diff -r fd16c54261b3 -r 489c9b5090e2 hotspot/src/share/vm/gc_implementation/parNew/parGCAllocBuffer.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/hotspot/src/share/vm/gc_implementation/parNew/parGCAllocBuffer.cpp Sat Dec 01 00:00:00 2007 +0000 @@ -0,0 +1,342 @@ +/* + * Copyright 2001-2006 Sun Microsystems, Inc. All Rights Reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, + * CA 95054 USA or visit www.sun.com if you need additional information or + * have any questions. + * + */ + +# include "incls/_precompiled.incl" +# include "incls/_parGCAllocBuffer.cpp.incl" + +ParGCAllocBuffer::ParGCAllocBuffer(size_t desired_plab_sz_) : + _word_sz(desired_plab_sz_), _bottom(NULL), _top(NULL), + _end(NULL), _hard_end(NULL), + _retained(false), _retained_filler(), + _allocated(0), _wasted(0) +{ + assert (min_size() > AlignmentReserve, "Inconsistency!"); +} + +const size_t ParGCAllocBuffer::FillerHeaderSize = + align_object_size(arrayOopDesc::header_size(T_INT)); + +// If the minimum object size is greater than MinObjAlignment, we can +// end up with a shard at the end of the buffer that's smaller than +// the smallest object. We can't allow that because the buffer must +// look like it's full of objects when we retire it, so we make +// sure we have enough space for a filler int array object. +const size_t ParGCAllocBuffer::AlignmentReserve = + oopDesc::header_size() > MinObjAlignment ? FillerHeaderSize : 0; + +void ParGCAllocBuffer::retire(bool end_of_gc, bool retain) { + assert(!retain || end_of_gc, "Can only retain at GC end."); + if (_retained) { + // If the buffer had been retained shorten the previous filler object. + assert(_retained_filler.end() <= _top, "INVARIANT"); + SharedHeap::fill_region_with_object(_retained_filler); + // Wasted space book-keeping, otherwise (normally) done in invalidate() + _wasted += _retained_filler.word_size(); + _retained = false; + } + assert(!end_of_gc || !_retained, "At this point, end_of_gc ==> !_retained."); + if (_top < _hard_end) { + SharedHeap::fill_region_with_object(MemRegion(_top, _hard_end)); + if (!retain) { + invalidate(); + } else { + // Is there wasted space we'd like to retain for the next GC? + if (pointer_delta(_end, _top) > FillerHeaderSize) { + _retained = true; + _retained_filler = MemRegion(_top, FillerHeaderSize); + _top = _top + FillerHeaderSize; + } else { + invalidate(); + } + } + } +} + +void ParGCAllocBuffer::flush_stats(PLABStats* stats) { + assert(ResizePLAB, "Wasted work"); + stats->add_allocated(_allocated); + stats->add_wasted(_wasted); + stats->add_unused(pointer_delta(_end, _top)); +} + +// Compute desired plab size and latch result for later +// use. This should be called once at the end of parallel +// scavenge; it clears the sensor accumulators. +void PLABStats::adjust_desired_plab_sz() { + assert(ResizePLAB, "Not set"); + if (_allocated == 0) { + assert(_unused == 0, "Inconsistency in PLAB stats"); + _allocated = 1; + } + double wasted_frac = (double)_unused/(double)_allocated; + size_t target_refills = (size_t)((wasted_frac*TargetSurvivorRatio)/ + TargetPLABWastePct); + if (target_refills == 0) { + target_refills = 1; + } + _used = _allocated - _wasted - _unused; + size_t plab_sz = _used/(target_refills*ParallelGCThreads); + if (PrintPLAB) gclog_or_tty->print(" (plab_sz = %d ", plab_sz); + // Take historical weighted average + _filter.sample(plab_sz); + // Clip from above and below, and align to object boundary + plab_sz = MAX2(min_size(), (size_t)_filter.average()); + plab_sz = MIN2(max_size(), plab_sz); + plab_sz = align_object_size(plab_sz); + // Latch the result + if (PrintPLAB) gclog_or_tty->print(" desired_plab_sz = %d) ", plab_sz); + if (ResizePLAB) { + _desired_plab_sz = plab_sz; + } + // Now clear the accumulators for next round: + // note this needs to be fixed in the case where we + // are retaining across scavenges. FIX ME !!! XXX + _allocated = 0; + _wasted = 0; + _unused = 0; +} + +#ifndef PRODUCT +void ParGCAllocBuffer::print() { + gclog_or_tty->print("parGCAllocBuffer: _bottom: %p _top: %p _end: %p _hard_end: %p" + "_retained: %c _retained_filler: [%p,%p)\n", + _bottom, _top, _end, _hard_end, + "FT"[_retained], _retained_filler.start(), _retained_filler.end()); +} +#endif // !PRODUCT + +const size_t ParGCAllocBufferWithBOT::ChunkSizeInWords = +MIN2(CardTableModRefBS::par_chunk_heapword_alignment(), + ((size_t)Generation::GenGrain)/HeapWordSize); +const size_t ParGCAllocBufferWithBOT::ChunkSizeInBytes = +MIN2(CardTableModRefBS::par_chunk_heapword_alignment() * HeapWordSize, + (size_t)Generation::GenGrain); + +ParGCAllocBufferWithBOT::ParGCAllocBufferWithBOT(size_t word_sz, + BlockOffsetSharedArray* bsa) : + ParGCAllocBuffer(word_sz), + _bsa(bsa), + _bt(bsa, MemRegion(_bottom, _hard_end)), + _true_end(_hard_end) +{} + +// The buffer comes with its own BOT, with a shared (obviously) underlying +// BlockOffsetSharedArray. We manipulate this BOT in the normal way +// as we would for any contiguous space. However, on accasion we +// need to do some buffer surgery at the extremities before we +// start using the body of the buffer for allocations. Such surgery +// (as explained elsewhere) is to prevent allocation on a card that +// is in the process of being walked concurrently by another GC thread. +// When such surgery happens at a point that is far removed (to the +// right of the current allocation point, top), we use the "contig" +// parameter below to directly manipulate the shared array without +// modifying the _next_threshold state in the BOT. +void ParGCAllocBufferWithBOT::fill_region_with_block(MemRegion mr, + bool contig) { + SharedHeap::fill_region_with_object(mr); + if (contig) { + _bt.alloc_block(mr.start(), mr.end()); + } else { + _bt.BlockOffsetArray::alloc_block(mr.start(), mr.end()); + } +} + +HeapWord* ParGCAllocBufferWithBOT::allocate_slow(size_t word_sz) { + HeapWord* res = NULL; + if (_true_end > _hard_end) { + assert((HeapWord*)align_size_down(intptr_t(_hard_end), + ChunkSizeInBytes) == _hard_end, + "or else _true_end should be equal to _hard_end"); + assert(_retained, "or else _true_end should be equal to _hard_end"); + assert(_retained_filler.end() <= _top, "INVARIANT"); + SharedHeap::fill_region_with_object(_retained_filler); + if (_top < _hard_end) { + fill_region_with_block(MemRegion(_top, _hard_end), true); + } + HeapWord* next_hard_end = MIN2(_true_end, _hard_end + ChunkSizeInWords); + _retained_filler = MemRegion(_hard_end, FillerHeaderSize); + _bt.alloc_block(_retained_filler.start(), _retained_filler.word_size()); + _top = _retained_filler.end(); + _hard_end = next_hard_end; + _end = _hard_end - AlignmentReserve; + res = ParGCAllocBuffer::allocate(word_sz); + if (res != NULL) { + _bt.alloc_block(res, word_sz); + } + } + return res; +} + +void +ParGCAllocBufferWithBOT::undo_allocation(HeapWord* obj, size_t word_sz) { + ParGCAllocBuffer::undo_allocation(obj, word_sz); + // This may back us up beyond the previous threshold, so reset. + _bt.set_region(MemRegion(_top, _hard_end)); + _bt.initialize_threshold(); +} + +void ParGCAllocBufferWithBOT::retire(bool end_of_gc, bool retain) { + assert(!retain || end_of_gc, "Can only retain at GC end."); + if (_retained) { + // We're about to make the retained_filler into a block. + _bt.BlockOffsetArray::alloc_block(_retained_filler.start(), + _retained_filler.end()); + } + // Reset _hard_end to _true_end (and update _end) + if (retain && _hard_end != NULL) { + assert(_hard_end <= _true_end, "Invariant."); + _hard_end = _true_end; + _end = MAX2(_top, _hard_end - AlignmentReserve); + assert(_end <= _hard_end, "Invariant."); + } + _true_end = _hard_end; + HeapWord* pre_top = _top; + + ParGCAllocBuffer::retire(end_of_gc, retain); + // Now any old _retained_filler is cut back to size, the free part is + // filled with a filler object, and top is past the header of that + // object. + + if (retain && _top < _end) { + assert(end_of_gc && retain, "Or else retain should be false."); + // If the lab does not start on a card boundary, we don't want to + // allocate onto that card, since that might lead to concurrent + // allocation and card scanning, which we don't support. So we fill + // the first card with a garbage object. + size_t first_card_index = _bsa->index_for(pre_top); + HeapWord* first_card_start = _bsa->address_for_index(first_card_index); + if (first_card_start < pre_top) { + HeapWord* second_card_start = + _bsa->address_for_index(first_card_index + 1); + + // Ensure enough room to fill with the smallest block + second_card_start = MAX2(second_card_start, pre_top + AlignmentReserve); + + // If the end is already in the first card, don't go beyond it! + // Or if the remainder is too small for a filler object, gobble it up. + if (_hard_end < second_card_start || + pointer_delta(_hard_end, second_card_start) < AlignmentReserve) { + second_card_start = _hard_end; + } + if (pre_top < second_card_start) { + MemRegion first_card_suffix(pre_top, second_card_start); + fill_region_with_block(first_card_suffix, true); + } + pre_top = second_card_start; + _top = pre_top; + _end = MAX2(_top, _hard_end - AlignmentReserve); + } + + // If the lab does not end on a card boundary, we don't want to + // allocate onto that card, since that might lead to concurrent + // allocation and card scanning, which we don't support. So we fill + // the last card with a garbage object. + size_t last_card_index = _bsa->index_for(_hard_end); + HeapWord* last_card_start = _bsa->address_for_index(last_card_index); + if (last_card_start < _hard_end) { + + // Ensure enough room to fill with the smallest block + last_card_start = MIN2(last_card_start, _hard_end - AlignmentReserve); + + // If the top is already in the last card, don't go back beyond it! + // Or if the remainder is too small for a filler object, gobble it up. + if (_top > last_card_start || + pointer_delta(last_card_start, _top) < AlignmentReserve) { + last_card_start = _top; + } + if (last_card_start < _hard_end) { + MemRegion last_card_prefix(last_card_start, _hard_end); + fill_region_with_block(last_card_prefix, false); + } + _hard_end = last_card_start; + _end = MAX2(_top, _hard_end - AlignmentReserve); + _true_end = _hard_end; + assert(_end <= _hard_end, "Invariant."); + } + + // At this point: + // 1) we had a filler object from the original top to hard_end. + // 2) We've filled in any partial cards at the front and back. + if (pre_top < _hard_end) { + // Now we can reset the _bt to do allocation in the given area. + MemRegion new_filler(pre_top, _hard_end); + fill_region_with_block(new_filler, false); + _top = pre_top + ParGCAllocBuffer::FillerHeaderSize; + // If there's no space left, don't retain. + if (_top >= _end) { + _retained = false; + invalidate(); + return; + } + _retained_filler = MemRegion(pre_top, _top); + _bt.set_region(MemRegion(_top, _hard_end)); + _bt.initialize_threshold(); + assert(_bt.threshold() > _top, "initialize_threshold failed!"); + + // There may be other reasons for queries into the middle of the + // filler object. When such queries are done in parallel with + // allocation, bad things can happen, if the query involves object + // iteration. So we ensure that such queries do not involve object + // iteration, by putting another filler object on the boundaries of + // such queries. One such is the object spanning a parallel card + // chunk boundary. + + // "chunk_boundary" is the address of the first chunk boundary less + // than "hard_end". + HeapWord* chunk_boundary = + (HeapWord*)align_size_down(intptr_t(_hard_end-1), ChunkSizeInBytes); + assert(chunk_boundary < _hard_end, "Or else above did not work."); + assert(pointer_delta(_true_end, chunk_boundary) >= AlignmentReserve, + "Consequence of last card handling above."); + + if (_top <= chunk_boundary) { + assert(_true_end == _hard_end, "Invariant."); + while (_top <= chunk_boundary) { + assert(pointer_delta(_hard_end, chunk_boundary) >= AlignmentReserve, + "Consequence of last card handling above."); + MemRegion chunk_portion(chunk_boundary, _hard_end); + _bt.BlockOffsetArray::alloc_block(chunk_portion.start(), + chunk_portion.end()); + SharedHeap::fill_region_with_object(chunk_portion); + _hard_end = chunk_portion.start(); + chunk_boundary -= ChunkSizeInWords; + } + _end = _hard_end - AlignmentReserve; + assert(_top <= _end, "Invariant."); + // Now reset the initial filler chunk so it doesn't overlap with + // the one(s) inserted above. + MemRegion new_filler(pre_top, _hard_end); + fill_region_with_block(new_filler, false); + } + } else { + _retained = false; + invalidate(); + } + } else { + assert(!end_of_gc || + (!_retained && _true_end == _hard_end), "Checking."); + } + assert(_end <= _hard_end, "Invariant."); + assert(_top < _end || _top == _hard_end, "Invariant"); +}