|
1 /* |
|
2 * Copyright 1998-2007 Sun Microsystems, Inc. All Rights Reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 * CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 * have any questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 //------------------------------VMReg------------------------------------------ |
|
26 // The VM uses 'unwarped' stack slots; the compiler uses 'warped' stack slots. |
|
27 // Register numbers below VMRegImpl::stack0 are the same for both. Register |
|
28 // numbers above stack0 are either warped (in the compiler) or unwarped |
|
29 // (in the VM). Unwarped numbers represent stack indices, offsets from |
|
30 // the current stack pointer. Warped numbers are required during compilation |
|
31 // when we do not yet know how big the frame will be. |
|
32 |
|
33 class VMRegImpl; |
|
34 typedef VMRegImpl* VMReg; |
|
35 |
|
36 class VMRegImpl { |
|
37 // friend class OopMap; |
|
38 friend class VMStructs; |
|
39 friend class OptoReg; |
|
40 // friend class Location; |
|
41 private: |
|
42 enum { |
|
43 BAD = -1 |
|
44 }; |
|
45 |
|
46 |
|
47 |
|
48 static VMReg stack0; |
|
49 // Names for registers |
|
50 static const char *regName[]; |
|
51 static const int register_count; |
|
52 |
|
53 |
|
54 public: |
|
55 |
|
56 static VMReg as_VMReg(int val, bool bad_ok = false) { assert(val > BAD || bad_ok, "invalid"); return (VMReg) (intptr_t) val; } |
|
57 |
|
58 const char* name() { |
|
59 if (is_reg()) { |
|
60 return regName[value()]; |
|
61 } else if (!is_valid()) { |
|
62 return "BAD"; |
|
63 } else { |
|
64 // shouldn't really be called with stack |
|
65 return "STACKED REG"; |
|
66 } |
|
67 } |
|
68 static VMReg Bad() { return (VMReg) (intptr_t) BAD; } |
|
69 bool is_valid() { return ((intptr_t) this) != BAD; } |
|
70 bool is_stack() { return (intptr_t) this >= (intptr_t) stack0; } |
|
71 bool is_reg() { return is_valid() && !is_stack(); } |
|
72 |
|
73 // A concrete register is a value that returns true for is_reg() and is |
|
74 // also a register you could use in the assembler. On machines with |
|
75 // 64bit registers only one half of the VMReg (and OptoReg) is considered |
|
76 // concrete. |
|
77 bool is_concrete(); |
|
78 |
|
79 // VMRegs are 4 bytes wide on all platforms |
|
80 static const int stack_slot_size; |
|
81 static const int slots_per_word; |
|
82 |
|
83 |
|
84 // This really ought to check that the register is "real" in the sense that |
|
85 // we don't try and get the VMReg number of a physical register that doesn't |
|
86 // have an expressible part. That would be pd specific code |
|
87 VMReg next() { |
|
88 assert((is_reg() && value() < stack0->value() - 1) || is_stack(), "must be"); |
|
89 return (VMReg)(intptr_t)(value() + 1); |
|
90 } |
|
91 VMReg prev() { |
|
92 assert((is_stack() && value() > stack0->value()) || (is_reg() && value() != 0), "must be"); |
|
93 return (VMReg)(intptr_t)(value() - 1); |
|
94 } |
|
95 |
|
96 |
|
97 intptr_t value() const {return (intptr_t) this; } |
|
98 |
|
99 void print(); |
|
100 |
|
101 // bias a stack slot. |
|
102 // Typically used to adjust a virtual frame slots by amounts that are offset by |
|
103 // amounts that are part of the native abi. The VMReg must be a stack slot |
|
104 // and the result must be also. |
|
105 |
|
106 VMReg bias(int offset) { |
|
107 assert(is_stack(), "must be"); |
|
108 // VMReg res = VMRegImpl::as_VMReg(value() + offset); |
|
109 VMReg res = stack2reg(reg2stack() + offset); |
|
110 assert(res->is_stack(), "must be"); |
|
111 return res; |
|
112 } |
|
113 |
|
114 // Convert register numbers to stack slots and vice versa |
|
115 static VMReg stack2reg( int idx ) { |
|
116 return (VMReg) (intptr_t) (stack0->value() + idx); |
|
117 } |
|
118 |
|
119 uintptr_t reg2stack() { |
|
120 assert( is_stack(), "Not a stack-based register" ); |
|
121 return value() - stack0->value(); |
|
122 } |
|
123 |
|
124 static void set_regName(); |
|
125 |
|
126 #include "incls/_vmreg_pd.hpp.incl" |
|
127 |
|
128 }; |
|
129 |
|
130 //---------------------------VMRegPair------------------------------------------- |
|
131 // Pairs of 32-bit registers for arguments. |
|
132 // SharedRuntime::java_calling_convention will overwrite the structs with |
|
133 // the calling convention's registers. VMRegImpl::Bad is returned for any |
|
134 // unused 32-bit register. This happens for the unused high half of Int |
|
135 // arguments, or for 32-bit pointers or for longs in the 32-bit sparc build |
|
136 // (which are passed to natives in low 32-bits of e.g. O0/O1 and the high |
|
137 // 32-bits of O0/O1 are set to VMRegImpl::Bad). Longs in one register & doubles |
|
138 // always return a high and a low register, as do 64-bit pointers. |
|
139 // |
|
140 class VMRegPair { |
|
141 private: |
|
142 VMReg _second; |
|
143 VMReg _first; |
|
144 public: |
|
145 void set_bad ( ) { _second=VMRegImpl::Bad(); _first=VMRegImpl::Bad(); } |
|
146 void set1 ( VMReg v ) { _second=VMRegImpl::Bad(); _first=v; } |
|
147 void set2 ( VMReg v ) { _second=v->next(); _first=v; } |
|
148 void set_pair( VMReg second, VMReg first ) { _second= second; _first= first; } |
|
149 void set_ptr ( VMReg ptr ) { |
|
150 #ifdef _LP64 |
|
151 _second = ptr->next(); |
|
152 #else |
|
153 _second = VMRegImpl::Bad(); |
|
154 #endif |
|
155 _first = ptr; |
|
156 } |
|
157 // Return true if single register, even if the pair is really just adjacent stack slots |
|
158 bool is_single_reg() { |
|
159 return (_first->is_valid()) && (_first->value() + 1 == _second->value()); |
|
160 } |
|
161 |
|
162 // Return true if single stack based "register" where the slot alignment matches input alignment |
|
163 bool is_adjacent_on_stack(int alignment) { |
|
164 return (_first->is_stack() && (_first->value() + 1 == _second->value()) && ((_first->value() & (alignment-1)) == 0)); |
|
165 } |
|
166 |
|
167 // Return true if single stack based "register" where the slot alignment matches input alignment |
|
168 bool is_adjacent_aligned_on_stack(int alignment) { |
|
169 return (_first->is_stack() && (_first->value() + 1 == _second->value()) && ((_first->value() & (alignment-1)) == 0)); |
|
170 } |
|
171 |
|
172 // Return true if single register but adjacent stack slots do not count |
|
173 bool is_single_phys_reg() { |
|
174 return (_first->is_reg() && (_first->value() + 1 == _second->value())); |
|
175 } |
|
176 |
|
177 VMReg second() const { return _second; } |
|
178 VMReg first() const { return _first; } |
|
179 VMRegPair(VMReg s, VMReg f) { _second = s; _first = f; } |
|
180 VMRegPair(VMReg f) { _second = VMRegImpl::Bad(); _first = f; } |
|
181 VMRegPair() { _second = VMRegImpl::Bad(); _first = VMRegImpl::Bad(); } |
|
182 }; |