hotspot/src/cpu/sparc/vm/assembler_sparc.hpp
changeset 1 489c9b5090e2
child 360 21d113ecbf6a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/sparc/vm/assembler_sparc.hpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,2254 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+class BiasedLockingCounters;
+
+// <sys/trap.h> promises that the system will not use traps 16-31
+#define ST_RESERVED_FOR_USER_0 0x10
+
+/* Written: David Ungar 4/19/97 */
+
+// Contains all the definitions needed for sparc assembly code generation.
+
+// Register aliases for parts of the system:
+
+// 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
+// across context switches in V8+ ABI.  Of course, there are no 64 bit regs
+// in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
+
+// g2-g4 are scratch registers called "application globals".  Their
+// meaning is reserved to the "compilation system"--which means us!
+// They are are not supposed to be touched by ordinary C code, although
+// highly-optimized C code might steal them for temps.  They are safe
+// across thread switches, and the ABI requires that they be safe
+// across function calls.
+//
+// g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
+// across func calls, and V8+ also allows g5 to be clobbered across
+// func calls.  Also, g1 and g5 can get touched while doing shared
+// library loading.
+//
+// We must not touch g7 (it is the thread-self register) and g6 is
+// reserved for certain tools.  g0, of course, is always zero.
+//
+// (Sources:  SunSoft Compilers Group, thread library engineers.)
+
+// %%%% The interpreter should be revisited to reduce global scratch regs.
+
+// This global always holds the current JavaThread pointer:
+
+REGISTER_DECLARATION(Register, G2_thread , G2);
+
+// The following globals are part of the Java calling convention:
+
+REGISTER_DECLARATION(Register, G5_method             , G5);
+REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
+REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
+
+// The following globals are used for the new C1 & interpreter calling convention:
+REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
+
+// This local is used to preserve G2_thread in the interpreter and in stubs:
+REGISTER_DECLARATION(Register, L7_thread_cache , L7);
+
+// These globals are used as scratch registers in the interpreter:
+
+REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
+REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
+REGISTER_DECLARATION(Register, G3_scratch    , G3);
+REGISTER_DECLARATION(Register, G4_scratch    , G4);
+
+// These globals are used as short-lived scratch registers in the compiler:
+
+REGISTER_DECLARATION(Register, Gtemp  , G5);
+
+// The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
+// because a single patchable "set" instruction (NativeMovConstReg,
+// or NativeMovConstPatching for compiler1) instruction
+// serves to set up either quantity, depending on whether the compiled
+// call site is an inline cache or is megamorphic.  See the function
+// CompiledIC::set_to_megamorphic.
+//
+// On the other hand, G5_inline_cache_klass must differ from G5_method,
+// because both registers are needed for an inline cache that calls
+// an interpreted method.
+//
+// Note that G5_method is only the method-self for the interpreter,
+// and is logically unrelated to G5_megamorphic_method.
+//
+// Invariants on G2_thread (the JavaThread pointer):
+//  - it should not be used for any other purpose anywhere
+//  - it must be re-initialized by StubRoutines::call_stub()
+//  - it must be preserved around every use of call_VM
+
+// We can consider using g2/g3/g4 to cache more values than the
+// JavaThread, such as the card-marking base or perhaps pointers into
+// Eden.  It's something of a waste to use them as scratch temporaries,
+// since they are not supposed to be volatile.  (Of course, if we find
+// that Java doesn't benefit from application globals, then we can just
+// use them as ordinary temporaries.)
+//
+// Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
+// it makes sense to use them routinely for procedure linkage,
+// whenever the On registers are not applicable.  Examples:  G5_method,
+// G5_inline_cache_klass, and a double handful of miscellaneous compiler
+// stubs.  This means that compiler stubs, etc., should be kept to a
+// maximum of two or three G-register arguments.
+
+
+// stub frames
+
+REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
+
+// Interpreter frames
+
+#ifdef CC_INTERP
+REGISTER_DECLARATION(Register, Lstate           , L0); // interpreter state object pointer
+REGISTER_DECLARATION(Register, L1_scratch       , L1); // scratch
+REGISTER_DECLARATION(Register, Lmirror          , L1); // mirror (for native methods only)
+REGISTER_DECLARATION(Register, L2_scratch       , L2);
+REGISTER_DECLARATION(Register, L3_scratch       , L3);
+REGISTER_DECLARATION(Register, L4_scratch       , L4);
+REGISTER_DECLARATION(Register, Lscratch         , L5); // C1 uses
+REGISTER_DECLARATION(Register, Lscratch2        , L6); // C1 uses
+REGISTER_DECLARATION(Register, L7_scratch       , L7); // constant pool cache
+REGISTER_DECLARATION(Register, O5_savedSP       , O5);
+REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
+                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
+                                                       // is added and removed as needed in the frame code.
+// Interface to signature handler
+REGISTER_DECLARATION(Register, Llocals          , L7); // pointer to locals for signature handler
+REGISTER_DECLARATION(Register, Lmethod          , L6); // methodOop when calling signature handler
+
+#else
+REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
+REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
+REGISTER_DECLARATION(Register, Lmethod          , L2);
+REGISTER_DECLARATION(Register, Llocals          , L3);
+REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
+                                                       // must match Llocals in asm interpreter
+REGISTER_DECLARATION(Register, Lmonitors        , L4);
+REGISTER_DECLARATION(Register, Lbyte_code       , L5);
+// When calling out from the interpreter we record SP so that we can remove any extra stack
+// space allocated during adapter transitions. This register is only live from the point
+// of the call until we return.
+REGISTER_DECLARATION(Register, Llast_SP         , L5);
+REGISTER_DECLARATION(Register, Lscratch         , L5);
+REGISTER_DECLARATION(Register, Lscratch2        , L6);
+REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
+
+REGISTER_DECLARATION(Register, O5_savedSP       , O5);
+REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
+                                                       // a copy SP, so in 64-bit it's a biased value.  The bias
+                                                       // is added and removed as needed in the frame code.
+REGISTER_DECLARATION(Register, IdispatchTables  , I4); // Base address of the bytecode dispatch tables
+REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
+REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
+#endif /* CC_INTERP */
+
+// NOTE: Lscratch2 and LcpoolCache point to the same registers in
+//       the interpreter code. If Lscratch2 needs to be used for some
+//       purpose than LcpoolCache should be restore after that for
+//       the interpreter to work right
+// (These assignments must be compatible with L7_thread_cache; see above.)
+
+// Since Lbcp points into the middle of the method object,
+// it is temporarily converted into a "bcx" during GC.
+
+// Exception processing
+// These registers are passed into exception handlers.
+// All exception handlers require the exception object being thrown.
+// In addition, an nmethod's exception handler must be passed
+// the address of the call site within the nmethod, to allow
+// proper selection of the applicable catch block.
+// (Interpreter frames use their own bcp() for this purpose.)
+//
+// The Oissuing_pc value is not always needed.  When jumping to a
+// handler that is known to be interpreted, the Oissuing_pc value can be
+// omitted.  An actual catch block in compiled code receives (from its
+// nmethod's exception handler) the thrown exception in the Oexception,
+// but it doesn't need the Oissuing_pc.
+//
+// If an exception handler (either interpreted or compiled)
+// discovers there is no applicable catch block, it updates
+// the Oissuing_pc to the continuation PC of its own caller,
+// pops back to that caller's stack frame, and executes that
+// caller's exception handler.  Obviously, this process will
+// iterate until the control stack is popped back to a method
+// containing an applicable catch block.  A key invariant is
+// that the Oissuing_pc value is always a value local to
+// the method whose exception handler is currently executing.
+//
+// Note:  The issuing PC value is __not__ a raw return address (I7 value).
+// It is a "return pc", the address __following__ the call.
+// Raw return addresses are converted to issuing PCs by frame::pc(),
+// or by stubs.  Issuing PCs can be used directly with PC range tables.
+//
+REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
+REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
+
+
+// These must occur after the declarations above
+#ifndef DONT_USE_REGISTER_DEFINES
+
+#define Gthread             AS_REGISTER(Register, Gthread)
+#define Gmethod             AS_REGISTER(Register, Gmethod)
+#define Gmegamorphic_method AS_REGISTER(Register, Gmegamorphic_method)
+#define Ginline_cache_reg   AS_REGISTER(Register, Ginline_cache_reg)
+#define Gargs               AS_REGISTER(Register, Gargs)
+#define Lthread_cache       AS_REGISTER(Register, Lthread_cache)
+#define Gframe_size         AS_REGISTER(Register, Gframe_size)
+#define Gtemp               AS_REGISTER(Register, Gtemp)
+
+#ifdef CC_INTERP
+#define Lstate              AS_REGISTER(Register, Lstate)
+#define Lesp                AS_REGISTER(Register, Lesp)
+#define L1_scratch          AS_REGISTER(Register, L1_scratch)
+#define Lmirror             AS_REGISTER(Register, Lmirror)
+#define L2_scratch          AS_REGISTER(Register, L2_scratch)
+#define L3_scratch          AS_REGISTER(Register, L3_scratch)
+#define L4_scratch          AS_REGISTER(Register, L4_scratch)
+#define Lscratch            AS_REGISTER(Register, Lscratch)
+#define Lscratch2           AS_REGISTER(Register, Lscratch2)
+#define L7_scratch          AS_REGISTER(Register, L7_scratch)
+#define Ostate              AS_REGISTER(Register, Ostate)
+#else
+#define Lesp                AS_REGISTER(Register, Lesp)
+#define Lbcp                AS_REGISTER(Register, Lbcp)
+#define Lmethod             AS_REGISTER(Register, Lmethod)
+#define Llocals             AS_REGISTER(Register, Llocals)
+#define Lmonitors           AS_REGISTER(Register, Lmonitors)
+#define Lbyte_code          AS_REGISTER(Register, Lbyte_code)
+#define Lscratch            AS_REGISTER(Register, Lscratch)
+#define Lscratch2           AS_REGISTER(Register, Lscratch2)
+#define LcpoolCache         AS_REGISTER(Register, LcpoolCache)
+#endif /* ! CC_INTERP */
+
+#define Lentry_args         AS_REGISTER(Register, Lentry_args)
+#define I5_savedSP          AS_REGISTER(Register, I5_savedSP)
+#define O5_savedSP          AS_REGISTER(Register, O5_savedSP)
+#define IdispatchAddress    AS_REGISTER(Register, IdispatchAddress)
+#define ImethodDataPtr      AS_REGISTER(Register, ImethodDataPtr)
+#define IdispatchTables     AS_REGISTER(Register, IdispatchTables)
+
+#define Oexception          AS_REGISTER(Register, Oexception)
+#define Oissuing_pc         AS_REGISTER(Register, Oissuing_pc)
+
+
+#endif
+
+// Address is an abstraction used to represent a memory location.
+//
+// Note: A register location is represented via a Register, not
+//       via an address for efficiency & simplicity reasons.
+
+class Address VALUE_OBJ_CLASS_SPEC {
+ private:
+  Register              _base;
+#ifdef _LP64
+  int                   _hi32;          // bits 63::32
+  int                   _low32;         // bits 31::0
+#endif
+  int                   _hi;
+  int                   _disp;
+  RelocationHolder      _rspec;
+
+  RelocationHolder rspec_from_rtype(relocInfo::relocType rt, address a = NULL) {
+    switch (rt) {
+    case relocInfo::external_word_type:
+      return external_word_Relocation::spec(a);
+    case relocInfo::internal_word_type:
+      return internal_word_Relocation::spec(a);
+#ifdef _LP64
+    case relocInfo::opt_virtual_call_type:
+      return opt_virtual_call_Relocation::spec();
+    case relocInfo::static_call_type:
+      return static_call_Relocation::spec();
+    case relocInfo::runtime_call_type:
+      return runtime_call_Relocation::spec();
+#endif
+    case relocInfo::none:
+      return RelocationHolder();
+    default:
+      ShouldNotReachHere();
+      return RelocationHolder();
+    }
+  }
+
+ public:
+  Address(Register b, address a, relocInfo::relocType rt = relocInfo::none)
+    : _rspec(rspec_from_rtype(rt, a))
+  {
+    _base  = b;
+#ifdef _LP64
+    _hi32  = (intptr_t)a >> 32;    // top 32 bits in 64 bit word
+    _low32 = (intptr_t)a & ~0;     // low 32 bits in 64 bit word
+#endif
+    _hi    = (intptr_t)a & ~0x3ff; // top    22 bits in low word
+    _disp  = (intptr_t)a &  0x3ff; // bottom 10 bits
+  }
+
+  Address(Register b, address a, RelocationHolder const& rspec)
+    : _rspec(rspec)
+  {
+    _base  = b;
+#ifdef _LP64
+    _hi32  = (intptr_t)a >> 32;    // top 32 bits in 64 bit word
+    _low32 = (intptr_t)a & ~0;     // low 32 bits in 64 bit word
+#endif
+    _hi    = (intptr_t)a & ~0x3ff; // top    22 bits
+    _disp  = (intptr_t)a &  0x3ff; // bottom 10 bits
+  }
+
+  Address(Register b, intptr_t h, intptr_t d, RelocationHolder const& rspec = RelocationHolder())
+    : _rspec(rspec)
+  {
+    _base  = b;
+#ifdef _LP64
+// [RGV] Put in Assert to force me to check usage of this constructor
+     assert( h == 0, "Check usage of this constructor" );
+    _hi32  = h;
+    _low32 = d;
+    _hi    = h;
+    _disp  = d;
+#else
+    _hi    = h;
+    _disp  = d;
+#endif
+  }
+
+  Address()
+    : _rspec(RelocationHolder())
+  {
+    _base  = G0;
+#ifdef _LP64
+    _hi32  = 0;
+    _low32 = 0;
+#endif
+    _hi    = 0;
+    _disp  = 0;
+  }
+
+  // fancier constructors
+
+  enum addr_type {
+    extra_in_argument,  // in the In registers
+    extra_out_argument  // in the Outs
+  };
+
+  Address( addr_type, int );
+
+  // accessors
+
+  Register               base() const { return _base; }
+#ifdef _LP64
+  int                   hi32()  const { return _hi32; }
+  int                   low32() const { return _low32; }
+#endif
+  int                      hi() const { return _hi;  }
+  int                    disp() const { return _disp; }
+#ifdef _LP64
+  intptr_t              value() const { return ((intptr_t)_hi32 << 32) |
+                                                (intptr_t)(uint32_t)_low32; }
+#else
+  int                   value() const { return _hi | _disp; }
+#endif
+  const relocInfo::relocType  rtype() { return _rspec.type(); }
+  const RelocationHolder&     rspec() { return _rspec; }
+
+  RelocationHolder      rspec(int offset) const {
+    return offset == 0 ? _rspec : _rspec.plus(offset);
+  }
+
+  inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
+
+  Address split_disp() const {            // deal with disp overflow
+    Address a = (*this);
+    int hi_disp = _disp & ~0x3ff;
+    if (hi_disp != 0) {
+      a._disp -= hi_disp;
+      a._hi   += hi_disp;
+    }
+    return a;
+  }
+
+  Address after_save() const {
+    Address a = (*this);
+    a._base = a._base->after_save();
+    return a;
+  }
+
+  Address after_restore() const {
+    Address a = (*this);
+    a._base = a._base->after_restore();
+    return a;
+  }
+
+  friend class Assembler;
+};
+
+
+inline Address RegisterImpl::address_in_saved_window() const {
+   return (Address(SP, 0, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
+}
+
+
+
+// Argument is an abstraction used to represent an outgoing
+// actual argument or an incoming formal parameter, whether
+// it resides in memory or in a register, in a manner consistent
+// with the SPARC Application Binary Interface, or ABI.  This is
+// often referred to as the native or C calling convention.
+
+class Argument VALUE_OBJ_CLASS_SPEC {
+ private:
+  int _number;
+  bool _is_in;
+
+ public:
+#ifdef _LP64
+  enum {
+    n_register_parameters = 6,          // only 6 registers may contain integer parameters
+    n_float_register_parameters = 16    // Can have up to 16 floating registers
+  };
+#else
+  enum {
+    n_register_parameters = 6           // only 6 registers may contain integer parameters
+  };
+#endif
+
+  // creation
+  Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
+
+  int  number() const  { return _number;  }
+  bool is_in()  const  { return _is_in;   }
+  bool is_out() const  { return !is_in(); }
+
+  Argument successor() const  { return Argument(number() + 1, is_in()); }
+  Argument as_in()     const  { return Argument(number(), true ); }
+  Argument as_out()    const  { return Argument(number(), false); }
+
+  // locating register-based arguments:
+  bool is_register() const { return _number < n_register_parameters; }
+
+#ifdef _LP64
+  // locating Floating Point register-based arguments:
+  bool is_float_register() const { return _number < n_float_register_parameters; }
+
+  FloatRegister as_float_register() const {
+    assert(is_float_register(), "must be a register argument");
+    return as_FloatRegister(( number() *2 ) + 1);
+  }
+  FloatRegister as_double_register() const {
+    assert(is_float_register(), "must be a register argument");
+    return as_FloatRegister(( number() *2 ));
+  }
+#endif
+
+  Register as_register() const {
+    assert(is_register(), "must be a register argument");
+    return is_in() ? as_iRegister(number()) : as_oRegister(number());
+  }
+
+  // locating memory-based arguments
+  Address as_address() const {
+    assert(!is_register(), "must be a memory argument");
+    return address_in_frame();
+  }
+
+  // When applied to a register-based argument, give the corresponding address
+  // into the 6-word area "into which callee may store register arguments"
+  // (This is a different place than the corresponding register-save area location.)
+  Address address_in_frame() const {
+    return Address( is_in()   ? Address::extra_in_argument
+                              : Address::extra_out_argument,
+                    _number );
+  }
+
+  // debugging
+  const char* name() const;
+
+  friend class Assembler;
+};
+
+
+// The SPARC Assembler: Pure assembler doing NO optimizations on the instruction
+// level; i.e., what you write
+// is what you get. The Assembler is generating code into a CodeBuffer.
+
+class Assembler : public AbstractAssembler  {
+ protected:
+
+  static void print_instruction(int inst);
+  static int  patched_branch(int dest_pos, int inst, int inst_pos);
+  static int  branch_destination(int inst, int pos);
+
+
+  friend class AbstractAssembler;
+
+  // code patchers need various routines like inv_wdisp()
+  friend class NativeInstruction;
+  friend class NativeGeneralJump;
+  friend class Relocation;
+  friend class Label;
+
+ public:
+  // op carries format info; see page 62 & 267
+
+  enum ops {
+    call_op   = 1, // fmt 1
+    branch_op = 0, // also sethi (fmt2)
+    arith_op  = 2, // fmt 3, arith & misc
+    ldst_op   = 3  // fmt 3, load/store
+  };
+
+  enum op2s {
+    bpr_op2   = 3,
+    fb_op2    = 6,
+    fbp_op2   = 5,
+    br_op2    = 2,
+    bp_op2    = 1,
+    cb_op2    = 7, // V8
+    sethi_op2 = 4
+  };
+
+  enum op3s {
+    // selected op3s
+    add_op3      = 0x00,
+    and_op3      = 0x01,
+    or_op3       = 0x02,
+    xor_op3      = 0x03,
+    sub_op3      = 0x04,
+    andn_op3     = 0x05,
+    orn_op3      = 0x06,
+    xnor_op3     = 0x07,
+    addc_op3     = 0x08,
+    mulx_op3     = 0x09,
+    umul_op3     = 0x0a,
+    smul_op3     = 0x0b,
+    subc_op3     = 0x0c,
+    udivx_op3    = 0x0d,
+    udiv_op3     = 0x0e,
+    sdiv_op3     = 0x0f,
+
+    addcc_op3    = 0x10,
+    andcc_op3    = 0x11,
+    orcc_op3     = 0x12,
+    xorcc_op3    = 0x13,
+    subcc_op3    = 0x14,
+    andncc_op3   = 0x15,
+    orncc_op3    = 0x16,
+    xnorcc_op3   = 0x17,
+    addccc_op3   = 0x18,
+    umulcc_op3   = 0x1a,
+    smulcc_op3   = 0x1b,
+    subccc_op3   = 0x1c,
+    udivcc_op3   = 0x1e,
+    sdivcc_op3   = 0x1f,
+
+    taddcc_op3   = 0x20,
+    tsubcc_op3   = 0x21,
+    taddcctv_op3 = 0x22,
+    tsubcctv_op3 = 0x23,
+    mulscc_op3   = 0x24,
+    sll_op3      = 0x25,
+    sllx_op3     = 0x25,
+    srl_op3      = 0x26,
+    srlx_op3     = 0x26,
+    sra_op3      = 0x27,
+    srax_op3     = 0x27,
+    rdreg_op3    = 0x28,
+    membar_op3   = 0x28,
+
+    flushw_op3   = 0x2b,
+    movcc_op3    = 0x2c,
+    sdivx_op3    = 0x2d,
+    popc_op3     = 0x2e,
+    movr_op3     = 0x2f,
+
+    sir_op3      = 0x30,
+    wrreg_op3    = 0x30,
+    saved_op3    = 0x31,
+
+    fpop1_op3    = 0x34,
+    fpop2_op3    = 0x35,
+    impdep1_op3  = 0x36,
+    impdep2_op3  = 0x37,
+    jmpl_op3     = 0x38,
+    rett_op3     = 0x39,
+    trap_op3     = 0x3a,
+    flush_op3    = 0x3b,
+    save_op3     = 0x3c,
+    restore_op3  = 0x3d,
+    done_op3     = 0x3e,
+    retry_op3    = 0x3e,
+
+    lduw_op3     = 0x00,
+    ldub_op3     = 0x01,
+    lduh_op3     = 0x02,
+    ldd_op3      = 0x03,
+    stw_op3      = 0x04,
+    stb_op3      = 0x05,
+    sth_op3      = 0x06,
+    std_op3      = 0x07,
+    ldsw_op3     = 0x08,
+    ldsb_op3     = 0x09,
+    ldsh_op3     = 0x0a,
+    ldx_op3      = 0x0b,
+
+    ldstub_op3   = 0x0d,
+    stx_op3      = 0x0e,
+    swap_op3     = 0x0f,
+
+    lduwa_op3    = 0x10,
+    ldxa_op3     = 0x1b,
+
+    stwa_op3     = 0x14,
+    stxa_op3     = 0x1e,
+
+    ldf_op3      = 0x20,
+    ldfsr_op3    = 0x21,
+    ldqf_op3     = 0x22,
+    lddf_op3     = 0x23,
+    stf_op3      = 0x24,
+    stfsr_op3    = 0x25,
+    stqf_op3     = 0x26,
+    stdf_op3     = 0x27,
+
+    prefetch_op3 = 0x2d,
+
+
+    ldc_op3      = 0x30,
+    ldcsr_op3    = 0x31,
+    lddc_op3     = 0x33,
+    stc_op3      = 0x34,
+    stcsr_op3    = 0x35,
+    stdcq_op3    = 0x36,
+    stdc_op3     = 0x37,
+
+    casa_op3     = 0x3c,
+    casxa_op3    = 0x3e,
+
+    alt_bit_op3  = 0x10,
+     cc_bit_op3  = 0x10
+  };
+
+  enum opfs {
+    // selected opfs
+    fmovs_opf   = 0x01,
+    fmovd_opf   = 0x02,
+
+    fnegs_opf   = 0x05,
+    fnegd_opf   = 0x06,
+
+    fadds_opf   = 0x41,
+    faddd_opf   = 0x42,
+    fsubs_opf   = 0x45,
+    fsubd_opf   = 0x46,
+
+    fmuls_opf   = 0x49,
+    fmuld_opf   = 0x4a,
+    fdivs_opf   = 0x4d,
+    fdivd_opf   = 0x4e,
+
+    fcmps_opf   = 0x51,
+    fcmpd_opf   = 0x52,
+
+    fstox_opf   = 0x81,
+    fdtox_opf   = 0x82,
+    fxtos_opf   = 0x84,
+    fxtod_opf   = 0x88,
+    fitos_opf   = 0xc4,
+    fdtos_opf   = 0xc6,
+    fitod_opf   = 0xc8,
+    fstod_opf   = 0xc9,
+    fstoi_opf   = 0xd1,
+    fdtoi_opf   = 0xd2
+  };
+
+  enum RCondition {  rc_z = 1,  rc_lez = 2,  rc_lz = 3, rc_nz = 5, rc_gz = 6, rc_gez = 7  };
+
+  enum Condition {
+     // for FBfcc & FBPfcc instruction
+    f_never                     = 0,
+    f_notEqual                  = 1,
+    f_notZero                   = 1,
+    f_lessOrGreater             = 2,
+    f_unorderedOrLess           = 3,
+    f_less                      = 4,
+    f_unorderedOrGreater        = 5,
+    f_greater                   = 6,
+    f_unordered                 = 7,
+    f_always                    = 8,
+    f_equal                     = 9,
+    f_zero                      = 9,
+    f_unorderedOrEqual          = 10,
+    f_greaterOrEqual            = 11,
+    f_unorderedOrGreaterOrEqual = 12,
+    f_lessOrEqual               = 13,
+    f_unorderedOrLessOrEqual    = 14,
+    f_ordered                   = 15,
+
+    // V8 coproc, pp 123 v8 manual
+
+    cp_always  = 8,
+    cp_never   = 0,
+    cp_3       = 7,
+    cp_2       = 6,
+    cp_2or3    = 5,
+    cp_1       = 4,
+    cp_1or3    = 3,
+    cp_1or2    = 2,
+    cp_1or2or3 = 1,
+    cp_0       = 9,
+    cp_0or3    = 10,
+    cp_0or2    = 11,
+    cp_0or2or3 = 12,
+    cp_0or1    = 13,
+    cp_0or1or3 = 14,
+    cp_0or1or2 = 15,
+
+
+    // for integers
+
+    never                 =  0,
+    equal                 =  1,
+    zero                  =  1,
+    lessEqual             =  2,
+    less                  =  3,
+    lessEqualUnsigned     =  4,
+    lessUnsigned          =  5,
+    carrySet              =  5,
+    negative              =  6,
+    overflowSet           =  7,
+    always                =  8,
+    notEqual              =  9,
+    notZero               =  9,
+    greater               =  10,
+    greaterEqual          =  11,
+    greaterUnsigned       =  12,
+    greaterEqualUnsigned  =  13,
+    carryClear            =  13,
+    positive              =  14,
+    overflowClear         =  15
+  };
+
+  enum CC {
+    icc  = 0,  xcc  = 2,
+    // ptr_cc is the correct condition code for a pointer or intptr_t:
+    ptr_cc = NOT_LP64(icc) LP64_ONLY(xcc),
+    fcc0 = 0,  fcc1 = 1, fcc2 = 2, fcc3 = 3
+  };
+
+  enum PrefetchFcn {
+    severalReads = 0,  oneRead = 1,  severalWritesAndPossiblyReads = 2, oneWrite = 3, page = 4
+  };
+
+ public:
+  // Helper functions for groups of instructions
+
+  enum Predict { pt = 1, pn = 0 }; // pt = predict taken
+
+  enum Membar_mask_bits { // page 184, v9
+    StoreStore = 1 << 3,
+    LoadStore  = 1 << 2,
+    StoreLoad  = 1 << 1,
+    LoadLoad   = 1 << 0,
+
+    Sync       = 1 << 6,
+    MemIssue   = 1 << 5,
+    Lookaside  = 1 << 4
+  };
+
+  // test if x is within signed immediate range for nbits
+  static bool is_simm(int x, int nbits) { return -( 1 << nbits-1 )  <= x   &&   x  <  ( 1 << nbits-1 ); }
+
+  // test if -4096 <= x <= 4095
+  static bool is_simm13(int x) { return is_simm(x, 13); }
+
+  enum ASIs { // page 72, v9
+    ASI_PRIMARY        = 0x80,
+    ASI_PRIMARY_LITTLE = 0x88
+    // add more from book as needed
+  };
+
+ protected:
+  // helpers
+
+  // x is supposed to fit in a field "nbits" wide
+  // and be sign-extended. Check the range.
+
+  static void assert_signed_range(intptr_t x, int nbits) {
+    assert( nbits == 32
+        ||  -(1 << nbits-1) <= x  &&  x < ( 1 << nbits-1),
+      "value out of range");
+  }
+
+  static void assert_signed_word_disp_range(intptr_t x, int nbits) {
+    assert( (x & 3) == 0, "not word aligned");
+    assert_signed_range(x, nbits + 2);
+  }
+
+  static void assert_unsigned_const(int x, int nbits) {
+    assert( juint(x)  <  juint(1 << nbits), "unsigned constant out of range");
+  }
+
+  // fields: note bits numbered from LSB = 0,
+  //  fields known by inclusive bit range
+
+  static int fmask(juint hi_bit, juint lo_bit) {
+    assert( hi_bit >= lo_bit  &&  0 <= lo_bit  &&  hi_bit < 32, "bad bits");
+    return (1 << ( hi_bit-lo_bit + 1 )) - 1;
+  }
+
+  // inverse of u_field
+
+  static int inv_u_field(int x, int hi_bit, int lo_bit) {
+    juint r = juint(x) >> lo_bit;
+    r &= fmask( hi_bit, lo_bit);
+    return int(r);
+  }
+
+
+  // signed version: extract from field and sign-extend
+
+  static int inv_s_field(int x, int hi_bit, int lo_bit) {
+    int sign_shift = 31 - hi_bit;
+    return inv_u_field( ((x << sign_shift) >> sign_shift), hi_bit, lo_bit);
+  }
+
+  // given a field that ranges from hi_bit to lo_bit (inclusive,
+  // LSB = 0), and an unsigned value for the field,
+  // shift it into the field
+
+#ifdef ASSERT
+  static int u_field(int x, int hi_bit, int lo_bit) {
+    assert( ( x & ~fmask(hi_bit, lo_bit))  == 0,
+            "value out of range");
+    int r = x << lo_bit;
+    assert( inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
+    return r;
+  }
+#else
+  // make sure this is inlined as it will reduce code size significantly
+  #define u_field(x, hi_bit, lo_bit)   ((x) << (lo_bit))
+#endif
+
+  static int inv_op(  int x ) { return inv_u_field(x, 31, 30); }
+  static int inv_op2( int x ) { return inv_u_field(x, 24, 22); }
+  static int inv_op3( int x ) { return inv_u_field(x, 24, 19); }
+  static int inv_cond( int x ){ return inv_u_field(x, 28, 25); }
+
+  static bool inv_immed( int x ) { return (x & Assembler::immed(true)) != 0; }
+
+  static Register inv_rd(  int x ) { return as_Register(inv_u_field(x, 29, 25)); }
+  static Register inv_rs1( int x ) { return as_Register(inv_u_field(x, 18, 14)); }
+  static Register inv_rs2( int x ) { return as_Register(inv_u_field(x,  4,  0)); }
+
+  static int op(       int         x)  { return  u_field(x,             31, 30); }
+  static int rd(       Register    r)  { return  u_field(r->encoding(), 29, 25); }
+  static int fcn(      int         x)  { return  u_field(x,             29, 25); }
+  static int op3(      int         x)  { return  u_field(x,             24, 19); }
+  static int rs1(      Register    r)  { return  u_field(r->encoding(), 18, 14); }
+  static int rs2(      Register    r)  { return  u_field(r->encoding(),  4,  0); }
+  static int annul(    bool        a)  { return  u_field(a ? 1 : 0,     29, 29); }
+  static int cond(     int         x)  { return  u_field(x,             28, 25); }
+  static int cond_mov( int         x)  { return  u_field(x,             17, 14); }
+  static int rcond(    RCondition  x)  { return  u_field(x,             12, 10); }
+  static int op2(      int         x)  { return  u_field(x,             24, 22); }
+  static int predict(  bool        p)  { return  u_field(p ? 1 : 0,     19, 19); }
+  static int branchcc( CC       fcca)  { return  u_field(fcca,          21, 20); }
+  static int cmpcc(    CC       fcca)  { return  u_field(fcca,          26, 25); }
+  static int imm_asi(  int         x)  { return  u_field(x,             12,  5); }
+  static int immed(    bool        i)  { return  u_field(i ? 1 : 0,     13, 13); }
+  static int opf_low6( int         w)  { return  u_field(w,             10,  5); }
+  static int opf_low5( int         w)  { return  u_field(w,              9,  5); }
+  static int trapcc(   CC         cc)  { return  u_field(cc,            12, 11); }
+  static int sx(       int         i)  { return  u_field(i,             12, 12); } // shift x=1 means 64-bit
+  static int opf(      int         x)  { return  u_field(x,             13,  5); }
+
+  static int opf_cc(   CC          c, bool useFloat ) { return u_field((useFloat ? 0 : 4) + c, 13, 11); }
+  static int mov_cc(   CC          c, bool useFloat ) { return u_field(useFloat ? 0 : 1,  18, 18) | u_field(c, 12, 11); }
+
+  static int fd( FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 29, 25); };
+  static int fs1(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa), 18, 14); };
+  static int fs2(FloatRegister r,  FloatRegisterImpl::Width fwa) { return u_field(r->encoding(fwa),  4,  0); };
+
+  // some float instructions use this encoding on the op3 field
+  static int alt_op3(int op, FloatRegisterImpl::Width w) {
+    int r;
+    switch(w) {
+     case FloatRegisterImpl::S: r = op + 0;  break;
+     case FloatRegisterImpl::D: r = op + 3;  break;
+     case FloatRegisterImpl::Q: r = op + 2;  break;
+     default: ShouldNotReachHere(); break;
+    }
+    return op3(r);
+  }
+
+
+  // compute inverse of simm
+  static int inv_simm(int x, int nbits) {
+    return (int)(x << (32 - nbits)) >> (32 - nbits);
+  }
+
+  static int inv_simm13( int x ) { return inv_simm(x, 13); }
+
+  // signed immediate, in low bits, nbits long
+  static int simm(int x, int nbits) {
+    assert_signed_range(x, nbits);
+    return x  &  (( 1 << nbits ) - 1);
+  }
+
+  // compute inverse of wdisp16
+  static intptr_t inv_wdisp16(int x, intptr_t pos) {
+    int lo = x & (( 1 << 14 ) - 1);
+    int hi = (x >> 20) & 3;
+    if (hi >= 2) hi |= ~1;
+    return (((hi << 14) | lo) << 2) + pos;
+  }
+
+  // word offset, 14 bits at LSend, 2 bits at B21, B20
+  static int wdisp16(intptr_t x, intptr_t off) {
+    intptr_t xx = x - off;
+    assert_signed_word_disp_range(xx, 16);
+    int r =  (xx >> 2) & ((1 << 14) - 1)
+           |  (  ( (xx>>(2+14)) & 3 )  <<  20 );
+    assert( inv_wdisp16(r, off) == x,  "inverse is not inverse");
+    return r;
+  }
+
+
+  // word displacement in low-order nbits bits
+
+  static intptr_t inv_wdisp( int x, intptr_t pos, int nbits ) {
+    int pre_sign_extend = x & (( 1 << nbits ) - 1);
+    int r =  pre_sign_extend >= ( 1 << (nbits-1) )
+       ?   pre_sign_extend | ~(( 1 << nbits ) - 1)
+       :   pre_sign_extend;
+    return (r << 2) + pos;
+  }
+
+  static int wdisp( intptr_t x, intptr_t off, int nbits ) {
+    intptr_t xx = x - off;
+    assert_signed_word_disp_range(xx, nbits);
+    int r =  (xx >> 2) & (( 1 << nbits ) - 1);
+    assert( inv_wdisp( r, off, nbits )  ==  x, "inverse not inverse");
+    return r;
+  }
+
+
+  // Extract the top 32 bits in a 64 bit word
+  static int32_t hi32( int64_t x ) {
+    int32_t r = int32_t( (uint64_t)x >> 32 );
+    return r;
+  }
+
+  // given a sethi instruction, extract the constant, left-justified
+  static int inv_hi22( int x ) {
+    return x << 10;
+  }
+
+  // create an imm22 field, given a 32-bit left-justified constant
+  static int hi22( int x ) {
+    int r = int( juint(x) >> 10 );
+    assert( (r & ~((1 << 22) - 1))  ==  0, "just checkin'");
+    return r;
+  }
+
+  // create a low10 __value__ (not a field) for a given a 32-bit constant
+  static int low10( int x ) {
+    return x & ((1 << 10) - 1);
+  }
+
+  // instruction only in v9
+  static void v9_only() { assert( VM_Version::v9_instructions_work(), "This instruction only works on SPARC V9"); }
+
+  // instruction only in v8
+  static void v8_only() { assert( VM_Version::v8_instructions_work(), "This instruction only works on SPARC V8"); }
+
+  // instruction deprecated in v9
+  static void v9_dep()  { } // do nothing for now
+
+  // some float instructions only exist for single prec. on v8
+  static void v8_s_only(FloatRegisterImpl::Width w)  { if (w != FloatRegisterImpl::S)  v9_only(); }
+
+  // v8 has no CC field
+  static void v8_no_cc(CC cc)  { if (cc)  v9_only(); }
+
+ protected:
+  // Simple delay-slot scheme:
+  // In order to check the programmer, the assembler keeps track of deley slots.
+  // It forbids CTIs in delay slots (conservative, but should be OK).
+  // Also, when putting an instruction into a delay slot, you must say
+  // asm->delayed()->add(...), in order to check that you don't omit
+  // delay-slot instructions.
+  // To implement this, we use a simple FSA
+
+#ifdef ASSERT
+  #define CHECK_DELAY
+#endif
+#ifdef CHECK_DELAY
+  enum Delay_state { no_delay, at_delay_slot, filling_delay_slot } delay_state;
+#endif
+
+ public:
+  // Tells assembler next instruction must NOT be in delay slot.
+  // Use at start of multinstruction macros.
+  void assert_not_delayed() {
+    // This is a separate overloading to avoid creation of string constants
+    // in non-asserted code--with some compilers this pollutes the object code.
+#ifdef CHECK_DELAY
+    assert_not_delayed("next instruction should not be a delay slot");
+#endif
+  }
+  void assert_not_delayed(const char* msg) {
+#ifdef CHECK_DELAY
+    assert_msg ( delay_state == no_delay, msg);
+#endif
+  }
+
+ protected:
+  // Delay slot helpers
+  // cti is called when emitting control-transfer instruction,
+  // BEFORE doing the emitting.
+  // Only effective when assertion-checking is enabled.
+  void cti() {
+#ifdef CHECK_DELAY
+    assert_not_delayed("cti should not be in delay slot");
+#endif
+  }
+
+  // called when emitting cti with a delay slot, AFTER emitting
+  void has_delay_slot() {
+#ifdef CHECK_DELAY
+    assert_not_delayed("just checking");
+    delay_state = at_delay_slot;
+#endif
+  }
+
+public:
+  // Tells assembler you know that next instruction is delayed
+  Assembler* delayed() {
+#ifdef CHECK_DELAY
+    assert ( delay_state == at_delay_slot, "delayed instruction is not in delay slot");
+    delay_state = filling_delay_slot;
+#endif
+    return this;
+  }
+
+  void flush() {
+#ifdef CHECK_DELAY
+    assert ( delay_state == no_delay, "ending code with a delay slot");
+#endif
+    AbstractAssembler::flush();
+  }
+
+  inline void emit_long(int);  // shadows AbstractAssembler::emit_long
+  inline void emit_data(int x) { emit_long(x); }
+  inline void emit_data(int, RelocationHolder const&);
+  inline void emit_data(int, relocInfo::relocType rtype);
+  // helper for above fcns
+  inline void check_delay();
+
+
+ public:
+  // instructions, refer to page numbers in the SPARC Architecture Manual, V9
+
+  // pp 135 (addc was addx in v8)
+
+  inline void add(    Register s1, Register s2, Register d );
+  inline void add(    Register s1, int simm13a, Register d, relocInfo::relocType rtype = relocInfo::none);
+  inline void add(    Register s1, int simm13a, Register d, RelocationHolder const& rspec);
+  inline void add(    const Address&  a,              Register d, int offset = 0);
+
+  void addcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
+  void addcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(add_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void addc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | rs2(s2) ); }
+  void addc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void addccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
+  void addccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(addc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 136
+
+  inline void bpr( RCondition c, bool a, Predict p, Register s1, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void bpr( RCondition c, bool a, Predict p, Register s1, Label& L);
+
+ protected: // use MacroAssembler::br instead
+
+  // pp 138
+
+  inline void fb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void fb( Condition c, bool a, Label& L );
+
+  // pp 141
+
+  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
+
+ public:
+
+  // pp 144
+
+  inline void br( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void br( Condition c, bool a, Label& L );
+
+  // pp 146
+
+  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
+
+  // pp 121 (V8)
+
+  inline void cb( Condition c, bool a, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void cb( Condition c, bool a, Label& L );
+
+  // pp 149
+
+  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
+  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
+
+  // pp 150
+
+  // These instructions compare the contents of s2 with the contents of
+  // memory at address in s1. If the values are equal, the contents of memory
+  // at address s1 is swapped with the data in d. If the values are not equal,
+  // the the contents of memory at s1 is loaded into d, without the swap.
+
+  void casa(  Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casa_op3 ) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
+  void casxa( Register s1, Register s2, Register d, int ia = -1 ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(casxa_op3) | rs1(s1) | (ia == -1  ? immed(true) : imm_asi(ia)) | rs2(s2)); }
+
+  // pp 152
+
+  void udiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | rs2(s2)); }
+  void udiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void sdiv(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | rs2(s2)); }
+  void sdiv(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void udivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
+  void udivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(udiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void sdivcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | rs2(s2)); }
+  void sdivcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sdiv_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 155
+
+  void done()  { v9_only();  cti();  emit_long( op(arith_op) | fcn(0) | op3(done_op3) ); }
+  void retry() { v9_only();  cti();  emit_long( op(arith_op) | fcn(1) | op3(retry_op3) ); }
+
+  // pp 156
+
+  void fadd( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x40 + w) | fs2(s2, w)); }
+  void fsub( FloatRegisterImpl::Width w, FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | fs1(s1, w) | opf(0x44 + w) | fs2(s2, w)); }
+
+  // pp 157
+
+  void fcmp(  FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x50 + w) | fs2(s2, w)); }
+  void fcmpe( FloatRegisterImpl::Width w, CC cc, FloatRegister s1, FloatRegister s2) { v8_no_cc(cc);  emit_long( op(arith_op) | cmpcc(cc) | op3(fpop2_op3) | fs1(s1, w) | opf(0x54 + w) | fs2(s2, w)); }
+
+  // pp 159
+
+  void ftox( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w) | fs2(s, w)); }
+  void ftoi( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xd0 + w) | fs2(s, w)); }
+
+  // pp 160
+
+  void ftof( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | opf(0xc0 + sw + dw*4) | fs2(s, sw)); }
+
+  // pp 161
+
+  void fxtof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x80 + w*4) | fs2(s, w)); }
+  void fitof( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) {             emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0xc0 + w*4) | fs2(s, w)); }
+
+  // pp 162
+
+  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x00 + w) | fs2(s, w)); }
+
+  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(s, w)); }
+
+  // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fnegs is the only instruction available
+  // on v8 to do negation of single, double and quad precision floats.
+
+  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x04 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) |  opf(0x05) | fs2(sd, w)); }
+
+  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { v8_s_only(w);  emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(s, w)); }
+
+  // page 144 sparc v8 architecture (double prec works on v8 if the source and destination registers are the same). fabss is the only instruction available
+  // on v8 to do abs operation on single/double/quad precision floats.
+
+  void fabs( FloatRegisterImpl::Width w, FloatRegister sd ) { if (VM_Version::v9_instructions_work()) emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x08 + w) | fs2(sd, w)); else emit_long( op(arith_op) | fd(sd, w) | op3(fpop1_op3) | opf(0x09) | fs2(sd, w)); }
+
+  // pp 163
+
+  void fmul( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x48 + w)         | fs2(s2, w)); }
+  void fmul( FloatRegisterImpl::Width sw, FloatRegisterImpl::Width dw,  FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, dw) | op3(fpop1_op3) | fs1(s1, sw) | opf(0x60 + sw + dw*4) | fs2(s2, sw)); }
+  void fdiv( FloatRegisterImpl::Width w,                            FloatRegister s1, FloatRegister s2, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w)  | op3(fpop1_op3) | fs1(s1, w)  | opf(0x4c + w)         | fs2(s2, w)); }
+
+  // pp 164
+
+  void fsqrt( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d ) { emit_long( op(arith_op) | fd(d, w) | op3(fpop1_op3) | opf(0x28 + w) | fs2(s, w)); }
+
+  // pp 165
+
+  inline void flush( Register s1, Register s2 );
+  inline void flush( Register s1, int simm13a);
+
+  // pp 167
+
+  void flushw() { v9_only();  emit_long( op(arith_op) | op3(flushw_op3) ); }
+
+  // pp 168
+
+  void illtrap( int const22a) { if (const22a != 0) v9_only();  emit_long( op(branch_op) | u_field(const22a, 21, 0) ); }
+  // v8 unimp == illtrap(0)
+
+  // pp 169
+
+  void impdep1( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep1_op3) | u_field(const19a, 18, 0)); }
+  void impdep2( int id1, int const19a ) { v9_only();  emit_long( op(arith_op) | fcn(id1) | op3(impdep2_op3) | u_field(const19a, 18, 0)); }
+
+  // pp 149 (v8)
+
+  void cpop1( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep1_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
+  void cpop2( int opc, int cr1, int cr2, int crd ) { v8_only();  emit_long( op(arith_op) | fcn(crd) | op3(impdep2_op3) | u_field(cr1, 18, 14) | opf(opc) | u_field(cr2, 4, 0)); }
+
+  // pp 170
+
+  void jmpl( Register s1, Register s2, Register d );
+  void jmpl( Register s1, int simm13a, Register d, RelocationHolder const& rspec = RelocationHolder() );
+
+  inline void jmpl( Address& a, Register d, int offset = 0);
+
+  // 171
+
+  inline void ldf(    FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d );
+  inline void ldf(    FloatRegisterImpl::Width w, Register s1, int simm13a, FloatRegister d );
+
+  inline void ldf(    FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
+
+
+  inline void ldfsr(  Register s1, Register s2 );
+  inline void ldfsr(  Register s1, int simm13a);
+  inline void ldxfsr( Register s1, Register s2 );
+  inline void ldxfsr( Register s1, int simm13a);
+
+  // pp 94 (v8)
+
+  inline void ldc(   Register s1, Register s2, int crd );
+  inline void ldc(   Register s1, int simm13a, int crd);
+  inline void lddc(  Register s1, Register s2, int crd );
+  inline void lddc(  Register s1, int simm13a, int crd);
+  inline void ldcsr( Register s1, Register s2, int crd );
+  inline void ldcsr( Register s1, int simm13a, int crd);
+
+
+  // 173
+
+  void ldfa(  FloatRegisterImpl::Width w, Register s1, Register s2, int ia, FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void ldfa(  FloatRegisterImpl::Width w, Register s1, int simm13a,         FloatRegister d ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(ldf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 175, lduw is ld on v8
+
+  inline void ldsb(  Register s1, Register s2, Register d );
+  inline void ldsb(  Register s1, int simm13a, Register d);
+  inline void ldsh(  Register s1, Register s2, Register d );
+  inline void ldsh(  Register s1, int simm13a, Register d);
+  inline void ldsw(  Register s1, Register s2, Register d );
+  inline void ldsw(  Register s1, int simm13a, Register d);
+  inline void ldub(  Register s1, Register s2, Register d );
+  inline void ldub(  Register s1, int simm13a, Register d);
+  inline void lduh(  Register s1, Register s2, Register d );
+  inline void lduh(  Register s1, int simm13a, Register d);
+  inline void lduw(  Register s1, Register s2, Register d );
+  inline void lduw(  Register s1, int simm13a, Register d);
+  inline void ldx(   Register s1, Register s2, Register d );
+  inline void ldx(   Register s1, int simm13a, Register d);
+  inline void ld(    Register s1, Register s2, Register d );
+  inline void ld(    Register s1, int simm13a, Register d);
+  inline void ldd(   Register s1, Register s2, Register d );
+  inline void ldd(   Register s1, int simm13a, Register d);
+
+  inline void ldsb( const Address& a, Register d, int offset = 0 );
+  inline void ldsh( const Address& a, Register d, int offset = 0 );
+  inline void ldsw( const Address& a, Register d, int offset = 0 );
+  inline void ldub( const Address& a, Register d, int offset = 0 );
+  inline void lduh( const Address& a, Register d, int offset = 0 );
+  inline void lduw( const Address& a, Register d, int offset = 0 );
+  inline void ldx(  const Address& a, Register d, int offset = 0 );
+  inline void ld(   const Address& a, Register d, int offset = 0 );
+  inline void ldd(  const Address& a, Register d, int offset = 0 );
+
+  // pp 177
+
+  void ldsba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void ldsba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void ldsha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void ldsha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldsh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void ldswa(  Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void ldswa(  Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldsw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void lduba(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void lduba(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(ldub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void lduha(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void lduha(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduh_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void lduwa(  Register s1, Register s2, int ia, Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void lduwa(  Register s1, int simm13a,         Register d ) {             emit_long( op(ldst_op) | rd(d) | op3(lduw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void ldxa(   Register s1, Register s2, int ia, Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void ldxa(   Register s1, int simm13a,         Register d ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(ldx_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void ldda(   Register s1, Register s2, int ia, Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void ldda(   Register s1, int simm13a,         Register d ) { v9_dep();   emit_long( op(ldst_op) | rd(d) | op3(ldd_op3  | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 179
+
+  inline void ldstub(  Register s1, Register s2, Register d );
+  inline void ldstub(  Register s1, int simm13a, Register d);
+
+  // pp 180
+
+  void ldstuba( Register s1, Register s2, int ia, Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void ldstuba( Register s1, int simm13a,         Register d ) { emit_long( op(ldst_op) | rd(d) | op3(ldstub_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 181
+
+  void and3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3               ) | rs1(s1) | rs2(s2) ); }
+  void and3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void andcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
+  void andcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(and_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void andn(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | rs2(s2) ); }
+  void andn(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void andncc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
+  void andncc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(andn_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void or3(      Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | rs2(s2) ); }
+  void or3(      Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3               ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void orcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
+  void orcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(or_op3   | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void orn(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | rs2(s2) ); }
+  void orn(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void orncc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
+  void orncc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(orn_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void xor3(     Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | rs2(s2) ); }
+  void xor3(     Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void xorcc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
+  void xorcc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xor_op3  | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void xnor(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | rs2(s2) ); }
+  void xnor(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void xnorcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
+  void xnorcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(xnor_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 183
+
+  void membar( Membar_mask_bits const7a ) { v9_only(); emit_long( op(arith_op) | op3(membar_op3) | rs1(O7) | immed(true) | u_field( int(const7a), 6, 0)); }
+
+  // pp 185
+
+  void fmov( FloatRegisterImpl::Width w, Condition c,  bool floatCC, CC cca, FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | cond_mov(c) | opf_cc(cca, floatCC) | opf_low6(w) | fs2(s2, w)); }
+
+  // pp 189
+
+  void fmov( FloatRegisterImpl::Width w, RCondition c, Register s1,  FloatRegister s2, FloatRegister d ) { v9_only();  emit_long( op(arith_op) | fd(d, w) | op3(fpop2_op3) | rs1(s1) | rcond(c) | opf_low5(4 + w) | fs2(s2, w)); }
+
+  // pp 191
+
+  void movcc( Condition c, bool floatCC, CC cca, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | rs2(s2) ); }
+  void movcc( Condition c, bool floatCC, CC cca, int simm11a, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movcc_op3) | mov_cc(cca, floatCC) | cond_mov(c) | immed(true) | simm(simm11a, 11) ); }
+
+  // pp 195
+
+  void movr( RCondition c, Register s1, Register s2,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | rs2(s2) ); }
+  void movr( RCondition c, Register s1, int simm10a,  Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(movr_op3) | rs1(s1) | rcond(c) | immed(true) | simm(simm10a, 10) ); }
+
+  // pp 196
+
+  void mulx(  Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | rs2(s2) ); }
+  void mulx(  Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(mulx_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void sdivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | rs2(s2) ); }
+  void sdivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(sdivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void udivx( Register s1, Register s2, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | rs2(s2) ); }
+  void udivx( Register s1, int simm13a, Register d ) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(udivx_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 197
+
+  void umul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | rs2(s2) ); }
+  void umul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void smul(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | rs2(s2) ); }
+  void smul(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void umulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
+  void umulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(umul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void smulcc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
+  void smulcc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(smul_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 199
+
+  void mulscc(   Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | rs2(s2) ); }
+  void mulscc(   Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(mulscc_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 201
+
+  void nop() { emit_long( op(branch_op) | op2(sethi_op2) ); }
+
+
+  // pp 202
+
+  void popc( Register s,  Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | rs2(s)); }
+  void popc( int simm13a, Register d) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(popc_op3) | immed(true) | simm(simm13a, 13)); }
+
+  // pp 203
+
+  void prefetch(   Register s1, Register s2,         PrefetchFcn f);
+  void prefetch(   Register s1, int simm13a,         PrefetchFcn f);
+  void prefetcha(  Register s1, Register s2, int ia, PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void prefetcha(  Register s1, int simm13a,         PrefetchFcn f ) { v9_only();  emit_long( op(ldst_op) | fcn(f) | op3(prefetch_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
+
+  // pp 208
+
+  // not implementing read privileged register
+
+  inline void rdy(    Register d) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(0, 18, 14)); }
+  inline void rdccr(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(2, 18, 14)); }
+  inline void rdasi(  Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(3, 18, 14)); }
+  inline void rdtick( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(4, 18, 14)); } // Spoon!
+  inline void rdpc(   Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(5, 18, 14)); }
+  inline void rdfprs( Register d) { v9_only(); emit_long( op(arith_op) | rd(d) | op3(rdreg_op3) | u_field(6, 18, 14)); }
+
+  // pp 213
+
+  inline void rett( Register s1, Register s2);
+  inline void rett( Register s1, int simm13a, relocInfo::relocType rt = relocInfo::none);
+
+  // pp 214
+
+  void save(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | rs2(s2) ); }
+  void save(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(save_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  void restore( Register s1 = G0,  Register s2 = G0, Register d = G0 ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | rs2(s2) ); }
+  void restore( Register s1,       int simm13a,      Register d      ) { emit_long( op(arith_op) | rd(d) | op3(restore_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 216
+
+  void saved()    { v9_only();  emit_long( op(arith_op) | fcn(0) | op3(saved_op3)); }
+  void restored() { v9_only();  emit_long( op(arith_op) | fcn(1) | op3(saved_op3)); }
+
+  // pp 217
+
+  inline void sethi( int imm22a, Register d, RelocationHolder const& rspec = RelocationHolder() );
+  // pp 218
+
+  void sll(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
+  void sll(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
+  void srl(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
+  void srl(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
+  void sra(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | rs2(s2) ); }
+  void sra(  Register s1, int imm5a,   Register d ) { emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(0) | immed(true) | u_field(imm5a, 4, 0) ); }
+
+  void sllx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
+  void sllx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sll_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
+  void srlx( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
+  void srlx( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(srl_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
+  void srax( Register s1, Register s2, Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | rs2(s2) ); }
+  void srax( Register s1, int imm6a,   Register d ) { v9_only();  emit_long( op(arith_op) | rd(d) | op3(sra_op3) | rs1(s1) | sx(1) | immed(true) | u_field(imm6a, 5, 0) ); }
+
+  // pp 220
+
+  void sir( int simm13a ) { emit_long( op(arith_op) | fcn(15) | op3(sir_op3) | immed(true) | simm(simm13a, 13)); }
+
+  // pp 221
+
+  void stbar() { emit_long( op(arith_op) | op3(membar_op3) | u_field(15, 18, 14)); }
+
+  // pp 222
+
+  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2 );
+  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a);
+  inline void stf(    FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
+
+  inline void stfsr(  Register s1, Register s2 );
+  inline void stfsr(  Register s1, int simm13a);
+  inline void stxfsr( Register s1, Register s2 );
+  inline void stxfsr( Register s1, int simm13a);
+
+  //  pp 224
+
+  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void stfa(  FloatRegisterImpl::Width w, FloatRegister d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | fd(d, w) | alt_op3(stf_op3 | alt_bit_op3, w) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // p 226
+
+  inline void stb(  Register d, Register s1, Register s2 );
+  inline void stb(  Register d, Register s1, int simm13a);
+  inline void sth(  Register d, Register s1, Register s2 );
+  inline void sth(  Register d, Register s1, int simm13a);
+  inline void stw(  Register d, Register s1, Register s2 );
+  inline void stw(  Register d, Register s1, int simm13a);
+  inline void st(   Register d, Register s1, Register s2 );
+  inline void st(   Register d, Register s1, int simm13a);
+  inline void stx(  Register d, Register s1, Register s2 );
+  inline void stx(  Register d, Register s1, int simm13a);
+  inline void std(  Register d, Register s1, Register s2 );
+  inline void std(  Register d, Register s1, int simm13a);
+
+  inline void stb(  Register d, const Address& a, int offset = 0 );
+  inline void sth(  Register d, const Address& a, int offset = 0 );
+  inline void stw(  Register d, const Address& a, int offset = 0 );
+  inline void stx(  Register d, const Address& a, int offset = 0 );
+  inline void st(   Register d, const Address& a, int offset = 0 );
+  inline void std(  Register d, const Address& a, int offset = 0 );
+
+  // pp 177
+
+  void stba(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void stba(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stb_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void stha(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void stha(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(sth_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void stwa(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void stwa(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(stw_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void stxa(  Register d, Register s1, Register s2, int ia ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void stxa(  Register d, Register s1, int simm13a         ) { v9_only();  emit_long( op(ldst_op) | rd(d) | op3(stx_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void stda(  Register d, Register s1, Register s2, int ia ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void stda(  Register d, Register s1, int simm13a         ) {             emit_long( op(ldst_op) | rd(d) | op3(std_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 97 (v8)
+
+  inline void stc(   int crd, Register s1, Register s2 );
+  inline void stc(   int crd, Register s1, int simm13a);
+  inline void stdc(  int crd, Register s1, Register s2 );
+  inline void stdc(  int crd, Register s1, int simm13a);
+  inline void stcsr( int crd, Register s1, Register s2 );
+  inline void stcsr( int crd, Register s1, int simm13a);
+  inline void stdcq( int crd, Register s1, Register s2 );
+  inline void stdcq( int crd, Register s1, int simm13a);
+
+  // pp 230
+
+  void sub(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | rs2(s2) ); }
+  void sub(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3              ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void subcc(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | rs2(s2) ); }
+  void subcc(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(sub_op3 | cc_bit_op3 ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void subc(   Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | rs2(s2) ); }
+  void subc(   Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3             ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void subccc( Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | rs2(s2) ); }
+  void subccc( Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(subc_op3 | cc_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 231
+
+  inline void swap( Register s1, Register s2, Register d );
+  inline void swap( Register s1, int simm13a, Register d);
+  inline void swap( Address& a,               Register d, int offset = 0 );
+
+  // pp 232
+
+  void swapa(   Register s1, Register s2, int ia, Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | imm_asi(ia) | rs2(s2) ); }
+  void swapa(   Register s1, int simm13a,         Register d ) { v9_dep();  emit_long( op(ldst_op) | rd(d) | op3(swap_op3 | alt_bit_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 234, note op in book is wrong, see pp 268
+
+  void taddcc(    Register s1, Register s2, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | rs2(s2) ); }
+  void taddcc(    Register s1, int simm13a, Register d ) {            emit_long( op(arith_op) | rd(d) | op3(taddcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void taddcctv(  Register s1, Register s2, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | rs2(s2) ); }
+  void taddcctv(  Register s1, int simm13a, Register d ) { v9_dep();  emit_long( op(arith_op) | rd(d) | op3(taddcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 235
+
+  void tsubcc(    Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | rs2(s2) ); }
+  void tsubcc(    Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcc_op3  ) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+  void tsubcctv(  Register s1, Register s2, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | rs2(s2) ); }
+  void tsubcctv(  Register s1, int simm13a, Register d ) { emit_long( op(arith_op) | rd(d) | op3(tsubcctv_op3) | rs1(s1) | immed(true) | simm(simm13a, 13) ); }
+
+  // pp 237
+
+  void trap( Condition c, CC cc, Register s1, Register s2 ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | rs2(s2)); }
+  void trap( Condition c, CC cc, Register s1, int trapa   ) { v8_no_cc(cc);  emit_long( op(arith_op) | cond(c) | op3(trap_op3) | rs1(s1) | trapcc(cc) | immed(true) | u_field(trapa, 6, 0)); }
+  // simple uncond. trap
+  void trap( int trapa ) { trap( always, icc, G0, trapa ); }
+
+  // pp 239 omit write priv register for now
+
+  inline void wry(    Register d) { v9_dep();  emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(0, 29, 25)); }
+  inline void wrccr(Register s) { v9_only(); emit_long( op(arith_op) | rs1(s) | op3(wrreg_op3) | u_field(2, 29, 25)); }
+  inline void wrccr(Register s, int simm13a) { v9_only(); emit_long( op(arith_op) |
+                                                                           rs1(s) |
+                                                                           op3(wrreg_op3) |
+                                                                           u_field(2, 29, 25) |
+                                                                           u_field(1, 13, 13) |
+                                                                           simm(simm13a, 13)); }
+  inline void wrasi(  Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(3, 29, 25)); }
+  inline void wrfprs( Register d) { v9_only(); emit_long( op(arith_op) | rs1(d) | op3(wrreg_op3) | u_field(6, 29, 25)); }
+
+
+  // Creation
+  Assembler(CodeBuffer* code) : AbstractAssembler(code) {
+#ifdef CHECK_DELAY
+    delay_state = no_delay;
+#endif
+  }
+
+  // Testing
+#ifndef PRODUCT
+  void test_v9();
+  void test_v8_onlys();
+#endif
+};
+
+
+class RegistersForDebugging : public StackObj {
+ public:
+  intptr_t i[8], l[8], o[8], g[8];
+  float    f[32];
+  double   d[32];
+
+  void print(outputStream* s);
+
+  static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
+  static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
+  static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
+  static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
+  static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
+  static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
+
+  // gen asm code to save regs
+  static void save_registers(MacroAssembler* a);
+
+  // restore global registers in case C code disturbed them
+  static void restore_registers(MacroAssembler* a, Register r);
+};
+
+
+// MacroAssembler extends Assembler by a few frequently used macros.
+//
+// Most of the standard SPARC synthetic ops are defined here.
+// Instructions for which a 'better' code sequence exists depending
+// on arguments should also go in here.
+
+#define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
+#define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
+#define JUMP(a, off)     jump(a, off, __FILE__, __LINE__)
+#define JUMPL(a, d, off) jumpl(a, d, off, __FILE__, __LINE__)
+
+
+class MacroAssembler: public Assembler {
+ protected:
+  // Support for VM calls
+  // This is the base routine called by the different versions of call_VM_leaf. The interpreter
+  // may customize this version by overriding it for its purposes (e.g., to save/restore
+  // additional registers when doing a VM call).
+#ifdef CC_INTERP
+  #define VIRTUAL
+#else
+  #define VIRTUAL virtual
+#endif
+
+  VIRTUAL void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
+
+  //
+  // It is imperative that all calls into the VM are handled via the call_VM macros.
+  // They make sure that the stack linkage is setup correctly. call_VM's correspond
+  // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
+  //
+  // This is the base routine called by the different versions of call_VM. The interpreter
+  // may customize this version by overriding it for its purposes (e.g., to save/restore
+  // additional registers when doing a VM call).
+  //
+  // A non-volatile java_thread_cache register should be specified so
+  // that the G2_thread value can be preserved across the call.
+  // (If java_thread_cache is noreg, then a slow get_thread call
+  // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
+  // thread.
+  //
+  // If no last_java_sp is specified (noreg) than SP will be used instead.
+
+  virtual void call_VM_base(
+    Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
+    Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
+    Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
+    address         entry_point,            // the entry point
+    int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
+    bool            check_exception=true    // flag which indicates if exception should be checked
+  );
+
+  // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
+  // The implementation is only non-empty for the InterpreterMacroAssembler,
+  // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
+  virtual void check_and_handle_popframe(Register scratch_reg);
+  virtual void check_and_handle_earlyret(Register scratch_reg);
+
+ public:
+  MacroAssembler(CodeBuffer* code) : Assembler(code) {}
+
+  // Support for NULL-checks
+  //
+  // Generates code that causes a NULL OS exception if the content of reg is NULL.
+  // If the accessed location is M[reg + offset] and the offset is known, provide the
+  // offset.  No explicit code generation is needed if the offset is within a certain
+  // range (0 <= offset <= page_size).
+  //
+  // %%%%%% Currently not done for SPARC
+
+  void null_check(Register reg, int offset = -1);
+  static bool needs_explicit_null_check(intptr_t offset);
+
+  // support for delayed instructions
+  MacroAssembler* delayed() { Assembler::delayed();  return this; }
+
+  // branches that use right instruction for v8 vs. v9
+  inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void br( Condition c, bool a, Predict p, Label& L );
+  inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void fb( Condition c, bool a, Predict p, Label& L );
+
+  // compares register with zero and branches (V9 and V8 instructions)
+  void br_zero( Condition c, bool a, Predict p, Register s1, Label& L);
+  // Compares a pointer register with zero and branches on (not)null.
+  // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
+  void br_null   ( Register s1, bool a, Predict p, Label& L );
+  void br_notnull( Register s1, bool a, Predict p, Label& L );
+
+  inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
+
+  // Branch that tests xcc in LP64 and icc in !LP64
+  inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void brx( Condition c, bool a, Predict p, Label& L );
+
+  // unconditional short branch
+  inline void ba( bool a, Label& L );
+
+  // Branch that tests fp condition codes
+  inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
+  inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
+
+  // get PC the best way
+  inline int get_pc( Register d );
+
+  // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
+  inline void cmp(  Register s1, Register s2 ) { subcc( s1, s2, G0 ); }
+  inline void cmp(  Register s1, int simm13a ) { subcc( s1, simm13a, G0 ); }
+
+  inline void jmp( Register s1, Register s2 );
+  inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
+
+  inline void call( address d,  relocInfo::relocType rt = relocInfo::runtime_call_type );
+  inline void call( Label& L,   relocInfo::relocType rt = relocInfo::runtime_call_type );
+  inline void callr( Register s1, Register s2 );
+  inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
+
+  // Emits nothing on V8
+  inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
+  inline void iprefetch( Label& L);
+
+  inline void tst( Register s ) { orcc( G0, s, G0 ); }
+
+#ifdef PRODUCT
+  inline void ret(  bool trace = TraceJumps )   { if (trace) {
+                                                    mov(I7, O7); // traceable register
+                                                    JMP(O7, 2 * BytesPerInstWord);
+                                                  } else {
+                                                    jmpl( I7, 2 * BytesPerInstWord, G0 );
+                                                  }
+                                                }
+
+  inline void retl( bool trace = TraceJumps )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
+                                                 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
+#else
+  void ret(  bool trace = TraceJumps );
+  void retl( bool trace = TraceJumps );
+#endif /* PRODUCT */
+
+  // Required platform-specific helpers for Label::patch_instructions.
+  // They _shadow_ the declarations in AbstractAssembler, which are undefined.
+  void pd_patch_instruction(address branch, address target);
+#ifndef PRODUCT
+  static void pd_print_patched_instruction(address branch);
+#endif
+
+  // sethi Macro handles optimizations and relocations
+  void sethi( Address& a, bool ForceRelocatable = false );
+  void sethi( intptr_t imm22a, Register d, bool ForceRelocatable = false, RelocationHolder const& rspec = RelocationHolder());
+
+  // compute the size of a sethi/set
+  static int  size_of_sethi( address a, bool worst_case = false );
+  static int  worst_case_size_of_set();
+
+  // set may be either setsw or setuw (high 32 bits may be zero or sign)
+  void set(    intptr_t value, Register d, RelocationHolder const& rspec = RelocationHolder() );
+  void setsw(  int value, Register d, RelocationHolder const& rspec = RelocationHolder() );
+  void set64(  jlong value, Register d, Register tmp);
+
+  // sign-extend 32 to 64
+  inline void signx( Register s, Register d ) { sra( s, G0, d); }
+  inline void signx( Register d )             { sra( d, G0, d); }
+
+  inline void not1( Register s, Register d ) { xnor( s, G0, d ); }
+  inline void not1( Register d )             { xnor( d, G0, d ); }
+
+  inline void neg( Register s, Register d ) { sub( G0, s, d ); }
+  inline void neg( Register d )             { sub( G0, d, d ); }
+
+  inline void cas(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY); }
+  inline void casx( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY); }
+  // Functions for isolating 64 bit atomic swaps for LP64
+  // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
+  inline void cas_ptr(  Register s1, Register s2, Register d) {
+#ifdef _LP64
+    casx( s1, s2, d );
+#else
+    cas( s1, s2, d );
+#endif
+  }
+
+  // Functions for isolating 64 bit shifts for LP64
+  inline void sll_ptr( Register s1, Register s2, Register d );
+  inline void sll_ptr( Register s1, int imm6a,   Register d );
+  inline void srl_ptr( Register s1, Register s2, Register d );
+  inline void srl_ptr( Register s1, int imm6a,   Register d );
+
+  // little-endian
+  inline void casl(  Register s1, Register s2, Register d) { casa( s1, s2, d, ASI_PRIMARY_LITTLE); }
+  inline void casxl( Register s1, Register s2, Register d) { casxa(s1, s2, d, ASI_PRIMARY_LITTLE); }
+
+  inline void inc(   Register d,  int const13 = 1 ) { add(   d, const13, d); }
+  inline void inccc( Register d,  int const13 = 1 ) { addcc( d, const13, d); }
+
+  inline void dec(   Register d,  int const13 = 1 ) { sub(   d, const13, d); }
+  inline void deccc( Register d,  int const13 = 1 ) { subcc( d, const13, d); }
+
+  inline void btst( Register s1,  Register s2 ) { andcc( s1, s2, G0 ); }
+  inline void btst( int simm13a,  Register s )  { andcc( s,  simm13a, G0 ); }
+
+  inline void bset( Register s1,  Register s2 ) { or3( s1, s2, s2 ); }
+  inline void bset( int simm13a,  Register s )  { or3( s,  simm13a, s ); }
+
+  inline void bclr( Register s1,  Register s2 ) { andn( s1, s2, s2 ); }
+  inline void bclr( int simm13a,  Register s )  { andn( s,  simm13a, s ); }
+
+  inline void btog( Register s1,  Register s2 ) { xor3( s1, s2, s2 ); }
+  inline void btog( int simm13a,  Register s )  { xor3( s,  simm13a, s ); }
+
+  inline void clr( Register d ) { or3( G0, G0, d ); }
+
+  inline void clrb( Register s1, Register s2);
+  inline void clrh( Register s1, Register s2);
+  inline void clr(  Register s1, Register s2);
+  inline void clrx( Register s1, Register s2);
+
+  inline void clrb( Register s1, int simm13a);
+  inline void clrh( Register s1, int simm13a);
+  inline void clr(  Register s1, int simm13a);
+  inline void clrx( Register s1, int simm13a);
+
+  // copy & clear upper word
+  inline void clruw( Register s, Register d ) { srl( s, G0, d); }
+  // clear upper word
+  inline void clruwu( Register d ) { srl( d, G0, d); }
+
+  // membar psuedo instruction.  takes into account target memory model.
+  inline void membar( Assembler::Membar_mask_bits const7a );
+
+  // returns if membar generates anything.
+  inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
+
+  // mov pseudo instructions
+  inline void mov( Register s,  Register d) {
+    if ( s != d )    or3( G0, s, d);
+    else             assert_not_delayed();  // Put something useful in the delay slot!
+  }
+
+  inline void mov_or_nop( Register s,  Register d) {
+    if ( s != d )    or3( G0, s, d);
+    else             nop();
+  }
+
+  inline void mov( int simm13a, Register d) { or3( G0, simm13a, d); }
+
+  // address pseudos: make these names unlike instruction names to avoid confusion
+  inline void split_disp(    Address& a, Register temp );
+  inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
+  inline void load_address(  Address& a, int offset = 0 );
+  inline void load_contents( Address& a, Register d, int offset = 0 );
+  inline void load_ptr_contents( Address& a, Register d, int offset = 0 );
+  inline void store_contents( Register s, Address& a, int offset = 0 );
+  inline void store_ptr_contents( Register s, Address& a, int offset = 0 );
+  inline void jumpl_to( Address& a, Register d, int offset = 0 );
+  inline void jump_to(  Address& a,             int offset = 0 );
+
+  // ring buffer traceable jumps
+
+  void jmp2( Register r1, Register r2, const char* file, int line );
+  void jmp ( Register r1, int offset,  const char* file, int line );
+
+  void jumpl( Address& a, Register d, int offset, const char* file, int line );
+  void jump ( Address& a,             int offset, const char* file, int line );
+
+
+  // argument pseudos:
+
+  inline void load_argument( Argument& a, Register  d );
+  inline void store_argument( Register s, Argument& a );
+  inline void store_ptr_argument( Register s, Argument& a );
+  inline void store_float_argument( FloatRegister s, Argument& a );
+  inline void store_double_argument( FloatRegister s, Argument& a );
+  inline void store_long_argument( Register s, Argument& a );
+
+  // handy macros:
+
+  inline void round_to( Register r, int modulus ) {
+    assert_not_delayed();
+    inc( r, modulus - 1 );
+    and3( r, -modulus, r );
+  }
+
+  // --------------------------------------------------
+
+  // Functions for isolating 64 bit loads for LP64
+  // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
+  // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
+  inline void ld_ptr(   Register s1, Register s2, Register d );
+  inline void ld_ptr(   Register s1, int simm13a, Register d);
+  inline void ld_ptr(  const Address& a, Register d, int offset = 0 );
+  inline void st_ptr(  Register d, Register s1, Register s2 );
+  inline void st_ptr(  Register d, Register s1, int simm13a);
+  inline void st_ptr(  Register d, const Address& a, int offset = 0 );
+
+  // ld_long will perform ld for 32 bit VM's and ldx for 64 bit VM's
+  // st_long will perform st for 32 bit VM's and stx for 64 bit VM's
+  inline void ld_long( Register s1, Register s2, Register d );
+  inline void ld_long( Register s1, int simm13a, Register d );
+  inline void ld_long( const Address& a, Register d, int offset = 0 );
+  inline void st_long( Register d, Register s1, Register s2 );
+  inline void st_long( Register d, Register s1, int simm13a );
+  inline void st_long( Register d, const Address& a, int offset = 0 );
+
+  // --------------------------------------------------
+
+ public:
+  // traps as per trap.h (SPARC ABI?)
+
+  void breakpoint_trap();
+  void breakpoint_trap(Condition c, CC cc = icc);
+  void flush_windows_trap();
+  void clean_windows_trap();
+  void get_psr_trap();
+  void set_psr_trap();
+
+  // V8/V9 flush_windows
+  void flush_windows();
+
+  // Support for serializing memory accesses between threads
+  void serialize_memory(Register thread, Register tmp1, Register tmp2);
+
+  // Stack frame creation/removal
+  void enter();
+  void leave();
+
+  // V8/V9 integer multiply
+  void mult(Register s1, Register s2, Register d);
+  void mult(Register s1, int simm13a, Register d);
+
+  // V8/V9 read and write of condition codes.
+  void read_ccr(Register d);
+  void write_ccr(Register s);
+
+  // Manipulation of C++ bools
+  // These are idioms to flag the need for care with accessing bools but on
+  // this platform we assume byte size
+
+  inline void stbool( Register d, const Address& a, int offset = 0 ) { stb(d, a, offset); }
+  inline void ldbool( const Address& a, Register d, int offset = 0 ) { ldsb( a, d, offset ); }
+  inline void tstbool( Register s ) { tst(s); }
+  inline void movbool( bool boolconst, Register d) { mov( (int) boolconst, d); }
+
+  // Support for managing the JavaThread pointer (i.e.; the reference to
+  // thread-local information).
+  void get_thread();                                // load G2_thread
+  void verify_thread();                             // verify G2_thread contents
+  void save_thread   (const Register threache); // save to cache
+  void restore_thread(const Register thread_cache); // restore from cache
+
+  // Support for last Java frame (but use call_VM instead where possible)
+  void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
+  void reset_last_Java_frame(void);
+
+  // Call into the VM.
+  // Passes the thread pointer (in O0) as a prepended argument.
+  // Makes sure oop return values are visible to the GC.
+  void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
+  void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
+  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
+  void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
+
+  // these overloadings are not presently used on SPARC:
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
+  void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
+
+  void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
+  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
+  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
+  void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
+
+  void get_vm_result  (Register oop_result);
+  void get_vm_result_2(Register oop_result);
+
+  // vm result is currently getting hijacked to for oop preservation
+  void set_vm_result(Register oop_result);
+
+  // if call_VM_base was called with check_exceptions=false, then call
+  // check_and_forward_exception to handle exceptions when it is safe
+  void check_and_forward_exception(Register scratch_reg);
+
+ private:
+  // For V8
+  void read_ccr_trap(Register ccr_save);
+  void write_ccr_trap(Register ccr_save1, Register scratch1, Register scratch2);
+
+#ifdef ASSERT
+  // For V8 debugging.  Uses V8 instruction sequence and checks
+  // result with V9 insturctions rdccr and wrccr.
+  // Uses Gscatch and Gscatch2
+  void read_ccr_v8_assert(Register ccr_save);
+  void write_ccr_v8_assert(Register ccr_save);
+#endif // ASSERT
+
+ public:
+  // Stores
+  void store_check(Register tmp, Register obj);                // store check for obj - register is destroyed afterwards
+  void store_check(Register tmp, Register obj, Register offset); // store check for obj - register is destroyed afterwards
+
+  // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
+  void push_fTOS();
+
+  // pops double TOS element from CPU stack and pushes on FPU stack
+  void pop_fTOS();
+
+  void empty_FPU_stack();
+
+  void push_IU_state();
+  void pop_IU_state();
+
+  void push_FPU_state();
+  void pop_FPU_state();
+
+  void push_CPU_state();
+  void pop_CPU_state();
+
+  // Debugging
+  void _verify_oop(Register reg, const char * msg, const char * file, int line);
+  void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
+
+#define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
+#define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
+
+        // only if +VerifyOops
+  void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
+        // only if +VerifyFPU
+  void stop(const char* msg);                          // prints msg, dumps registers and stops execution
+  void warn(const char* msg);                          // prints msg, but don't stop
+  void untested(const char* what = "");
+  void unimplemented(const char* what = "")              { char* b = new char[1024];  sprintf(b, "unimplemented: %s", what);  stop(b); }
+  void should_not_reach_here()                   { stop("should not reach here"); }
+  void print_CPU_state();
+
+  // oops in code
+  Address allocate_oop_address( jobject obj, Register d ); // allocate_index
+  Address constant_oop_address( jobject obj, Register d ); // find_index
+  inline void set_oop         ( jobject obj, Register d ); // uses allocate_oop_address
+  inline void set_oop_constant( jobject obj, Register d ); // uses constant_oop_address
+  inline void set_oop         ( Address obj_addr );        // same as load_address
+
+  // nop padding
+  void align(int modulus);
+
+  // declare a safepoint
+  void safepoint();
+
+  // factor out part of stop into subroutine to save space
+  void stop_subroutine();
+  // factor out part of verify_oop into subroutine to save space
+  void verify_oop_subroutine();
+
+  // side-door communication with signalHandler in os_solaris.cpp
+  static address _verify_oop_implicit_branch[3];
+
+#ifndef PRODUCT
+  static void test();
+#endif
+
+  // convert an incoming arglist to varargs format; put the pointer in d
+  void set_varargs( Argument a, Register d );
+
+  int total_frame_size_in_bytes(int extraWords);
+
+  // used when extraWords known statically
+  void save_frame(int extraWords);
+  void save_frame_c1(int size_in_bytes);
+  // make a frame, and simultaneously pass up one or two register value
+  // into the new register window
+  void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
+
+  // give no. (outgoing) params, calc # of words will need on frame
+  void calc_mem_param_words(Register Rparam_words, Register Rresult);
+
+  // used to calculate frame size dynamically
+  // result is in bytes and must be negated for save inst
+  void calc_frame_size(Register extraWords, Register resultReg);
+
+  // calc and also save
+  void calc_frame_size_and_save(Register extraWords, Register resultReg);
+
+  static void debug(char* msg, RegistersForDebugging* outWindow);
+
+  // implementations of bytecodes used by both interpreter and compiler
+
+  void lcmp( Register Ra_hi, Register Ra_low,
+             Register Rb_hi, Register Rb_low,
+             Register Rresult);
+
+  void lneg( Register Rhi, Register Rlow );
+
+  void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
+              Register Rout_high, Register Rout_low, Register Rtemp );
+
+  void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
+              Register Rout_high, Register Rout_low, Register Rtemp );
+
+  void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
+              Register Rout_high, Register Rout_low, Register Rtemp );
+
+#ifdef _LP64
+  void lcmp( Register Ra, Register Rb, Register Rresult);
+#endif
+
+  void float_cmp( bool is_float, int unordered_result,
+                  FloatRegister Fa, FloatRegister Fb,
+                  Register Rresult);
+
+  void fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
+  void fneg( FloatRegisterImpl::Width w, FloatRegister sd ) { Assembler::fneg(w, sd); }
+  void fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
+  void fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d);
+
+  void save_all_globals_into_locals();
+  void restore_globals_from_locals();
+
+  void casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
+    address lock_addr=0, bool use_call_vm=false);
+  void cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg,
+    address lock_addr=0, bool use_call_vm=false);
+  void casn (Register addr_reg, Register cmp_reg, Register set_reg) ;
+
+  // These set the icc condition code to equal if the lock succeeded
+  // and notEqual if it failed and requires a slow case
+  void compiler_lock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch,
+                              BiasedLockingCounters* counters = NULL);
+  void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox, Register Rscratch);
+
+  // Biased locking support
+  // Upon entry, lock_reg must point to the lock record on the stack,
+  // obj_reg must contain the target object, and mark_reg must contain
+  // the target object's header.
+  // Destroys mark_reg if an attempt is made to bias an anonymously
+  // biased lock. In this case a failure will go either to the slow
+  // case or fall through with the notEqual condition code set with
+  // the expectation that the slow case in the runtime will be called.
+  // In the fall-through case where the CAS-based lock is done,
+  // mark_reg is not destroyed.
+  void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
+                            Label& done, Label* slow_case = NULL,
+                            BiasedLockingCounters* counters = NULL);
+  // Upon entry, the base register of mark_addr must contain the oop.
+  // Destroys temp_reg.
+
+  // If allow_delay_slot_filling is set to true, the next instruction
+  // emitted after this one will go in an annulled delay slot if the
+  // biased locking exit case failed.
+  void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
+
+  // allocation
+  void eden_allocate(
+    Register obj,                      // result: pointer to object after successful allocation
+    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
+    int      con_size_in_bytes,        // object size in bytes if   known at compile time
+    Register t1,                       // temp register
+    Register t2,                       // temp register
+    Label&   slow_case                 // continuation point if fast allocation fails
+  );
+  void tlab_allocate(
+    Register obj,                      // result: pointer to object after successful allocation
+    Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
+    int      con_size_in_bytes,        // object size in bytes if   known at compile time
+    Register t1,                       // temp register
+    Label&   slow_case                 // continuation point if fast allocation fails
+  );
+  void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
+
+  // Stack overflow checking
+
+  // Note: this clobbers G3_scratch
+  void bang_stack_with_offset(int offset) {
+    // stack grows down, caller passes positive offset
+    assert(offset > 0, "must bang with negative offset");
+    set((-offset)+STACK_BIAS, G3_scratch);
+    st(G0, SP, G3_scratch);
+  }
+
+  // Writes to stack successive pages until offset reached to check for
+  // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
+  void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
+
+  void verify_tlab();
+
+  Condition negate_condition(Condition cond);
+
+  // Helper functions for statistics gathering.
+  // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
+  void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
+  // Unconditional increment.
+  void inc_counter(address counter_addr, Register Rtemp1, Register Rtemp2);
+
+#undef VIRTUAL
+
+};
+
+/**
+ * class SkipIfEqual:
+ *
+ * Instantiating this class will result in assembly code being output that will
+ * jump around any code emitted between the creation of the instance and it's
+ * automatic destruction at the end of a scope block, depending on the value of
+ * the flag passed to the constructor, which will be checked at run-time.
+ */
+class SkipIfEqual : public StackObj {
+ private:
+  MacroAssembler* _masm;
+  Label _label;
+
+ public:
+   // 'temp' is a temp register that this object can use (and trash)
+   SkipIfEqual(MacroAssembler*, Register temp,
+               const bool* flag_addr, Assembler::Condition condition);
+   ~SkipIfEqual();
+};
+
+#ifdef ASSERT
+// On RISC, there's no benefit to verifying instruction boundaries.
+inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
+#endif