hotspot/src/share/vm/code/vmreg.hpp
changeset 1 489c9b5090e2
child 198 8601165a33c3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/code/vmreg.hpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,182 @@
+/*
+ * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+//------------------------------VMReg------------------------------------------
+// The VM uses 'unwarped' stack slots; the compiler uses 'warped' stack slots.
+// Register numbers below VMRegImpl::stack0 are the same for both.  Register
+// numbers above stack0 are either warped (in the compiler) or unwarped
+// (in the VM).  Unwarped numbers represent stack indices, offsets from
+// the current stack pointer.  Warped numbers are required during compilation
+// when we do not yet know how big the frame will be.
+
+class VMRegImpl;
+typedef VMRegImpl* VMReg;
+
+class VMRegImpl {
+// friend class OopMap;
+friend class VMStructs;
+friend class OptoReg;
+// friend class Location;
+private:
+  enum {
+    BAD = -1
+  };
+
+
+
+  static VMReg stack0;
+  // Names for registers
+  static const char *regName[];
+  static const int register_count;
+
+
+public:
+
+  static VMReg  as_VMReg(int val, bool bad_ok = false) { assert(val > BAD || bad_ok, "invalid"); return (VMReg) (intptr_t) val; }
+
+  const char*  name() {
+    if (is_reg()) {
+      return regName[value()];
+    } else if (!is_valid()) {
+      return "BAD";
+    } else {
+      // shouldn't really be called with stack
+      return "STACKED REG";
+    }
+  }
+  static VMReg Bad() { return (VMReg) (intptr_t) BAD; }
+  bool is_valid() { return ((intptr_t) this) != BAD; }
+  bool is_stack() { return (intptr_t) this >= (intptr_t) stack0; }
+  bool is_reg() { return is_valid() && !is_stack(); }
+
+  // A concrete register is a value that returns true for is_reg() and is
+  // also a register you could use in the assembler. On machines with
+  // 64bit registers only one half of the VMReg (and OptoReg) is considered
+  // concrete.
+  bool is_concrete();
+
+  // VMRegs are 4 bytes wide on all platforms
+  static const int stack_slot_size;
+  static const int slots_per_word;
+
+
+  // This really ought to check that the register is "real" in the sense that
+  // we don't try and get the VMReg number of a physical register that doesn't
+  // have an expressible part. That would be pd specific code
+  VMReg next() {
+    assert((is_reg() && value() < stack0->value() - 1) || is_stack(), "must be");
+    return (VMReg)(intptr_t)(value() + 1);
+  }
+  VMReg prev() {
+    assert((is_stack() && value() > stack0->value()) || (is_reg() && value() != 0), "must be");
+    return (VMReg)(intptr_t)(value() - 1);
+  }
+
+
+  intptr_t value() const         {return (intptr_t) this; }
+
+  void print();
+
+  // bias a stack slot.
+  // Typically used to adjust a virtual frame slots by amounts that are offset by
+  // amounts that are part of the native abi. The VMReg must be a stack slot
+  // and the result must be also.
+
+  VMReg bias(int offset) {
+    assert(is_stack(), "must be");
+    // VMReg res = VMRegImpl::as_VMReg(value() + offset);
+    VMReg res = stack2reg(reg2stack() + offset);
+    assert(res->is_stack(), "must be");
+    return res;
+  }
+
+  // Convert register numbers to stack slots and vice versa
+  static VMReg stack2reg( int idx ) {
+    return (VMReg) (intptr_t) (stack0->value() + idx);
+  }
+
+  uintptr_t reg2stack() {
+    assert( is_stack(), "Not a stack-based register" );
+    return value() - stack0->value();
+  }
+
+  static void set_regName();
+
+#include "incls/_vmreg_pd.hpp.incl"
+
+};
+
+//---------------------------VMRegPair-------------------------------------------
+// Pairs of 32-bit registers for arguments.
+// SharedRuntime::java_calling_convention will overwrite the structs with
+// the calling convention's registers.  VMRegImpl::Bad is returned for any
+// unused 32-bit register.  This happens for the unused high half of Int
+// arguments, or for 32-bit pointers or for longs in the 32-bit sparc build
+// (which are passed to natives in low 32-bits of e.g. O0/O1 and the high
+// 32-bits of O0/O1 are set to VMRegImpl::Bad).  Longs in one register & doubles
+// always return a high and a low register, as do 64-bit pointers.
+//
+class VMRegPair {
+private:
+  VMReg _second;
+  VMReg _first;
+public:
+  void set_bad (                   ) { _second=VMRegImpl::Bad(); _first=VMRegImpl::Bad(); }
+  void set1    (         VMReg v  ) { _second=VMRegImpl::Bad(); _first=v; }
+  void set2    (         VMReg v  ) { _second=v->next();  _first=v; }
+  void set_pair( VMReg second, VMReg first    ) { _second= second;    _first= first; }
+  void set_ptr ( VMReg ptr ) {
+#ifdef _LP64
+    _second = ptr->next();
+#else
+    _second = VMRegImpl::Bad();
+#endif
+    _first = ptr;
+  }
+  // Return true if single register, even if the pair is really just adjacent stack slots
+  bool is_single_reg() {
+    return (_first->is_valid()) && (_first->value() + 1 == _second->value());
+  }
+
+  // Return true if single stack based "register" where the slot alignment matches input alignment
+  bool is_adjacent_on_stack(int alignment) {
+    return (_first->is_stack() && (_first->value() + 1 == _second->value()) && ((_first->value() & (alignment-1)) == 0));
+  }
+
+  // Return true if single stack based "register" where the slot alignment matches input alignment
+  bool is_adjacent_aligned_on_stack(int alignment) {
+    return (_first->is_stack() && (_first->value() + 1 == _second->value()) && ((_first->value() & (alignment-1)) == 0));
+  }
+
+  // Return true if single register but adjacent stack slots do not count
+  bool is_single_phys_reg() {
+    return (_first->is_reg() && (_first->value() + 1 == _second->value()));
+  }
+
+  VMReg second() const { return _second; }
+  VMReg first()  const { return _first; }
+  VMRegPair(VMReg s, VMReg f) {  _second = s; _first = f; }
+  VMRegPair(VMReg f) { _second = VMRegImpl::Bad(); _first = f; }
+  VMRegPair() { _second = VMRegImpl::Bad(); _first = VMRegImpl::Bad(); }
+};