+ // Fold (con1-x)+con2 into (con1+con2)-x
+ if( op1 == Op_SubL ) {
+ const Type *t_sub1 = phase->type( in(1)->in(1) );
+ const Type *t_2 = phase->type( in(2) );
+ if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
+ return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
+ in(1)->in(2) );
+ // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
+ if( op2 == Op_SubL ) {
+ // Check for dead cycle: d = (a-b)+(c-d)
+ assert( in(1)->in(2) != this && in(2)->in(2) != this,
+ "dead loop in AddLNode::Ideal" );
+ Node *sub = new (phase->C, 3) SubLNode(NULL, NULL);
+ sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
+ sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
+ return sub;
+ }
+ }
+
+ // Convert "x+(0-y)" into "(x-y)"
+ if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
+ return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );
+
+ // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
+ // into "(X<<1)+Y" and let shift-folding happen.
+ if( op2 == Op_AddL &&
+ in(2)->in(1) == in(1) &&
+ op1 != Op_ConL &&
+ 0 ) {
+ Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
+ return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
+ }
+
+ return AddNode::Ideal(phase, can_reshape);
+}
+
+
+//------------------------------Identity---------------------------------------
+// Fold (x-y)+y OR y+(x-y) into x
+Node *AddLNode::Identity( PhaseTransform *phase ) {
+ if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
+ return in(1)->in(1);
+ }
+ else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
+ return in(2)->in(1);
+ }
+ return AddNode::Identity(phase);
+}
+
+
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs. Guaranteed never
+// to be passed a TOP or BOTTOM type, these are filtered out by
+// pre-check.
+const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
+ const TypeLong *r0 = t0->is_long(); // Handy access
+ const TypeLong *r1 = t1->is_long();
+ jlong lo = r0->_lo + r1->_lo;
+ jlong hi = r0->_hi + r1->_hi;
+ if( !(r0->is_con() && r1->is_con()) ) {
+ // Not both constants, compute approximate result
+ if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
+ lo =min_jlong; hi = max_jlong; // Underflow on the low side
+ }
+ if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
+ lo = min_jlong; hi = max_jlong; // Overflow on the high side
+ }
+ if( lo > hi ) { // Handle overflow
+ lo = min_jlong; hi = max_jlong;
+ }
+ } else {
+ // both constants, compute precise result using 'lo' and 'hi'
+ // Semantics define overflow and underflow for integer addition
+ // as expected. In particular: 0x80000000 + 0x80000000 --> 0x0
+ }
+ return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
+}
+
+
+//=============================================================================
+//------------------------------add_of_identity--------------------------------
+// Check for addition of the identity
+const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
+ // x ADD 0 should return x unless 'x' is a -zero
+ //
+ // const Type *zero = add_id(); // The additive identity
+ // jfloat f1 = t1->getf();
+ // jfloat f2 = t2->getf();
+ //
+ // if( t1->higher_equal( zero ) ) return t2;
+ // if( t2->higher_equal( zero ) ) return t1;
+
+ return NULL;
+}
+
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs.
+// This also type-checks the inputs for sanity. Guaranteed never to
+// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
+const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
+ // We must be adding 2 float constants.
+ return TypeF::make( t0->getf() + t1->getf() );
+}
+
+//------------------------------Ideal------------------------------------------
+Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+ if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
+ return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
+ }
+
+ // Floating point additions are not associative because of boundary conditions (infinity)
+ return commute(this,
+ phase->type( in(1) )->singleton(),
+ phase->type( in(2) )->singleton() ) ? this : NULL;
+}
+
+
+//=============================================================================
+//------------------------------add_of_identity--------------------------------
+// Check for addition of the identity
+const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
+ // x ADD 0 should return x unless 'x' is a -zero
+ //
+ // const Type *zero = add_id(); // The additive identity
+ // jfloat f1 = t1->getf();
+ // jfloat f2 = t2->getf();
+ //
+ // if( t1->higher_equal( zero ) ) return t2;
+ // if( t2->higher_equal( zero ) ) return t1;
+
+ return NULL;
+}
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs.
+// This also type-checks the inputs for sanity. Guaranteed never to
+// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
+const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
+ // We must be adding 2 double constants.
+ return TypeD::make( t0->getd() + t1->getd() );
+}
+
+//------------------------------Ideal------------------------------------------
+Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+ if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
+ return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
+ }
+
+ // Floating point additions are not associative because of boundary conditions (infinity)
+ return commute(this,
+ phase->type( in(1) )->singleton(),
+ phase->type( in(2) )->singleton() ) ? this : NULL;
+}
+
+
+//=============================================================================
+//------------------------------Identity---------------------------------------
+// If one input is a constant 0, return the other input.
+Node *AddPNode::Identity( PhaseTransform *phase ) {
+ return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
+}
+
+//------------------------------Idealize---------------------------------------
+Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
+ // Bail out if dead inputs
+ if( phase->type( in(Address) ) == Type::TOP ) return NULL;
+
+ // If the left input is an add of a constant, flatten the expression tree.
+ const Node *n = in(Address);
+ if (n->is_AddP() && n->in(Base) == in(Base)) {
+ const AddPNode *addp = n->as_AddP(); // Left input is an AddP
+ assert( !addp->in(Address)->is_AddP() ||
+ addp->in(Address)->as_AddP() != addp,
+ "dead loop in AddPNode::Ideal" );
+ // Type of left input's right input
+ const Type *t = phase->type( addp->in(Offset) );
+ if( t == Type::TOP ) return NULL;
+ const TypeX *t12 = t->is_intptr_t();
+ if( t12->is_con() ) { // Left input is an add of a constant?
+ // If the right input is a constant, combine constants
+ const Type *temp_t2 = phase->type( in(Offset) );
+ if( temp_t2 == Type::TOP ) return NULL;
+ const TypeX *t2 = temp_t2->is_intptr_t();
+ if( t2->is_con() ) {
+ // The Add of the flattened expression
+ set_req(Address, addp->in(Address));
+ set_req(Offset , phase->MakeConX(t2->get_con() + t12->get_con()));
+ return this; // Made progress
+ }
+ // Else move the constant to the right. ((A+con)+B) into ((A+B)+con)
+ set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset))));
+ set_req(Offset , addp->in(Offset));
+ return this;
+ }
+ }
+
+ // Raw pointers?
+ if( in(Base)->bottom_type() == Type::TOP ) {
+ // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
+ if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
+ Node* offset = in(Offset);
+ return new (phase->C, 2) CastX2PNode(offset);
+ }
+ }
+
+ // If the right is an add of a constant, push the offset down.
+ // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
+ // The idea is to merge array_base+scaled_index groups together,
+ // and only have different constant offsets from the same base.
+ const Node *add = in(Offset);
+ if( add->Opcode() == Op_AddX && add->in(1) != add ) {
+ const Type *t22 = phase->type( add->in(2) );
+ if( t22->singleton() && (t22 != Type::TOP) ) { // Right input is an add of a constant?
+ set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
+ set_req(Offset, add->in(2));
+ return this; // Made progress
+ }
+ }
+
+ return NULL; // No progress
+}
+
+//------------------------------bottom_type------------------------------------
+// Bottom-type is the pointer-type with unknown offset.
+const Type *AddPNode::bottom_type() const {
+ if (in(Address) == NULL) return TypePtr::BOTTOM;
+ const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
+ if( !tp ) return Type::TOP; // TOP input means TOP output
+ assert( in(Offset)->Opcode() != Op_ConP, "" );
+ const Type *t = in(Offset)->bottom_type();
+ if( t == Type::TOP )
+ return tp->add_offset(Type::OffsetTop);
+ const TypeX *tx = t->is_intptr_t();
+ intptr_t txoffset = Type::OffsetBot;
+ if (tx->is_con()) { // Left input is an add of a constant?
+ txoffset = tx->get_con();
+ if (txoffset != (int)txoffset)
+ txoffset = Type::OffsetBot; // oops: add_offset will choke on it
+ }
+ return tp->add_offset(txoffset);
+}
+
+//------------------------------Value------------------------------------------
+const Type *AddPNode::Value( PhaseTransform *phase ) const {
+ // Either input is TOP ==> the result is TOP
+ const Type *t1 = phase->type( in(Address) );
+ const Type *t2 = phase->type( in(Offset) );
+ if( t1 == Type::TOP ) return Type::TOP;
+ if( t2 == Type::TOP ) return Type::TOP;
+
+ // Left input is a pointer
+ const TypePtr *p1 = t1->isa_ptr();
+ // Right input is an int
+ const TypeX *p2 = t2->is_intptr_t();
+ // Add 'em
+ intptr_t p2offset = Type::OffsetBot;
+ if (p2->is_con()) { // Left input is an add of a constant?
+ p2offset = p2->get_con();
+ if (p2offset != (int)p2offset)
+ p2offset = Type::OffsetBot; // oops: add_offset will choke on it
+ }
+ return p1->add_offset(p2offset);
+}
+
+//------------------------Ideal_base_and_offset--------------------------------
+// Split an oop pointer into a base and offset.
+// (The offset might be Type::OffsetBot in the case of an array.)
+// Return the base, or NULL if failure.
+Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
+ // second return value:
+ intptr_t& offset) {
+ if (ptr->is_AddP()) {
+ Node* base = ptr->in(AddPNode::Base);
+ Node* addr = ptr->in(AddPNode::Address);
+ Node* offs = ptr->in(AddPNode::Offset);
+ if (base == addr || base->is_top()) {
+ offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
+ if (offset != Type::OffsetBot) {
+ return addr;
+ }
+ }
+ }
+ offset = Type::OffsetBot;
+ return NULL;
+}
+
+//------------------------------match_edge-------------------------------------
+// Do we Match on this edge index or not? Do not match base pointer edge
+uint AddPNode::match_edge(uint idx) const {
+ return idx > Base;
+}
+
+//---------------------------mach_bottom_type----------------------------------
+// Utility function for use by ADLC. Implements bottom_type for matched AddP.
+const Type *AddPNode::mach_bottom_type( const MachNode* n) {
+ Node* base = n->in(Base);
+ const Type *t = base->bottom_type();
+ if ( t == Type::TOP ) {
+ // an untyped pointer
+ return TypeRawPtr::BOTTOM;
+ }
+ const TypePtr* tp = t->isa_oopptr();
+ if ( tp == NULL ) return t;
+ if ( tp->_offset == TypePtr::OffsetBot ) return tp;
+
+ // We must carefully add up the various offsets...
+ intptr_t offset = 0;
+ const TypePtr* tptr = NULL;
+
+ uint numopnds = n->num_opnds();
+ uint index = n->oper_input_base();
+ for ( uint i = 1; i < numopnds; i++ ) {
+ MachOper *opnd = n->_opnds[i];
+ // Check for any interesting operand info.
+ // In particular, check for both memory and non-memory operands.
+ // %%%%% Clean this up: use xadd_offset
+ int con = opnd->constant();
+ if ( con == TypePtr::OffsetBot ) goto bottom_out;
+ offset += con;
+ con = opnd->constant_disp();
+ if ( con == TypePtr::OffsetBot ) goto bottom_out;
+ offset += con;
+ if( opnd->scale() != 0 ) goto bottom_out;
+
+ // Check each operand input edge. Find the 1 allowed pointer
+ // edge. Other edges must be index edges; track exact constant
+ // inputs and otherwise assume the worst.
+ for ( uint j = opnd->num_edges(); j > 0; j-- ) {
+ Node* edge = n->in(index++);
+ const Type* et = edge->bottom_type();
+ const TypeX* eti = et->isa_intptr_t();
+ if ( eti == NULL ) {
+ // there must be one pointer among the operands
+ guarantee(tptr == NULL, "must be only one pointer operand");
+ tptr = et->isa_oopptr();
+ guarantee(tptr != NULL, "non-int operand must be pointer");
+ continue;
+ }
+ if ( eti->_hi != eti->_lo ) goto bottom_out;
+ offset += eti->_lo;
+ }
+ }
+ guarantee(tptr != NULL, "must be exactly one pointer operand");
+ return tptr->add_offset(offset);
+
+ bottom_out:
+ return tp->add_offset(TypePtr::OffsetBot);
+}
+
+//=============================================================================
+//------------------------------Identity---------------------------------------
+Node *OrINode::Identity( PhaseTransform *phase ) {
+ // x | x => x
+ if (phase->eqv(in(1), in(2))) {
+ return in(1);
+ }
+
+ return AddNode::Identity(phase);
+}
+
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs IN THE CURRENT RING. For
+// the logical operations the ring's ADD is really a logical OR function.
+// This also type-checks the inputs for sanity. Guaranteed never to
+// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
+const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
+ const TypeInt *r0 = t0->is_int(); // Handy access
+ const TypeInt *r1 = t1->is_int();
+
+ // If both args are bool, can figure out better types
+ if ( r0 == TypeInt::BOOL ) {
+ if ( r1 == TypeInt::ONE) {
+ return TypeInt::ONE;
+ } else if ( r1 == TypeInt::BOOL ) {
+ return TypeInt::BOOL;
+ }
+ } else if ( r0 == TypeInt::ONE ) {
+ if ( r1 == TypeInt::BOOL ) {
+ return TypeInt::ONE;
+ }
+ }
+
+ // If either input is not a constant, just return all integers.
+ if( !r0->is_con() || !r1->is_con() )
+ return TypeInt::INT; // Any integer, but still no symbols.
+
+ // Otherwise just OR them bits.
+ return TypeInt::make( r0->get_con() | r1->get_con() );
+}
+
+//=============================================================================
+//------------------------------Identity---------------------------------------
+Node *OrLNode::Identity( PhaseTransform *phase ) {
+ // x | x => x
+ if (phase->eqv(in(1), in(2))) {
+ return in(1);
+ }
+
+ return AddNode::Identity(phase);
+}
+
+//------------------------------add_ring---------------------------------------
+const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
+ const TypeLong *r0 = t0->is_long(); // Handy access
+ const TypeLong *r1 = t1->is_long();
+
+ // If either input is not a constant, just return all integers.
+ if( !r0->is_con() || !r1->is_con() )
+ return TypeLong::LONG; // Any integer, but still no symbols.
+
+ // Otherwise just OR them bits.
+ return TypeLong::make( r0->get_con() | r1->get_con() );
+}
+
+//=============================================================================
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs IN THE CURRENT RING. For
+// the logical operations the ring's ADD is really a logical OR function.
+// This also type-checks the inputs for sanity. Guaranteed never to
+// be passed a TOP or BOTTOM type, these are filtered out by pre-check.
+const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
+ const TypeInt *r0 = t0->is_int(); // Handy access
+ const TypeInt *r1 = t1->is_int();
+
+ // Complementing a boolean?
+ if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
+ || r1 == TypeInt::BOOL))
+ return TypeInt::BOOL;
+
+ if( !r0->is_con() || !r1->is_con() ) // Not constants
+ return TypeInt::INT; // Any integer, but still no symbols.
+
+ // Otherwise just XOR them bits.
+ return TypeInt::make( r0->get_con() ^ r1->get_con() );
+}
+
+//=============================================================================
+//------------------------------add_ring---------------------------------------
+const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
+ const TypeLong *r0 = t0->is_long(); // Handy access
+ const TypeLong *r1 = t1->is_long();
+
+ // If either input is not a constant, just return all integers.
+ if( !r0->is_con() || !r1->is_con() )
+ return TypeLong::LONG; // Any integer, but still no symbols.
+
+ // Otherwise just OR them bits.
+ return TypeLong::make( r0->get_con() ^ r1->get_con() );
+}
+
+//=============================================================================
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs.
+const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
+ const TypeInt *r0 = t0->is_int(); // Handy access
+ const TypeInt *r1 = t1->is_int();
+
+ // Otherwise just MAX them bits.
+ return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
+}
+
+//=============================================================================
+//------------------------------Idealize---------------------------------------
+// MINs show up in range-check loop limit calculations. Look for
+// "MIN2(x+c0,MIN2(y,x+c1))". Pick the smaller constant: "MIN2(x+c0,y)"
+Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
+ Node *progress = NULL;
+ // Force a right-spline graph
+ Node *l = in(1);
+ Node *r = in(2);
+ // Transform MinI1( MinI2(a,b), c) into MinI1( a, MinI2(b,c) )
+ // to force a right-spline graph for the rest of MinINode::Ideal().
+ if( l->Opcode() == Op_MinI ) {
+ assert( l != l->in(1), "dead loop in MinINode::Ideal" );
+ r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
+ l = l->in(1);
+ set_req(1, l);
+ set_req(2, r);
+ return this;
+ }
+
+ // Get left input & constant
+ Node *x = l;
+ int x_off = 0;
+ if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
+ x->in(2)->is_Con() ) {
+ const Type *t = x->in(2)->bottom_type();
+ if( t == Type::TOP ) return NULL; // No progress
+ x_off = t->is_int()->get_con();
+ x = x->in(1);
+ }
+
+ // Scan a right-spline-tree for MINs
+ Node *y = r;
+ int y_off = 0;
+ // Check final part of MIN tree
+ if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
+ y->in(2)->is_Con() ) {
+ const Type *t = y->in(2)->bottom_type();
+ if( t == Type::TOP ) return NULL; // No progress
+ y_off = t->is_int()->get_con();
+ y = y->in(1);
+ }
+ if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
+ swap_edges(1, 2);
+ return this;
+ }
+
+
+ if( r->Opcode() == Op_MinI ) {
+ assert( r != r->in(2), "dead loop in MinINode::Ideal" );
+ y = r->in(1);
+ // Check final part of MIN tree
+ if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
+ y->in(2)->is_Con() ) {
+ const Type *t = y->in(2)->bottom_type();
+ if( t == Type::TOP ) return NULL; // No progress
+ y_off = t->is_int()->get_con();
+ y = y->in(1);
+ }
+
+ if( x->_idx > y->_idx )
+ return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
+
+ // See if covers: MIN2(x+c0,MIN2(y+c1,z))
+ if( !phase->eqv(x,y) ) return NULL;
+ // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
+ // MIN2(x+c0 or x+c1 which less, z).
+ return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
+ } else {
+ // See if covers: MIN2(x+c0,y+c1)
+ if( !phase->eqv(x,y) ) return NULL;
+ // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
+ return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
+ }
+
+}
+
+//------------------------------add_ring---------------------------------------
+// Supplied function returns the sum of the inputs.
+const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
+ const TypeInt *r0 = t0->is_int(); // Handy access
+ const TypeInt *r1 = t1->is_int();
+
+ // Otherwise just MIN them bits.
+ return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
+}