hotspot/src/share/vm/opto/addnode.cpp
changeset 1 489c9b5090e2
child 190 e9a0a9dcd4f6
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 // Portions of code courtesy of Clifford Click
       
    26 
       
    27 #include "incls/_precompiled.incl"
       
    28 #include "incls/_addnode.cpp.incl"
       
    29 
       
    30 #define MAXFLOAT        ((float)3.40282346638528860e+38)
       
    31 
       
    32 // Classic Add functionality.  This covers all the usual 'add' behaviors for
       
    33 // an algebraic ring.  Add-integer, add-float, add-double, and binary-or are
       
    34 // all inherited from this class.  The various identity values are supplied
       
    35 // by virtual functions.
       
    36 
       
    37 
       
    38 //=============================================================================
       
    39 //------------------------------hash-------------------------------------------
       
    40 // Hash function over AddNodes.  Needs to be commutative; i.e., I swap
       
    41 // (commute) inputs to AddNodes willy-nilly so the hash function must return
       
    42 // the same value in the presence of edge swapping.
       
    43 uint AddNode::hash() const {
       
    44   return (uintptr_t)in(1) + (uintptr_t)in(2) + Opcode();
       
    45 }
       
    46 
       
    47 //------------------------------Identity---------------------------------------
       
    48 // If either input is a constant 0, return the other input.
       
    49 Node *AddNode::Identity( PhaseTransform *phase ) {
       
    50   const Type *zero = add_id();  // The additive identity
       
    51   if( phase->type( in(1) )->higher_equal( zero ) ) return in(2);
       
    52   if( phase->type( in(2) )->higher_equal( zero ) ) return in(1);
       
    53   return this;
       
    54 }
       
    55 
       
    56 //------------------------------commute----------------------------------------
       
    57 // Commute operands to move loads and constants to the right.
       
    58 static bool commute( Node *add, int con_left, int con_right ) {
       
    59   Node *in1 = add->in(1);
       
    60   Node *in2 = add->in(2);
       
    61 
       
    62   // Convert "1+x" into "x+1".
       
    63   // Right is a constant; leave it
       
    64   if( con_right ) return false;
       
    65   // Left is a constant; move it right.
       
    66   if( con_left ) {
       
    67     add->swap_edges(1, 2);
       
    68     return true;
       
    69   }
       
    70 
       
    71   // Convert "Load+x" into "x+Load".
       
    72   // Now check for loads
       
    73   if( in2->is_Load() ) return false;
       
    74   // Left is a Load and Right is not; move it right.
       
    75   if( in1->is_Load() ) {
       
    76     add->swap_edges(1, 2);
       
    77     return true;
       
    78   }
       
    79 
       
    80   PhiNode *phi;
       
    81   // Check for tight loop increments: Loop-phi of Add of loop-phi
       
    82   if( in1->is_Phi() && (phi = in1->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add)
       
    83     return false;
       
    84   if( in2->is_Phi() && (phi = in2->as_Phi()) && !phi->is_copy() && phi->region()->is_Loop() && phi->in(2)==add){
       
    85     add->swap_edges(1, 2);
       
    86     return true;
       
    87   }
       
    88 
       
    89   // Otherwise, sort inputs (commutativity) to help value numbering.
       
    90   if( in1->_idx > in2->_idx ) {
       
    91     add->swap_edges(1, 2);
       
    92     return true;
       
    93   }
       
    94   return false;
       
    95 }
       
    96 
       
    97 //------------------------------Idealize---------------------------------------
       
    98 // If we get here, we assume we are associative!
       
    99 Node *AddNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   100   const Type *t1 = phase->type( in(1) );
       
   101   const Type *t2 = phase->type( in(2) );
       
   102   int con_left  = t1->singleton();
       
   103   int con_right = t2->singleton();
       
   104 
       
   105   // Check for commutative operation desired
       
   106   if( commute(this,con_left,con_right) ) return this;
       
   107 
       
   108   AddNode *progress = NULL;             // Progress flag
       
   109 
       
   110   // Convert "(x+1)+2" into "x+(1+2)".  If the right input is a
       
   111   // constant, and the left input is an add of a constant, flatten the
       
   112   // expression tree.
       
   113   Node *add1 = in(1);
       
   114   Node *add2 = in(2);
       
   115   int add1_op = add1->Opcode();
       
   116   int this_op = Opcode();
       
   117   if( con_right && t2 != Type::TOP && // Right input is a constant?
       
   118       add1_op == this_op ) { // Left input is an Add?
       
   119 
       
   120     // Type of left _in right input
       
   121     const Type *t12 = phase->type( add1->in(2) );
       
   122     if( t12->singleton() && t12 != Type::TOP ) { // Left input is an add of a constant?
       
   123       // Check for rare case of closed data cycle which can happen inside
       
   124       // unreachable loops. In these cases the computation is undefined.
       
   125 #ifdef ASSERT
       
   126       Node *add11    = add1->in(1);
       
   127       int   add11_op = add11->Opcode();
       
   128       if( (add1 == add1->in(1))
       
   129          || (add11_op == this_op && add11->in(1) == add1) ) {
       
   130         assert(false, "dead loop in AddNode::Ideal");
       
   131       }
       
   132 #endif
       
   133       // The Add of the flattened expression
       
   134       Node *x1 = add1->in(1);
       
   135       Node *x2 = phase->makecon( add1->as_Add()->add_ring( t2, t12 ));
       
   136       PhaseIterGVN *igvn = phase->is_IterGVN();
       
   137       if( igvn ) {
       
   138         set_req_X(2,x2,igvn);
       
   139         set_req_X(1,x1,igvn);
       
   140       } else {
       
   141         set_req(2,x2);
       
   142         set_req(1,x1);
       
   143       }
       
   144       progress = this;            // Made progress
       
   145       add1 = in(1);
       
   146       add1_op = add1->Opcode();
       
   147     }
       
   148   }
       
   149 
       
   150   // Convert "(x+1)+y" into "(x+y)+1".  Push constants down the expression tree.
       
   151   if( add1_op == this_op && !con_right ) {
       
   152     Node *a12 = add1->in(2);
       
   153     const Type *t12 = phase->type( a12 );
       
   154     if( t12->singleton() && t12 != Type::TOP && (add1 != add1->in(1)) ) {
       
   155       add2 = add1->clone();
       
   156       add2->set_req(2, in(2));
       
   157       add2 = phase->transform(add2);
       
   158       set_req(1, add2);
       
   159       set_req(2, a12);
       
   160       progress = this;
       
   161       add2 = a12;
       
   162     }
       
   163   }
       
   164 
       
   165   // Convert "x+(y+1)" into "(x+y)+1".  Push constants down the expression tree.
       
   166   int add2_op = add2->Opcode();
       
   167   if( add2_op == this_op && !con_left ) {
       
   168     Node *a22 = add2->in(2);
       
   169     const Type *t22 = phase->type( a22 );
       
   170     if( t22->singleton() && t22 != Type::TOP && (add2 != add2->in(1)) ) {
       
   171       Node *addx = add2->clone();
       
   172       addx->set_req(1, in(1));
       
   173       addx->set_req(2, add2->in(1));
       
   174       addx = phase->transform(addx);
       
   175       set_req(1, addx);
       
   176       set_req(2, a22);
       
   177       progress = this;
       
   178     }
       
   179   }
       
   180 
       
   181   return progress;
       
   182 }
       
   183 
       
   184 //------------------------------Value-----------------------------------------
       
   185 // An add node sums it's two _in.  If one input is an RSD, we must mixin
       
   186 // the other input's symbols.
       
   187 const Type *AddNode::Value( PhaseTransform *phase ) const {
       
   188   // Either input is TOP ==> the result is TOP
       
   189   const Type *t1 = phase->type( in(1) );
       
   190   const Type *t2 = phase->type( in(2) );
       
   191   if( t1 == Type::TOP ) return Type::TOP;
       
   192   if( t2 == Type::TOP ) return Type::TOP;
       
   193 
       
   194   // Either input is BOTTOM ==> the result is the local BOTTOM
       
   195   const Type *bot = bottom_type();
       
   196   if( (t1 == bot) || (t2 == bot) ||
       
   197       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
       
   198     return bot;
       
   199 
       
   200   // Check for an addition involving the additive identity
       
   201   const Type *tadd = add_of_identity( t1, t2 );
       
   202   if( tadd ) return tadd;
       
   203 
       
   204   return add_ring(t1,t2);               // Local flavor of type addition
       
   205 }
       
   206 
       
   207 //------------------------------add_identity-----------------------------------
       
   208 // Check for addition of the identity
       
   209 const Type *AddNode::add_of_identity( const Type *t1, const Type *t2 ) const {
       
   210   const Type *zero = add_id();  // The additive identity
       
   211   if( t1->higher_equal( zero ) ) return t2;
       
   212   if( t2->higher_equal( zero ) ) return t1;
       
   213 
       
   214   return NULL;
       
   215 }
       
   216 
       
   217 
       
   218 //=============================================================================
       
   219 //------------------------------Idealize---------------------------------------
       
   220 Node *AddINode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   221   int op1 = in(1)->Opcode();
       
   222   int op2 = in(2)->Opcode();
       
   223   // Fold (con1-x)+con2 into (con1+con2)-x
       
   224   if( op1 == Op_SubI ) {
       
   225     const Type *t_sub1 = phase->type( in(1)->in(1) );
       
   226     const Type *t_2    = phase->type( in(2)        );
       
   227     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
       
   228       return new (phase->C, 3) SubINode(phase->makecon( add_ring( t_sub1, t_2 ) ),
       
   229                               in(1)->in(2) );
       
   230     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
       
   231     if( op2 == Op_SubI ) {
       
   232       // Check for dead cycle: d = (a-b)+(c-d)
       
   233       assert( in(1)->in(2) != this && in(2)->in(2) != this,
       
   234               "dead loop in AddINode::Ideal" );
       
   235       Node *sub  = new (phase->C, 3) SubINode(NULL, NULL);
       
   236       sub->init_req(1, phase->transform(new (phase->C, 3) AddINode(in(1)->in(1), in(2)->in(1) ) ));
       
   237       sub->init_req(2, phase->transform(new (phase->C, 3) AddINode(in(1)->in(2), in(2)->in(2) ) ));
       
   238       return sub;
       
   239     }
       
   240   }
       
   241 
       
   242   // Convert "x+(0-y)" into "(x-y)"
       
   243   if( op2 == Op_SubI && phase->type(in(2)->in(1)) == TypeInt::ZERO )
       
   244     return new (phase->C, 3) SubINode(in(1), in(2)->in(2) );
       
   245 
       
   246   // Convert "(0-y)+x" into "(x-y)"
       
   247   if( op1 == Op_SubI && phase->type(in(1)->in(1)) == TypeInt::ZERO )
       
   248     return new (phase->C, 3) SubINode( in(2), in(1)->in(2) );
       
   249 
       
   250   // Convert (x>>>z)+y into (x+(y<<z))>>>z for small constant z and y.
       
   251   // Helps with array allocation math constant folding
       
   252   // See 4790063:
       
   253   // Unrestricted transformation is unsafe for some runtime values of 'x'
       
   254   // ( x ==  0, z == 1, y == -1 ) fails
       
   255   // ( x == -5, z == 1, y ==  1 ) fails
       
   256   // Transform works for small z and small negative y when the addition
       
   257   // (x + (y << z)) does not cross zero.
       
   258   // Implement support for negative y and (x >= -(y << z))
       
   259   // Have not observed cases where type information exists to support
       
   260   // positive y and (x <= -(y << z))
       
   261   if( op1 == Op_URShiftI && op2 == Op_ConI &&
       
   262       in(1)->in(2)->Opcode() == Op_ConI ) {
       
   263     jint z = phase->type( in(1)->in(2) )->is_int()->get_con() & 0x1f; // only least significant 5 bits matter
       
   264     jint y = phase->type( in(2) )->is_int()->get_con();
       
   265 
       
   266     if( z < 5 && -5 < y && y < 0 ) {
       
   267       const Type *t_in11 = phase->type(in(1)->in(1));
       
   268       if( t_in11 != Type::TOP && (t_in11->is_int()->_lo >= -(y << z)) ) {
       
   269         Node *a = phase->transform( new (phase->C, 3) AddINode( in(1)->in(1), phase->intcon(y<<z) ) );
       
   270         return new (phase->C, 3) URShiftINode( a, in(1)->in(2) );
       
   271       }
       
   272     }
       
   273   }
       
   274 
       
   275   return AddNode::Ideal(phase, can_reshape);
       
   276 }
       
   277 
       
   278 
       
   279 //------------------------------Identity---------------------------------------
       
   280 // Fold (x-y)+y  OR  y+(x-y)  into  x
       
   281 Node *AddINode::Identity( PhaseTransform *phase ) {
       
   282   if( in(1)->Opcode() == Op_SubI && phase->eqv(in(1)->in(2),in(2)) ) {
       
   283     return in(1)->in(1);
       
   284   }
       
   285   else if( in(2)->Opcode() == Op_SubI && phase->eqv(in(2)->in(2),in(1)) ) {
       
   286     return in(2)->in(1);
       
   287   }
       
   288   return AddNode::Identity(phase);
       
   289 }
       
   290 
       
   291 
       
   292 //------------------------------add_ring---------------------------------------
       
   293 // Supplied function returns the sum of the inputs.  Guaranteed never
       
   294 // to be passed a TOP or BOTTOM type, these are filtered out by
       
   295 // pre-check.
       
   296 const Type *AddINode::add_ring( const Type *t0, const Type *t1 ) const {
       
   297   const TypeInt *r0 = t0->is_int(); // Handy access
       
   298   const TypeInt *r1 = t1->is_int();
       
   299   int lo = r0->_lo + r1->_lo;
       
   300   int hi = r0->_hi + r1->_hi;
       
   301   if( !(r0->is_con() && r1->is_con()) ) {
       
   302     // Not both constants, compute approximate result
       
   303     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
       
   304       lo = min_jint; hi = max_jint; // Underflow on the low side
       
   305     }
       
   306     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
       
   307       lo = min_jint; hi = max_jint; // Overflow on the high side
       
   308     }
       
   309     if( lo > hi ) {               // Handle overflow
       
   310       lo = min_jint; hi = max_jint;
       
   311     }
       
   312   } else {
       
   313     // both constants, compute precise result using 'lo' and 'hi'
       
   314     // Semantics define overflow and underflow for integer addition
       
   315     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
       
   316   }
       
   317   return TypeInt::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
       
   318 }
       
   319 
       
   320 
       
   321 //=============================================================================
       
   322 //------------------------------Idealize---------------------------------------
       
   323 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   324   int op1 = in(1)->Opcode();
       
   325   int op2 = in(2)->Opcode();
       
   326   // Fold (con1-x)+con2 into (con1+con2)-x
       
   327   if( op1 == Op_SubL ) {
       
   328     const Type *t_sub1 = phase->type( in(1)->in(1) );
       
   329     const Type *t_2    = phase->type( in(2)        );
       
   330     if( t_sub1->singleton() && t_2->singleton() && t_sub1 != Type::TOP && t_2 != Type::TOP )
       
   331       return new (phase->C, 3) SubLNode(phase->makecon( add_ring( t_sub1, t_2 ) ),
       
   332                               in(1)->in(2) );
       
   333     // Convert "(a-b)+(c-d)" into "(a+c)-(b+d)"
       
   334     if( op2 == Op_SubL ) {
       
   335       // Check for dead cycle: d = (a-b)+(c-d)
       
   336       assert( in(1)->in(2) != this && in(2)->in(2) != this,
       
   337               "dead loop in AddLNode::Ideal" );
       
   338       Node *sub  = new (phase->C, 3) SubLNode(NULL, NULL);
       
   339       sub->init_req(1, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(1), in(2)->in(1) ) ));
       
   340       sub->init_req(2, phase->transform(new (phase->C, 3) AddLNode(in(1)->in(2), in(2)->in(2) ) ));
       
   341       return sub;
       
   342     }
       
   343   }
       
   344 
       
   345   // Convert "x+(0-y)" into "(x-y)"
       
   346   if( op2 == Op_SubL && phase->type(in(2)->in(1)) == TypeLong::ZERO )
       
   347     return new (phase->C, 3) SubLNode(in(1), in(2)->in(2) );
       
   348 
       
   349   // Convert "X+X+X+X+X...+X+Y" into "k*X+Y" or really convert "X+(X+Y)"
       
   350   // into "(X<<1)+Y" and let shift-folding happen.
       
   351   if( op2 == Op_AddL &&
       
   352       in(2)->in(1) == in(1) &&
       
   353       op1 != Op_ConL &&
       
   354       0 ) {
       
   355     Node *shift = phase->transform(new (phase->C, 3) LShiftLNode(in(1),phase->intcon(1)));
       
   356     return new (phase->C, 3) AddLNode(shift,in(2)->in(2));
       
   357   }
       
   358 
       
   359   return AddNode::Ideal(phase, can_reshape);
       
   360 }
       
   361 
       
   362 
       
   363 //------------------------------Identity---------------------------------------
       
   364 // Fold (x-y)+y  OR  y+(x-y)  into  x
       
   365 Node *AddLNode::Identity( PhaseTransform *phase ) {
       
   366   if( in(1)->Opcode() == Op_SubL && phase->eqv(in(1)->in(2),in(2)) ) {
       
   367     return in(1)->in(1);
       
   368   }
       
   369   else if( in(2)->Opcode() == Op_SubL && phase->eqv(in(2)->in(2),in(1)) ) {
       
   370     return in(2)->in(1);
       
   371   }
       
   372   return AddNode::Identity(phase);
       
   373 }
       
   374 
       
   375 
       
   376 //------------------------------add_ring---------------------------------------
       
   377 // Supplied function returns the sum of the inputs.  Guaranteed never
       
   378 // to be passed a TOP or BOTTOM type, these are filtered out by
       
   379 // pre-check.
       
   380 const Type *AddLNode::add_ring( const Type *t0, const Type *t1 ) const {
       
   381   const TypeLong *r0 = t0->is_long(); // Handy access
       
   382   const TypeLong *r1 = t1->is_long();
       
   383   jlong lo = r0->_lo + r1->_lo;
       
   384   jlong hi = r0->_hi + r1->_hi;
       
   385   if( !(r0->is_con() && r1->is_con()) ) {
       
   386     // Not both constants, compute approximate result
       
   387     if( (r0->_lo & r1->_lo) < 0 && lo >= 0 ) {
       
   388       lo =min_jlong; hi = max_jlong; // Underflow on the low side
       
   389     }
       
   390     if( (~(r0->_hi | r1->_hi)) < 0 && hi < 0 ) {
       
   391       lo = min_jlong; hi = max_jlong; // Overflow on the high side
       
   392     }
       
   393     if( lo > hi ) {               // Handle overflow
       
   394       lo = min_jlong; hi = max_jlong;
       
   395     }
       
   396   } else {
       
   397     // both constants, compute precise result using 'lo' and 'hi'
       
   398     // Semantics define overflow and underflow for integer addition
       
   399     // as expected.  In particular: 0x80000000 + 0x80000000 --> 0x0
       
   400   }
       
   401   return TypeLong::make( lo, hi, MAX2(r0->_widen,r1->_widen) );
       
   402 }
       
   403 
       
   404 
       
   405 //=============================================================================
       
   406 //------------------------------add_of_identity--------------------------------
       
   407 // Check for addition of the identity
       
   408 const Type *AddFNode::add_of_identity( const Type *t1, const Type *t2 ) const {
       
   409   // x ADD 0  should return x unless 'x' is a -zero
       
   410   //
       
   411   // const Type *zero = add_id();     // The additive identity
       
   412   // jfloat f1 = t1->getf();
       
   413   // jfloat f2 = t2->getf();
       
   414   //
       
   415   // if( t1->higher_equal( zero ) ) return t2;
       
   416   // if( t2->higher_equal( zero ) ) return t1;
       
   417 
       
   418   return NULL;
       
   419 }
       
   420 
       
   421 //------------------------------add_ring---------------------------------------
       
   422 // Supplied function returns the sum of the inputs.
       
   423 // This also type-checks the inputs for sanity.  Guaranteed never to
       
   424 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
       
   425 const Type *AddFNode::add_ring( const Type *t0, const Type *t1 ) const {
       
   426   // We must be adding 2 float constants.
       
   427   return TypeF::make( t0->getf() + t1->getf() );
       
   428 }
       
   429 
       
   430 //------------------------------Ideal------------------------------------------
       
   431 Node *AddFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   432   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
       
   433     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
       
   434   }
       
   435 
       
   436   // Floating point additions are not associative because of boundary conditions (infinity)
       
   437   return commute(this,
       
   438                  phase->type( in(1) )->singleton(),
       
   439                  phase->type( in(2) )->singleton() ) ? this : NULL;
       
   440 }
       
   441 
       
   442 
       
   443 //=============================================================================
       
   444 //------------------------------add_of_identity--------------------------------
       
   445 // Check for addition of the identity
       
   446 const Type *AddDNode::add_of_identity( const Type *t1, const Type *t2 ) const {
       
   447   // x ADD 0  should return x unless 'x' is a -zero
       
   448   //
       
   449   // const Type *zero = add_id();     // The additive identity
       
   450   // jfloat f1 = t1->getf();
       
   451   // jfloat f2 = t2->getf();
       
   452   //
       
   453   // if( t1->higher_equal( zero ) ) return t2;
       
   454   // if( t2->higher_equal( zero ) ) return t1;
       
   455 
       
   456   return NULL;
       
   457 }
       
   458 //------------------------------add_ring---------------------------------------
       
   459 // Supplied function returns the sum of the inputs.
       
   460 // This also type-checks the inputs for sanity.  Guaranteed never to
       
   461 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
       
   462 const Type *AddDNode::add_ring( const Type *t0, const Type *t1 ) const {
       
   463   // We must be adding 2 double constants.
       
   464   return TypeD::make( t0->getd() + t1->getd() );
       
   465 }
       
   466 
       
   467 //------------------------------Ideal------------------------------------------
       
   468 Node *AddDNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   469   if( IdealizedNumerics && !phase->C->method()->is_strict() ) {
       
   470     return AddNode::Ideal(phase, can_reshape); // commutative and associative transforms
       
   471   }
       
   472 
       
   473   // Floating point additions are not associative because of boundary conditions (infinity)
       
   474   return commute(this,
       
   475                  phase->type( in(1) )->singleton(),
       
   476                  phase->type( in(2) )->singleton() ) ? this : NULL;
       
   477 }
       
   478 
       
   479 
       
   480 //=============================================================================
       
   481 //------------------------------Identity---------------------------------------
       
   482 // If one input is a constant 0, return the other input.
       
   483 Node *AddPNode::Identity( PhaseTransform *phase ) {
       
   484   return ( phase->type( in(Offset) )->higher_equal( TypeX_ZERO ) ) ? in(Address) : this;
       
   485 }
       
   486 
       
   487 //------------------------------Idealize---------------------------------------
       
   488 Node *AddPNode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   489   // Bail out if dead inputs
       
   490   if( phase->type( in(Address) ) == Type::TOP ) return NULL;
       
   491 
       
   492   // If the left input is an add of a constant, flatten the expression tree.
       
   493   const Node *n = in(Address);
       
   494   if (n->is_AddP() && n->in(Base) == in(Base)) {
       
   495     const AddPNode *addp = n->as_AddP(); // Left input is an AddP
       
   496     assert( !addp->in(Address)->is_AddP() ||
       
   497              addp->in(Address)->as_AddP() != addp,
       
   498             "dead loop in AddPNode::Ideal" );
       
   499     // Type of left input's right input
       
   500     const Type *t = phase->type( addp->in(Offset) );
       
   501     if( t == Type::TOP ) return NULL;
       
   502     const TypeX *t12 = t->is_intptr_t();
       
   503     if( t12->is_con() ) {       // Left input is an add of a constant?
       
   504       // If the right input is a constant, combine constants
       
   505       const Type *temp_t2 = phase->type( in(Offset) );
       
   506       if( temp_t2 == Type::TOP ) return NULL;
       
   507       const TypeX *t2 = temp_t2->is_intptr_t();
       
   508       if( t2->is_con() ) {
       
   509         // The Add of the flattened expression
       
   510         set_req(Address, addp->in(Address));
       
   511         set_req(Offset , phase->MakeConX(t2->get_con() + t12->get_con()));
       
   512         return this;                    // Made progress
       
   513       }
       
   514       // Else move the constant to the right.  ((A+con)+B) into ((A+B)+con)
       
   515       set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),addp->in(Address),in(Offset))));
       
   516       set_req(Offset , addp->in(Offset));
       
   517       return this;
       
   518     }
       
   519   }
       
   520 
       
   521   // Raw pointers?
       
   522   if( in(Base)->bottom_type() == Type::TOP ) {
       
   523     // If this is a NULL+long form (from unsafe accesses), switch to a rawptr.
       
   524     if (phase->type(in(Address)) == TypePtr::NULL_PTR) {
       
   525       Node* offset = in(Offset);
       
   526       return new (phase->C, 2) CastX2PNode(offset);
       
   527     }
       
   528   }
       
   529 
       
   530   // If the right is an add of a constant, push the offset down.
       
   531   // Convert: (ptr + (offset+con)) into (ptr+offset)+con.
       
   532   // The idea is to merge array_base+scaled_index groups together,
       
   533   // and only have different constant offsets from the same base.
       
   534   const Node *add = in(Offset);
       
   535   if( add->Opcode() == Op_AddX && add->in(1) != add ) {
       
   536     const Type *t22 = phase->type( add->in(2) );
       
   537     if( t22->singleton() && (t22 != Type::TOP) ) {  // Right input is an add of a constant?
       
   538       set_req(Address, phase->transform(new (phase->C, 4) AddPNode(in(Base),in(Address),add->in(1))));
       
   539       set_req(Offset, add->in(2));
       
   540       return this;              // Made progress
       
   541     }
       
   542   }
       
   543 
       
   544   return NULL;                  // No progress
       
   545 }
       
   546 
       
   547 //------------------------------bottom_type------------------------------------
       
   548 // Bottom-type is the pointer-type with unknown offset.
       
   549 const Type *AddPNode::bottom_type() const {
       
   550   if (in(Address) == NULL)  return TypePtr::BOTTOM;
       
   551   const TypePtr *tp = in(Address)->bottom_type()->isa_ptr();
       
   552   if( !tp ) return Type::TOP;   // TOP input means TOP output
       
   553   assert( in(Offset)->Opcode() != Op_ConP, "" );
       
   554   const Type *t = in(Offset)->bottom_type();
       
   555   if( t == Type::TOP )
       
   556     return tp->add_offset(Type::OffsetTop);
       
   557   const TypeX *tx = t->is_intptr_t();
       
   558   intptr_t txoffset = Type::OffsetBot;
       
   559   if (tx->is_con()) {   // Left input is an add of a constant?
       
   560     txoffset = tx->get_con();
       
   561     if (txoffset != (int)txoffset)
       
   562       txoffset = Type::OffsetBot;   // oops:  add_offset will choke on it
       
   563   }
       
   564   return tp->add_offset(txoffset);
       
   565 }
       
   566 
       
   567 //------------------------------Value------------------------------------------
       
   568 const Type *AddPNode::Value( PhaseTransform *phase ) const {
       
   569   // Either input is TOP ==> the result is TOP
       
   570   const Type *t1 = phase->type( in(Address) );
       
   571   const Type *t2 = phase->type( in(Offset) );
       
   572   if( t1 == Type::TOP ) return Type::TOP;
       
   573   if( t2 == Type::TOP ) return Type::TOP;
       
   574 
       
   575   // Left input is a pointer
       
   576   const TypePtr *p1 = t1->isa_ptr();
       
   577   // Right input is an int
       
   578   const TypeX *p2 = t2->is_intptr_t();
       
   579   // Add 'em
       
   580   intptr_t p2offset = Type::OffsetBot;
       
   581   if (p2->is_con()) {   // Left input is an add of a constant?
       
   582     p2offset = p2->get_con();
       
   583     if (p2offset != (int)p2offset)
       
   584       p2offset = Type::OffsetBot;   // oops:  add_offset will choke on it
       
   585   }
       
   586   return p1->add_offset(p2offset);
       
   587 }
       
   588 
       
   589 //------------------------Ideal_base_and_offset--------------------------------
       
   590 // Split an oop pointer into a base and offset.
       
   591 // (The offset might be Type::OffsetBot in the case of an array.)
       
   592 // Return the base, or NULL if failure.
       
   593 Node* AddPNode::Ideal_base_and_offset(Node* ptr, PhaseTransform* phase,
       
   594                                       // second return value:
       
   595                                       intptr_t& offset) {
       
   596   if (ptr->is_AddP()) {
       
   597     Node* base = ptr->in(AddPNode::Base);
       
   598     Node* addr = ptr->in(AddPNode::Address);
       
   599     Node* offs = ptr->in(AddPNode::Offset);
       
   600     if (base == addr || base->is_top()) {
       
   601       offset = phase->find_intptr_t_con(offs, Type::OffsetBot);
       
   602       if (offset != Type::OffsetBot) {
       
   603         return addr;
       
   604       }
       
   605     }
       
   606   }
       
   607   offset = Type::OffsetBot;
       
   608   return NULL;
       
   609 }
       
   610 
       
   611 //------------------------------match_edge-------------------------------------
       
   612 // Do we Match on this edge index or not?  Do not match base pointer edge
       
   613 uint AddPNode::match_edge(uint idx) const {
       
   614   return idx > Base;
       
   615 }
       
   616 
       
   617 //---------------------------mach_bottom_type----------------------------------
       
   618 // Utility function for use by ADLC.  Implements bottom_type for matched AddP.
       
   619 const Type *AddPNode::mach_bottom_type( const MachNode* n) {
       
   620   Node* base = n->in(Base);
       
   621   const Type *t = base->bottom_type();
       
   622   if ( t == Type::TOP ) {
       
   623     // an untyped pointer
       
   624     return TypeRawPtr::BOTTOM;
       
   625   }
       
   626   const TypePtr* tp = t->isa_oopptr();
       
   627   if ( tp == NULL )  return t;
       
   628   if ( tp->_offset == TypePtr::OffsetBot )  return tp;
       
   629 
       
   630   // We must carefully add up the various offsets...
       
   631   intptr_t offset = 0;
       
   632   const TypePtr* tptr = NULL;
       
   633 
       
   634   uint numopnds = n->num_opnds();
       
   635   uint index = n->oper_input_base();
       
   636   for ( uint i = 1; i < numopnds; i++ ) {
       
   637     MachOper *opnd = n->_opnds[i];
       
   638     // Check for any interesting operand info.
       
   639     // In particular, check for both memory and non-memory operands.
       
   640     // %%%%% Clean this up: use xadd_offset
       
   641     int con = opnd->constant();
       
   642     if ( con == TypePtr::OffsetBot )  goto bottom_out;
       
   643     offset += con;
       
   644     con = opnd->constant_disp();
       
   645     if ( con == TypePtr::OffsetBot )  goto bottom_out;
       
   646     offset += con;
       
   647     if( opnd->scale() != 0 ) goto bottom_out;
       
   648 
       
   649     // Check each operand input edge.  Find the 1 allowed pointer
       
   650     // edge.  Other edges must be index edges; track exact constant
       
   651     // inputs and otherwise assume the worst.
       
   652     for ( uint j = opnd->num_edges(); j > 0; j-- ) {
       
   653       Node* edge = n->in(index++);
       
   654       const Type*    et  = edge->bottom_type();
       
   655       const TypeX*   eti = et->isa_intptr_t();
       
   656       if ( eti == NULL ) {
       
   657         // there must be one pointer among the operands
       
   658         guarantee(tptr == NULL, "must be only one pointer operand");
       
   659         tptr = et->isa_oopptr();
       
   660         guarantee(tptr != NULL, "non-int operand must be pointer");
       
   661         continue;
       
   662       }
       
   663       if ( eti->_hi != eti->_lo )  goto bottom_out;
       
   664       offset += eti->_lo;
       
   665     }
       
   666   }
       
   667   guarantee(tptr != NULL, "must be exactly one pointer operand");
       
   668   return tptr->add_offset(offset);
       
   669 
       
   670  bottom_out:
       
   671   return tp->add_offset(TypePtr::OffsetBot);
       
   672 }
       
   673 
       
   674 //=============================================================================
       
   675 //------------------------------Identity---------------------------------------
       
   676 Node *OrINode::Identity( PhaseTransform *phase ) {
       
   677   // x | x => x
       
   678   if (phase->eqv(in(1), in(2))) {
       
   679     return in(1);
       
   680   }
       
   681 
       
   682   return AddNode::Identity(phase);
       
   683 }
       
   684 
       
   685 //------------------------------add_ring---------------------------------------
       
   686 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
       
   687 // the logical operations the ring's ADD is really a logical OR function.
       
   688 // This also type-checks the inputs for sanity.  Guaranteed never to
       
   689 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
       
   690 const Type *OrINode::add_ring( const Type *t0, const Type *t1 ) const {
       
   691   const TypeInt *r0 = t0->is_int(); // Handy access
       
   692   const TypeInt *r1 = t1->is_int();
       
   693 
       
   694   // If both args are bool, can figure out better types
       
   695   if ( r0 == TypeInt::BOOL ) {
       
   696     if ( r1 == TypeInt::ONE) {
       
   697       return TypeInt::ONE;
       
   698     } else if ( r1 == TypeInt::BOOL ) {
       
   699       return TypeInt::BOOL;
       
   700     }
       
   701   } else if ( r0 == TypeInt::ONE ) {
       
   702     if ( r1 == TypeInt::BOOL ) {
       
   703       return TypeInt::ONE;
       
   704     }
       
   705   }
       
   706 
       
   707   // If either input is not a constant, just return all integers.
       
   708   if( !r0->is_con() || !r1->is_con() )
       
   709     return TypeInt::INT;        // Any integer, but still no symbols.
       
   710 
       
   711   // Otherwise just OR them bits.
       
   712   return TypeInt::make( r0->get_con() | r1->get_con() );
       
   713 }
       
   714 
       
   715 //=============================================================================
       
   716 //------------------------------Identity---------------------------------------
       
   717 Node *OrLNode::Identity( PhaseTransform *phase ) {
       
   718   // x | x => x
       
   719   if (phase->eqv(in(1), in(2))) {
       
   720     return in(1);
       
   721   }
       
   722 
       
   723   return AddNode::Identity(phase);
       
   724 }
       
   725 
       
   726 //------------------------------add_ring---------------------------------------
       
   727 const Type *OrLNode::add_ring( const Type *t0, const Type *t1 ) const {
       
   728   const TypeLong *r0 = t0->is_long(); // Handy access
       
   729   const TypeLong *r1 = t1->is_long();
       
   730 
       
   731   // If either input is not a constant, just return all integers.
       
   732   if( !r0->is_con() || !r1->is_con() )
       
   733     return TypeLong::LONG;      // Any integer, but still no symbols.
       
   734 
       
   735   // Otherwise just OR them bits.
       
   736   return TypeLong::make( r0->get_con() | r1->get_con() );
       
   737 }
       
   738 
       
   739 //=============================================================================
       
   740 //------------------------------add_ring---------------------------------------
       
   741 // Supplied function returns the sum of the inputs IN THE CURRENT RING.  For
       
   742 // the logical operations the ring's ADD is really a logical OR function.
       
   743 // This also type-checks the inputs for sanity.  Guaranteed never to
       
   744 // be passed a TOP or BOTTOM type, these are filtered out by pre-check.
       
   745 const Type *XorINode::add_ring( const Type *t0, const Type *t1 ) const {
       
   746   const TypeInt *r0 = t0->is_int(); // Handy access
       
   747   const TypeInt *r1 = t1->is_int();
       
   748 
       
   749   // Complementing a boolean?
       
   750   if( r0 == TypeInt::BOOL && ( r1 == TypeInt::ONE
       
   751                                || r1 == TypeInt::BOOL))
       
   752     return TypeInt::BOOL;
       
   753 
       
   754   if( !r0->is_con() || !r1->is_con() ) // Not constants
       
   755     return TypeInt::INT;        // Any integer, but still no symbols.
       
   756 
       
   757   // Otherwise just XOR them bits.
       
   758   return TypeInt::make( r0->get_con() ^ r1->get_con() );
       
   759 }
       
   760 
       
   761 //=============================================================================
       
   762 //------------------------------add_ring---------------------------------------
       
   763 const Type *XorLNode::add_ring( const Type *t0, const Type *t1 ) const {
       
   764   const TypeLong *r0 = t0->is_long(); // Handy access
       
   765   const TypeLong *r1 = t1->is_long();
       
   766 
       
   767   // If either input is not a constant, just return all integers.
       
   768   if( !r0->is_con() || !r1->is_con() )
       
   769     return TypeLong::LONG;      // Any integer, but still no symbols.
       
   770 
       
   771   // Otherwise just OR them bits.
       
   772   return TypeLong::make( r0->get_con() ^ r1->get_con() );
       
   773 }
       
   774 
       
   775 //=============================================================================
       
   776 //------------------------------add_ring---------------------------------------
       
   777 // Supplied function returns the sum of the inputs.
       
   778 const Type *MaxINode::add_ring( const Type *t0, const Type *t1 ) const {
       
   779   const TypeInt *r0 = t0->is_int(); // Handy access
       
   780   const TypeInt *r1 = t1->is_int();
       
   781 
       
   782   // Otherwise just MAX them bits.
       
   783   return TypeInt::make( MAX2(r0->_lo,r1->_lo), MAX2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
       
   784 }
       
   785 
       
   786 //=============================================================================
       
   787 //------------------------------Idealize---------------------------------------
       
   788 // MINs show up in range-check loop limit calculations.  Look for
       
   789 // "MIN2(x+c0,MIN2(y,x+c1))".  Pick the smaller constant: "MIN2(x+c0,y)"
       
   790 Node *MinINode::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   791   Node *progress = NULL;
       
   792   // Force a right-spline graph
       
   793   Node *l = in(1);
       
   794   Node *r = in(2);
       
   795   // Transform  MinI1( MinI2(a,b), c)  into  MinI1( a, MinI2(b,c) )
       
   796   // to force a right-spline graph for the rest of MinINode::Ideal().
       
   797   if( l->Opcode() == Op_MinI ) {
       
   798     assert( l != l->in(1), "dead loop in MinINode::Ideal" );
       
   799     r = phase->transform(new (phase->C, 3) MinINode(l->in(2),r));
       
   800     l = l->in(1);
       
   801     set_req(1, l);
       
   802     set_req(2, r);
       
   803     return this;
       
   804   }
       
   805 
       
   806   // Get left input & constant
       
   807   Node *x = l;
       
   808   int x_off = 0;
       
   809   if( x->Opcode() == Op_AddI && // Check for "x+c0" and collect constant
       
   810       x->in(2)->is_Con() ) {
       
   811     const Type *t = x->in(2)->bottom_type();
       
   812     if( t == Type::TOP ) return NULL;  // No progress
       
   813     x_off = t->is_int()->get_con();
       
   814     x = x->in(1);
       
   815   }
       
   816 
       
   817   // Scan a right-spline-tree for MINs
       
   818   Node *y = r;
       
   819   int y_off = 0;
       
   820   // Check final part of MIN tree
       
   821   if( y->Opcode() == Op_AddI && // Check for "y+c1" and collect constant
       
   822       y->in(2)->is_Con() ) {
       
   823     const Type *t = y->in(2)->bottom_type();
       
   824     if( t == Type::TOP ) return NULL;  // No progress
       
   825     y_off = t->is_int()->get_con();
       
   826     y = y->in(1);
       
   827   }
       
   828   if( x->_idx > y->_idx && r->Opcode() != Op_MinI ) {
       
   829     swap_edges(1, 2);
       
   830     return this;
       
   831   }
       
   832 
       
   833 
       
   834   if( r->Opcode() == Op_MinI ) {
       
   835     assert( r != r->in(2), "dead loop in MinINode::Ideal" );
       
   836     y = r->in(1);
       
   837     // Check final part of MIN tree
       
   838     if( y->Opcode() == Op_AddI &&// Check for "y+c1" and collect constant
       
   839         y->in(2)->is_Con() ) {
       
   840       const Type *t = y->in(2)->bottom_type();
       
   841       if( t == Type::TOP ) return NULL;  // No progress
       
   842       y_off = t->is_int()->get_con();
       
   843       y = y->in(1);
       
   844     }
       
   845 
       
   846     if( x->_idx > y->_idx )
       
   847       return new (phase->C, 3) MinINode(r->in(1),phase->transform(new (phase->C, 3) MinINode(l,r->in(2))));
       
   848 
       
   849     // See if covers: MIN2(x+c0,MIN2(y+c1,z))
       
   850     if( !phase->eqv(x,y) ) return NULL;
       
   851     // If (y == x) transform MIN2(x+c0, MIN2(x+c1,z)) into
       
   852     // MIN2(x+c0 or x+c1 which less, z).
       
   853     return new (phase->C, 3) MinINode(phase->transform(new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)))),r->in(2));
       
   854   } else {
       
   855     // See if covers: MIN2(x+c0,y+c1)
       
   856     if( !phase->eqv(x,y) ) return NULL;
       
   857     // If (y == x) transform MIN2(x+c0,x+c1) into x+c0 or x+c1 which less.
       
   858     return new (phase->C, 3) AddINode(x,phase->intcon(MIN2(x_off,y_off)));
       
   859   }
       
   860 
       
   861 }
       
   862 
       
   863 //------------------------------add_ring---------------------------------------
       
   864 // Supplied function returns the sum of the inputs.
       
   865 const Type *MinINode::add_ring( const Type *t0, const Type *t1 ) const {
       
   866   const TypeInt *r0 = t0->is_int(); // Handy access
       
   867   const TypeInt *r1 = t1->is_int();
       
   868 
       
   869   // Otherwise just MIN them bits.
       
   870   return TypeInt::make( MIN2(r0->_lo,r1->_lo), MIN2(r0->_hi,r1->_hi), MAX2(r0->_widen,r1->_widen) );
       
   871 }