--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/gc_implementation/parNew/parGCAllocBuffer.cpp Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,342 @@
+/*
+ * Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+# include "incls/_precompiled.incl"
+# include "incls/_parGCAllocBuffer.cpp.incl"
+
+ParGCAllocBuffer::ParGCAllocBuffer(size_t desired_plab_sz_) :
+ _word_sz(desired_plab_sz_), _bottom(NULL), _top(NULL),
+ _end(NULL), _hard_end(NULL),
+ _retained(false), _retained_filler(),
+ _allocated(0), _wasted(0)
+{
+ assert (min_size() > AlignmentReserve, "Inconsistency!");
+}
+
+const size_t ParGCAllocBuffer::FillerHeaderSize =
+ align_object_size(arrayOopDesc::header_size(T_INT));
+
+// If the minimum object size is greater than MinObjAlignment, we can
+// end up with a shard at the end of the buffer that's smaller than
+// the smallest object. We can't allow that because the buffer must
+// look like it's full of objects when we retire it, so we make
+// sure we have enough space for a filler int array object.
+const size_t ParGCAllocBuffer::AlignmentReserve =
+ oopDesc::header_size() > MinObjAlignment ? FillerHeaderSize : 0;
+
+void ParGCAllocBuffer::retire(bool end_of_gc, bool retain) {
+ assert(!retain || end_of_gc, "Can only retain at GC end.");
+ if (_retained) {
+ // If the buffer had been retained shorten the previous filler object.
+ assert(_retained_filler.end() <= _top, "INVARIANT");
+ SharedHeap::fill_region_with_object(_retained_filler);
+ // Wasted space book-keeping, otherwise (normally) done in invalidate()
+ _wasted += _retained_filler.word_size();
+ _retained = false;
+ }
+ assert(!end_of_gc || !_retained, "At this point, end_of_gc ==> !_retained.");
+ if (_top < _hard_end) {
+ SharedHeap::fill_region_with_object(MemRegion(_top, _hard_end));
+ if (!retain) {
+ invalidate();
+ } else {
+ // Is there wasted space we'd like to retain for the next GC?
+ if (pointer_delta(_end, _top) > FillerHeaderSize) {
+ _retained = true;
+ _retained_filler = MemRegion(_top, FillerHeaderSize);
+ _top = _top + FillerHeaderSize;
+ } else {
+ invalidate();
+ }
+ }
+ }
+}
+
+void ParGCAllocBuffer::flush_stats(PLABStats* stats) {
+ assert(ResizePLAB, "Wasted work");
+ stats->add_allocated(_allocated);
+ stats->add_wasted(_wasted);
+ stats->add_unused(pointer_delta(_end, _top));
+}
+
+// Compute desired plab size and latch result for later
+// use. This should be called once at the end of parallel
+// scavenge; it clears the sensor accumulators.
+void PLABStats::adjust_desired_plab_sz() {
+ assert(ResizePLAB, "Not set");
+ if (_allocated == 0) {
+ assert(_unused == 0, "Inconsistency in PLAB stats");
+ _allocated = 1;
+ }
+ double wasted_frac = (double)_unused/(double)_allocated;
+ size_t target_refills = (size_t)((wasted_frac*TargetSurvivorRatio)/
+ TargetPLABWastePct);
+ if (target_refills == 0) {
+ target_refills = 1;
+ }
+ _used = _allocated - _wasted - _unused;
+ size_t plab_sz = _used/(target_refills*ParallelGCThreads);
+ if (PrintPLAB) gclog_or_tty->print(" (plab_sz = %d ", plab_sz);
+ // Take historical weighted average
+ _filter.sample(plab_sz);
+ // Clip from above and below, and align to object boundary
+ plab_sz = MAX2(min_size(), (size_t)_filter.average());
+ plab_sz = MIN2(max_size(), plab_sz);
+ plab_sz = align_object_size(plab_sz);
+ // Latch the result
+ if (PrintPLAB) gclog_or_tty->print(" desired_plab_sz = %d) ", plab_sz);
+ if (ResizePLAB) {
+ _desired_plab_sz = plab_sz;
+ }
+ // Now clear the accumulators for next round:
+ // note this needs to be fixed in the case where we
+ // are retaining across scavenges. FIX ME !!! XXX
+ _allocated = 0;
+ _wasted = 0;
+ _unused = 0;
+}
+
+#ifndef PRODUCT
+void ParGCAllocBuffer::print() {
+ gclog_or_tty->print("parGCAllocBuffer: _bottom: %p _top: %p _end: %p _hard_end: %p"
+ "_retained: %c _retained_filler: [%p,%p)\n",
+ _bottom, _top, _end, _hard_end,
+ "FT"[_retained], _retained_filler.start(), _retained_filler.end());
+}
+#endif // !PRODUCT
+
+const size_t ParGCAllocBufferWithBOT::ChunkSizeInWords =
+MIN2(CardTableModRefBS::par_chunk_heapword_alignment(),
+ ((size_t)Generation::GenGrain)/HeapWordSize);
+const size_t ParGCAllocBufferWithBOT::ChunkSizeInBytes =
+MIN2(CardTableModRefBS::par_chunk_heapword_alignment() * HeapWordSize,
+ (size_t)Generation::GenGrain);
+
+ParGCAllocBufferWithBOT::ParGCAllocBufferWithBOT(size_t word_sz,
+ BlockOffsetSharedArray* bsa) :
+ ParGCAllocBuffer(word_sz),
+ _bsa(bsa),
+ _bt(bsa, MemRegion(_bottom, _hard_end)),
+ _true_end(_hard_end)
+{}
+
+// The buffer comes with its own BOT, with a shared (obviously) underlying
+// BlockOffsetSharedArray. We manipulate this BOT in the normal way
+// as we would for any contiguous space. However, on accasion we
+// need to do some buffer surgery at the extremities before we
+// start using the body of the buffer for allocations. Such surgery
+// (as explained elsewhere) is to prevent allocation on a card that
+// is in the process of being walked concurrently by another GC thread.
+// When such surgery happens at a point that is far removed (to the
+// right of the current allocation point, top), we use the "contig"
+// parameter below to directly manipulate the shared array without
+// modifying the _next_threshold state in the BOT.
+void ParGCAllocBufferWithBOT::fill_region_with_block(MemRegion mr,
+ bool contig) {
+ SharedHeap::fill_region_with_object(mr);
+ if (contig) {
+ _bt.alloc_block(mr.start(), mr.end());
+ } else {
+ _bt.BlockOffsetArray::alloc_block(mr.start(), mr.end());
+ }
+}
+
+HeapWord* ParGCAllocBufferWithBOT::allocate_slow(size_t word_sz) {
+ HeapWord* res = NULL;
+ if (_true_end > _hard_end) {
+ assert((HeapWord*)align_size_down(intptr_t(_hard_end),
+ ChunkSizeInBytes) == _hard_end,
+ "or else _true_end should be equal to _hard_end");
+ assert(_retained, "or else _true_end should be equal to _hard_end");
+ assert(_retained_filler.end() <= _top, "INVARIANT");
+ SharedHeap::fill_region_with_object(_retained_filler);
+ if (_top < _hard_end) {
+ fill_region_with_block(MemRegion(_top, _hard_end), true);
+ }
+ HeapWord* next_hard_end = MIN2(_true_end, _hard_end + ChunkSizeInWords);
+ _retained_filler = MemRegion(_hard_end, FillerHeaderSize);
+ _bt.alloc_block(_retained_filler.start(), _retained_filler.word_size());
+ _top = _retained_filler.end();
+ _hard_end = next_hard_end;
+ _end = _hard_end - AlignmentReserve;
+ res = ParGCAllocBuffer::allocate(word_sz);
+ if (res != NULL) {
+ _bt.alloc_block(res, word_sz);
+ }
+ }
+ return res;
+}
+
+void
+ParGCAllocBufferWithBOT::undo_allocation(HeapWord* obj, size_t word_sz) {
+ ParGCAllocBuffer::undo_allocation(obj, word_sz);
+ // This may back us up beyond the previous threshold, so reset.
+ _bt.set_region(MemRegion(_top, _hard_end));
+ _bt.initialize_threshold();
+}
+
+void ParGCAllocBufferWithBOT::retire(bool end_of_gc, bool retain) {
+ assert(!retain || end_of_gc, "Can only retain at GC end.");
+ if (_retained) {
+ // We're about to make the retained_filler into a block.
+ _bt.BlockOffsetArray::alloc_block(_retained_filler.start(),
+ _retained_filler.end());
+ }
+ // Reset _hard_end to _true_end (and update _end)
+ if (retain && _hard_end != NULL) {
+ assert(_hard_end <= _true_end, "Invariant.");
+ _hard_end = _true_end;
+ _end = MAX2(_top, _hard_end - AlignmentReserve);
+ assert(_end <= _hard_end, "Invariant.");
+ }
+ _true_end = _hard_end;
+ HeapWord* pre_top = _top;
+
+ ParGCAllocBuffer::retire(end_of_gc, retain);
+ // Now any old _retained_filler is cut back to size, the free part is
+ // filled with a filler object, and top is past the header of that
+ // object.
+
+ if (retain && _top < _end) {
+ assert(end_of_gc && retain, "Or else retain should be false.");
+ // If the lab does not start on a card boundary, we don't want to
+ // allocate onto that card, since that might lead to concurrent
+ // allocation and card scanning, which we don't support. So we fill
+ // the first card with a garbage object.
+ size_t first_card_index = _bsa->index_for(pre_top);
+ HeapWord* first_card_start = _bsa->address_for_index(first_card_index);
+ if (first_card_start < pre_top) {
+ HeapWord* second_card_start =
+ _bsa->address_for_index(first_card_index + 1);
+
+ // Ensure enough room to fill with the smallest block
+ second_card_start = MAX2(second_card_start, pre_top + AlignmentReserve);
+
+ // If the end is already in the first card, don't go beyond it!
+ // Or if the remainder is too small for a filler object, gobble it up.
+ if (_hard_end < second_card_start ||
+ pointer_delta(_hard_end, second_card_start) < AlignmentReserve) {
+ second_card_start = _hard_end;
+ }
+ if (pre_top < second_card_start) {
+ MemRegion first_card_suffix(pre_top, second_card_start);
+ fill_region_with_block(first_card_suffix, true);
+ }
+ pre_top = second_card_start;
+ _top = pre_top;
+ _end = MAX2(_top, _hard_end - AlignmentReserve);
+ }
+
+ // If the lab does not end on a card boundary, we don't want to
+ // allocate onto that card, since that might lead to concurrent
+ // allocation and card scanning, which we don't support. So we fill
+ // the last card with a garbage object.
+ size_t last_card_index = _bsa->index_for(_hard_end);
+ HeapWord* last_card_start = _bsa->address_for_index(last_card_index);
+ if (last_card_start < _hard_end) {
+
+ // Ensure enough room to fill with the smallest block
+ last_card_start = MIN2(last_card_start, _hard_end - AlignmentReserve);
+
+ // If the top is already in the last card, don't go back beyond it!
+ // Or if the remainder is too small for a filler object, gobble it up.
+ if (_top > last_card_start ||
+ pointer_delta(last_card_start, _top) < AlignmentReserve) {
+ last_card_start = _top;
+ }
+ if (last_card_start < _hard_end) {
+ MemRegion last_card_prefix(last_card_start, _hard_end);
+ fill_region_with_block(last_card_prefix, false);
+ }
+ _hard_end = last_card_start;
+ _end = MAX2(_top, _hard_end - AlignmentReserve);
+ _true_end = _hard_end;
+ assert(_end <= _hard_end, "Invariant.");
+ }
+
+ // At this point:
+ // 1) we had a filler object from the original top to hard_end.
+ // 2) We've filled in any partial cards at the front and back.
+ if (pre_top < _hard_end) {
+ // Now we can reset the _bt to do allocation in the given area.
+ MemRegion new_filler(pre_top, _hard_end);
+ fill_region_with_block(new_filler, false);
+ _top = pre_top + ParGCAllocBuffer::FillerHeaderSize;
+ // If there's no space left, don't retain.
+ if (_top >= _end) {
+ _retained = false;
+ invalidate();
+ return;
+ }
+ _retained_filler = MemRegion(pre_top, _top);
+ _bt.set_region(MemRegion(_top, _hard_end));
+ _bt.initialize_threshold();
+ assert(_bt.threshold() > _top, "initialize_threshold failed!");
+
+ // There may be other reasons for queries into the middle of the
+ // filler object. When such queries are done in parallel with
+ // allocation, bad things can happen, if the query involves object
+ // iteration. So we ensure that such queries do not involve object
+ // iteration, by putting another filler object on the boundaries of
+ // such queries. One such is the object spanning a parallel card
+ // chunk boundary.
+
+ // "chunk_boundary" is the address of the first chunk boundary less
+ // than "hard_end".
+ HeapWord* chunk_boundary =
+ (HeapWord*)align_size_down(intptr_t(_hard_end-1), ChunkSizeInBytes);
+ assert(chunk_boundary < _hard_end, "Or else above did not work.");
+ assert(pointer_delta(_true_end, chunk_boundary) >= AlignmentReserve,
+ "Consequence of last card handling above.");
+
+ if (_top <= chunk_boundary) {
+ assert(_true_end == _hard_end, "Invariant.");
+ while (_top <= chunk_boundary) {
+ assert(pointer_delta(_hard_end, chunk_boundary) >= AlignmentReserve,
+ "Consequence of last card handling above.");
+ MemRegion chunk_portion(chunk_boundary, _hard_end);
+ _bt.BlockOffsetArray::alloc_block(chunk_portion.start(),
+ chunk_portion.end());
+ SharedHeap::fill_region_with_object(chunk_portion);
+ _hard_end = chunk_portion.start();
+ chunk_boundary -= ChunkSizeInWords;
+ }
+ _end = _hard_end - AlignmentReserve;
+ assert(_top <= _end, "Invariant.");
+ // Now reset the initial filler chunk so it doesn't overlap with
+ // the one(s) inserted above.
+ MemRegion new_filler(pre_top, _hard_end);
+ fill_region_with_block(new_filler, false);
+ }
+ } else {
+ _retained = false;
+ invalidate();
+ }
+ } else {
+ assert(!end_of_gc ||
+ (!_retained && _true_end == _hard_end), "Checking.");
+ }
+ assert(_end <= _hard_end, "Invariant.");
+ assert(_top < _end || _top == _hard_end, "Invariant");
+}