hotspot/src/cpu/arm/vm/nativeInst_arm_64.hpp
changeset 42664 29142a56c193
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/arm/vm/nativeInst_arm_64.hpp	Mon Dec 19 12:39:01 2016 -0500
@@ -0,0 +1,772 @@
+/*
+ * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef CPU_ARM_VM_NATIVEINST_ARM_64_HPP
+#define CPU_ARM_VM_NATIVEINST_ARM_64_HPP
+
+#include "asm/macroAssembler.hpp"
+#include "code/codeCache.hpp"
+#include "memory/allocation.hpp"
+#include "runtime/icache.hpp"
+#include "runtime/os.hpp"
+
+// -------------------------------------------------------------------
+
+// Some experimental projects extend the ARM back-end by implementing
+// what the front-end usually assumes is a single native instruction
+// with a sequence of instructions.
+//
+// The 'Raw' variants are the low level initial code (usually one
+// instruction wide but some of them were already composed
+// instructions). They should be used only by the back-end.
+//
+// The non-raw classes are the front-end entry point, hiding potential
+// back-end extensions or the actual instructions size.
+class NativeInstruction;
+
+class RawNativeInstruction VALUE_OBJ_CLASS_SPEC {
+ public:
+
+  enum ARM_specific {
+    instruction_size = Assembler::InstructionSize,
+    instruction_size_in_bits = instruction_size * BitsPerByte,
+  };
+
+  // illegal instruction used by NativeJump::patch_verified_entry
+  static const int zombie_illegal_instruction = 0xd4000542; // hvc #42
+
+  address addr_at(int offset)        const { return (address)this + offset; }
+  address instruction_address()      const { return addr_at(0); }
+  address next_raw_instruction_address() const { return addr_at(instruction_size); }
+
+  static RawNativeInstruction* at(address address) {
+    return (RawNativeInstruction*)address;
+  }
+
+  RawNativeInstruction* next_raw() const {
+    return at(next_raw_instruction_address());
+  }
+
+  int encoding() const {
+    return *(int*)this;
+  }
+
+  void set_encoding(int value) {
+    int old = encoding();
+    if (old != value) {
+      *(int*)this = value;
+      ICache::invalidate_word((address)this);
+    }
+  }
+
+  bool is_nop()                      const { return encoding() == (int)0xd503201f; }
+  bool is_b()                        const { return (encoding() & 0xfc000000) == 0x14000000; } // unconditional branch
+  bool is_b_cond()                   const { return (encoding() & 0xff000010) == 0x54000000; } // conditional branch
+  bool is_bl()                       const { return (encoding() & 0xfc000000) == 0x94000000; }
+  bool is_br()                       const { return (encoding() & 0xfffffc1f) == 0xd61f0000; }
+  bool is_blr()                      const { return (encoding() & 0xfffffc1f) == 0xd63f0000; }
+  bool is_ldr_literal()              const { return (encoding() & 0xff000000) == 0x58000000; }
+  bool is_adr_aligned()              const { return (encoding() & 0xff000000) == 0x10000000; } // adr Xn, <label>, where label is aligned to 4 bytes (address of instruction).
+  bool is_adr_aligned_lr()           const { return (encoding() & 0xff00001f) == 0x1000001e; } // adr LR, <label>, where label is aligned to 4 bytes (address of instruction).
+
+  bool is_ldr_str_gp_reg_unsigned_imm()   const { return (encoding() & 0x3f000000) == 0x39000000; } // ldr/str{b, sb, h, sh, _w, sw} Rt, [Rn, #imm]
+  bool is_ldr_str_fp_reg_unsigned_imm()   const { return (encoding() & 0x3f000000) == 0x3D000000; } // ldr/str Rt(SIMD), [Rn, #imm]
+  bool is_ldr_str_reg_unsigned_imm()      const { return is_ldr_str_gp_reg_unsigned_imm() || is_ldr_str_fp_reg_unsigned_imm(); }
+
+  bool is_stp_preindex()             const { return (encoding() & 0xffc00000) == 0xa9800000; } // stp Xt1, Xt2, [Xn, #imm]!
+  bool is_ldp_postindex()            const { return (encoding() & 0xffc00000) == 0xa8c00000; } // ldp Xt1, Xt2, [Xn] #imm
+  bool is_mov_sp()                   const { return (encoding() & 0xfffffc00) == 0x91000000; } // mov <Xn|SP>, <Xm|SP>
+  bool is_movn()                     const { return (encoding() & 0x7f800000) == 0x12800000; }
+  bool is_movz()                     const { return (encoding() & 0x7f800000) == 0x52800000; }
+  bool is_movk()                     const { return (encoding() & 0x7f800000) == 0x72800000; }
+  bool is_orr_imm()                  const { return (encoding() & 0x7f800000) == 0x32000000; }
+  bool is_cmp_rr()                   const { return (encoding() & 0x7fe00000) == 0x6b000000; }
+  bool is_csel()                     const { return (encoding() & 0x7fe00000) == 0x1a800000; }
+  bool is_sub_shift()                const { return (encoding() & 0x7f200000) == 0x4b000000; } // sub Rd, Rn, shift (Rm, imm)
+  bool is_mov()                      const { return (encoding() & 0x7fe0ffe0) == 0x2a0003e0; } // mov Rd, Rm (orr Rd, ZR, shift (Rm, 0))
+  bool is_tst()                      const { return (encoding() & 0x7f20001f) == 0x6a00001f; } // tst Rn, shift (Rm, imm) (ands ZR, Rn, shift(Rm, imm))
+  bool is_lsr_imm()                  const { return (encoding() & 0x7f807c00) == 0x53007c00; } // lsr Rd, Rn, imm (ubfm Rd, Rn, imm, 31/63)
+
+  bool is_far_jump()                 const { return is_ldr_literal() && next_raw()->is_br(); }
+  bool is_fat_call()                 const {
+    return
+#ifdef COMPILER2
+      (is_blr() && next_raw()->is_b()) ||
+#endif
+      (is_adr_aligned_lr() && next_raw()->is_br());
+  }
+  bool is_far_call()                 const {
+    return is_ldr_literal() && next_raw()->is_fat_call();
+  }
+
+  bool is_ic_near_call()             const { return is_adr_aligned_lr() && next_raw()->is_b(); }
+  bool is_ic_far_call()              const { return is_adr_aligned_lr() && next_raw()->is_ldr_literal() && next_raw()->next_raw()->is_br(); }
+  bool is_ic_call()                  const { return is_ic_near_call() || is_ic_far_call(); }
+
+  bool is_jump()                     const { return is_b() || is_far_jump(); }
+  bool is_call()                     const { return is_bl() || is_far_call() || is_ic_call(); }
+  bool is_branch()                   const { return is_b() || is_bl(); }
+
+  // c2 doesn't use fixed registers for safepoint poll address
+  bool is_safepoint_poll() const {
+    return true;
+  }
+
+  bool is_save_all_registers(const RawNativeInstruction** next) const {
+    const RawNativeInstruction* current = this;
+
+    if (!current->is_stp_preindex()) return false; current = current->next_raw();
+    for (int i = 28; i >= 0; i -= 2) {
+      if (!current->is_stp_preindex()) return false; current = current->next_raw();
+    }
+
+    if (!current->is_adr_aligned())                 return false; current = current->next_raw();
+    if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
+    if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
+
+    *next = (RawNativeInstruction*) current;
+    return true;
+  }
+
+  bool is_restore_all_registers(const RawNativeInstruction** next) const {
+    const RawNativeInstruction* current = this;
+
+    for (int i = 0; i <= 28; i += 2) {
+      if (!current->is_ldp_postindex()) return false; current = current->next_raw();
+    }
+    if (!current->is_ldp_postindex()) return false; current = current->next_raw();
+
+    *next = (RawNativeInstruction*) current;
+    return true;
+  }
+
+  const RawNativeInstruction* skip_bind_literal() const {
+    const RawNativeInstruction* current = this;
+    if (((uintptr_t)current) % wordSize != 0) {
+      assert(current->is_nop(), "should be");
+      current = current->next_raw();
+    }
+    assert(((uintptr_t)current) % wordSize == 0, "should be"); // bound literal should be aligned
+    current = current->next_raw()->next_raw();
+    return current;
+  }
+
+  bool is_stop(const RawNativeInstruction** next) const {
+    const RawNativeInstruction* current = this;
+
+    if (!current->is_save_all_registers(&current)) return false;
+    if (!current->is_ldr_literal())                return false; current = current->next_raw();
+    if (!current->is_mov_sp())                     return false; current = current->next_raw();
+    if (!current->is_ldr_literal())                return false; current = current->next_raw();
+    if (!current->is_br())                         return false; current = current->next_raw();
+
+    current = current->skip_bind_literal();
+    current = current->skip_bind_literal();
+
+    *next = (RawNativeInstruction*) current;
+    return true;
+  }
+
+  bool is_mov_slow(const RawNativeInstruction** next = NULL) const {
+    const RawNativeInstruction* current = this;
+
+    if (current->is_orr_imm()) {
+      current = current->next_raw();
+
+    } else if (current->is_movn() || current->is_movz()) {
+      current = current->next_raw();
+      int movkCount = 0;
+      while (current->is_movk()) {
+        movkCount++;
+        if (movkCount > 3) return false;
+        current = current->next_raw();
+      }
+
+    } else {
+      return false;
+    }
+
+    if (next != NULL) {
+      *next = (RawNativeInstruction*)current;
+    }
+    return true;
+  }
+
+#ifdef ASSERT
+  void skip_verify_heapbase(const RawNativeInstruction** next) const {
+    const RawNativeInstruction* current = this;
+
+    if (CheckCompressedOops) {
+      if (!current->is_ldr_str_gp_reg_unsigned_imm()) return; current = current->next_raw();
+      if (!current->is_stp_preindex())      return; current = current->next_raw();
+      // NOTE: temporary workaround, remove with m6-01?
+      // skip saving condition flags
+      current = current->next_raw();
+      current = current->next_raw();
+
+      if (!current->is_mov_slow(&current))  return;
+      if (!current->is_cmp_rr())            return; current = current->next_raw();
+      if (!current->is_b_cond())            return; current = current->next_raw();
+      if (!current->is_stop(&current))      return;
+
+#ifdef COMPILER2
+      if (current->is_nop()) current = current->next_raw();
+#endif
+      // NOTE: temporary workaround, remove with m6-01?
+      // skip restoring condition flags
+      current = current->next_raw();
+      current = current->next_raw();
+
+      if (!current->is_ldp_postindex())     return; current = current->next_raw();
+      if (!current->is_ldr_str_gp_reg_unsigned_imm()) return; current = current->next_raw();
+    }
+
+    *next = (RawNativeInstruction*) current;
+  }
+#endif // ASSERT
+
+  bool is_ldr_global_ptr(const RawNativeInstruction** next) const {
+    const RawNativeInstruction* current = this;
+
+    if (!current->is_mov_slow(&current))            return false;
+    if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
+
+    *next = (RawNativeInstruction*) current;
+    return true;
+  }
+
+  void skip_verify_oop(const RawNativeInstruction** next) const {
+    const RawNativeInstruction* current = this;
+
+    if (VerifyOops) {
+      if (!current->is_save_all_registers(&current)) return;
+
+      if (current->is_mov()) {
+        current = current->next_raw();
+      }
+
+      if (!current->is_mov_sp())                        return; current = current->next_raw();
+      if (!current->is_ldr_literal())                   return; current = current->next_raw();
+      if (!current->is_ldr_global_ptr(&current))        return;
+      if (!current->is_blr())                           return; current = current->next_raw();
+      if (!current->is_restore_all_registers(&current)) return;
+      if (!current->is_b())                             return; current = current->next_raw();
+
+      current = current->skip_bind_literal();
+    }
+
+    *next = (RawNativeInstruction*) current;
+  }
+
+  void skip_encode_heap_oop(const RawNativeInstruction** next) const {
+    const RawNativeInstruction* current = this;
+
+    assert (Universe::heap() != NULL, "java heap should be initialized");
+#ifdef ASSERT
+    current->skip_verify_heapbase(&current);
+#endif // ASSERT
+    current->skip_verify_oop(&current);
+
+    if (Universe::narrow_oop_base() == NULL) {
+      if (Universe::narrow_oop_shift() != 0) {
+        if (!current->is_lsr_imm()) return; current = current->next_raw();
+      } else {
+        if (current->is_mov()) {
+          current = current->next_raw();
+        }
+      }
+    } else {
+      if (!current->is_tst())       return; current = current->next_raw();
+      if (!current->is_csel())      return; current = current->next_raw();
+      if (!current->is_sub_shift()) return; current = current->next_raw();
+      if (Universe::narrow_oop_shift() != 0) {
+        if (!current->is_lsr_imm())  return; current = current->next_raw();
+      }
+    }
+
+    *next = (RawNativeInstruction*) current;
+  }
+
+  void verify();
+
+  // For unit tests
+  static void test() {}
+
+ private:
+
+  void check_bits_range(int bits, int scale, int low_bit) const {
+    assert((0 <= low_bit) && (0 < bits) && (low_bit + bits <= instruction_size_in_bits), "invalid bits range");
+    assert((0 <= scale) && (scale <= 4), "scale is out of range");
+  }
+
+  void set_imm(int imm_encoding, int bits, int low_bit) {
+    int imm_mask = right_n_bits(bits) << low_bit;
+    assert((imm_encoding & ~imm_mask) == 0, "invalid imm encoding");
+    set_encoding((encoding() & ~imm_mask) | imm_encoding);
+  }
+
+ protected:
+
+  // Returns signed immediate from [low_bit .. low_bit + bits - 1] bits of this instruction, scaled by given scale.
+  int get_signed_imm(int bits, int scale, int low_bit) const {
+    check_bits_range(bits, scale, low_bit);
+    int high_bits_to_clean = (instruction_size_in_bits - (low_bit + bits));
+    return encoding() << high_bits_to_clean >> (high_bits_to_clean + low_bit) << scale;
+  }
+
+  // Puts given signed immediate into the [low_bit .. low_bit + bits - 1] bits of this instruction.
+  void set_signed_imm(int value, int bits, int scale, int low_bit) {
+    set_imm(Assembler::encode_imm(value, bits, scale, low_bit), bits, low_bit);
+  }
+
+  // Returns unsigned immediate from [low_bit .. low_bit + bits - 1] bits of this instruction, scaled by given scale.
+  int get_unsigned_imm(int bits, int scale, int low_bit) const {
+    check_bits_range(bits, scale, low_bit);
+    return ((encoding() >> low_bit) & right_n_bits(bits)) << scale;
+  }
+
+  // Puts given unsigned immediate into the [low_bit .. low_bit + bits - 1] bits of this instruction.
+  void set_unsigned_imm(int value, int bits, int scale, int low_bit) {
+    set_imm(Assembler::encode_unsigned_imm(value, bits, scale, low_bit), bits, low_bit);
+  }
+
+  int get_signed_offset(int bits, int low_bit) const {
+    return get_signed_imm(bits, 2, low_bit);
+  }
+
+  void set_signed_offset(int offset, int bits, int low_bit) {
+    set_signed_imm(offset, bits, 2, low_bit);
+  }
+};
+
+inline RawNativeInstruction* rawNativeInstruction_at(address address) {
+  RawNativeInstruction* instr = RawNativeInstruction::at(address);
+#ifdef ASSERT
+  instr->verify();
+#endif // ASSERT
+  return instr;
+}
+
+// -------------------------------------------------------------------
+
+// Load/store register (unsigned scaled immediate)
+class NativeMovRegMem: public RawNativeInstruction {
+ private:
+  int get_offset_scale() const {
+    return get_unsigned_imm(2, 0, 30);
+  }
+
+ public:
+  int offset() const {
+    return get_unsigned_imm(12, get_offset_scale(), 10);
+  }
+
+  void set_offset(int x);
+
+  void add_offset_in_bytes(int add_offset) {
+    set_offset(offset() + add_offset);
+  }
+};
+
+inline NativeMovRegMem* nativeMovRegMem_at(address address) {
+  const RawNativeInstruction* instr = rawNativeInstruction_at(address);
+
+#ifdef COMPILER1
+    // NOP required for C1 patching
+    if (instr->is_nop()) {
+      instr = instr->next_raw();
+    }
+#endif
+
+  instr->skip_encode_heap_oop(&instr);
+
+  assert(instr->is_ldr_str_reg_unsigned_imm(), "must be");
+  return (NativeMovRegMem*)instr;
+}
+
+// -------------------------------------------------------------------
+
+class NativeInstruction : public RawNativeInstruction {
+public:
+  static NativeInstruction* at(address address) {
+    return (NativeInstruction*)address;
+  }
+
+public:
+  // No need to consider indirections while parsing NativeInstruction
+  address next_instruction_address() const {
+    return next_raw_instruction_address();
+  }
+
+  // next() is no longer defined to avoid confusion.
+  //
+  // The front end and most classes except for those defined in nativeInst_arm
+  // or relocInfo_arm should only use next_instruction_address(), skipping
+  // over composed instruction and ignoring back-end extensions.
+  //
+  // The back-end can use next_raw() when it knows the instruction sequence
+  // and only wants to skip a single native instruction.
+};
+
+inline NativeInstruction* nativeInstruction_at(address address) {
+  NativeInstruction* instr = NativeInstruction::at(address);
+#ifdef ASSERT
+  instr->verify();
+#endif // ASSERT
+  return instr;
+}
+
+// -------------------------------------------------------------------
+class NativeInstructionLdrLiteral: public NativeInstruction {
+ public:
+  address literal_address() {
+    address la = instruction_address() + get_signed_offset(19, 5);
+    assert(la != instruction_address(), "literal points to instruction");
+    return la;
+  }
+
+  address after_literal_address() {
+    return literal_address() + wordSize;
+  }
+
+  void set_literal_address(address addr, address pc) {
+    assert(is_ldr_literal(), "must be");
+    int opc = (encoding() >> 30) & 0x3;
+    assert (opc != 0b01 || addr == pc || ((uintx)addr & 7) == 0, "ldr target should be aligned");
+    set_signed_offset(addr - pc, 19, 5);
+  }
+
+  void set_literal_address(address addr) {
+    set_literal_address(addr, instruction_address());
+  }
+
+  address literal_value() {
+    return *(address*)literal_address();
+  }
+
+  void set_literal_value(address dest) {
+    *(address*)literal_address() = dest;
+  }
+};
+
+inline NativeInstructionLdrLiteral* nativeLdrLiteral_at(address address) {
+  assert(nativeInstruction_at(address)->is_ldr_literal(), "must be");
+  return (NativeInstructionLdrLiteral*)address;
+}
+
+// -------------------------------------------------------------------
+// Common class for branch instructions with 26-bit immediate offset: B (unconditional) and BL
+class NativeInstructionBranchImm26: public NativeInstruction {
+ public:
+  address destination(int adj = 0) const {
+    return instruction_address() + get_signed_offset(26, 0) + adj;
+  }
+
+  void set_destination(address dest) {
+    intptr_t offset = (intptr_t)(dest - instruction_address());
+    assert((offset & 0x3) == 0, "should be aligned");
+    set_signed_offset(offset, 26, 0);
+  }
+};
+
+inline NativeInstructionBranchImm26* nativeB_at(address address) {
+  assert(nativeInstruction_at(address)->is_b(), "must be");
+  return (NativeInstructionBranchImm26*)address;
+}
+
+inline NativeInstructionBranchImm26* nativeBL_at(address address) {
+  assert(nativeInstruction_at(address)->is_bl(), "must be");
+  return (NativeInstructionBranchImm26*)address;
+}
+
+// -------------------------------------------------------------------
+class NativeInstructionAdrLR: public NativeInstruction {
+ public:
+  // Returns address which is loaded into LR by this instruction.
+  address target_lr_value() {
+    return instruction_address() + get_signed_offset(19, 5);
+  }
+};
+
+inline NativeInstructionAdrLR* nativeAdrLR_at(address address) {
+  assert(nativeInstruction_at(address)->is_adr_aligned_lr(), "must be");
+  return (NativeInstructionAdrLR*)address;
+}
+
+// -------------------------------------------------------------------
+class RawNativeCall: public NativeInstruction {
+ public:
+
+  address return_address() const {
+    if (is_bl()) {
+      return next_raw_instruction_address();
+
+    } else if (is_far_call()) {
+#ifdef COMPILER2
+      if (next_raw()->is_blr()) {
+        // ldr_literal; blr; ret_addr: b skip_literal;
+        return addr_at(2 * instruction_size);
+      }
+#endif
+      assert(next_raw()->is_adr_aligned_lr() && next_raw()->next_raw()->is_br(), "must be");
+      return nativeLdrLiteral_at(instruction_address())->after_literal_address();
+
+    } else if (is_ic_call()) {
+      return nativeAdrLR_at(instruction_address())->target_lr_value();
+
+    } else {
+      ShouldNotReachHere();
+      return NULL;
+    }
+  }
+
+  address destination(int adj = 0) const {
+    if (is_bl()) {
+      return nativeBL_at(instruction_address())->destination(adj);
+
+    } else if (is_far_call()) {
+      return nativeLdrLiteral_at(instruction_address())->literal_value();
+
+    } else if (is_adr_aligned_lr()) {
+      RawNativeInstruction *next = next_raw();
+      if (next->is_b()) {
+        // ic_near_call
+        return nativeB_at(next->instruction_address())->destination(adj);
+      } else if (next->is_far_jump()) {
+        // ic_far_call
+        return nativeLdrLiteral_at(next->instruction_address())->literal_value();
+      }
+    }
+    ShouldNotReachHere();
+    return NULL;
+  }
+
+  void set_destination(address dest) {
+    if (is_bl()) {
+      nativeBL_at(instruction_address())->set_destination(dest);
+      return;
+    }
+    if (is_far_call()) {
+      nativeLdrLiteral_at(instruction_address())->set_literal_value(dest);
+      OrderAccess::storeload(); // overkill if caller holds lock?
+      return;
+    }
+    if (is_adr_aligned_lr()) {
+      RawNativeInstruction *next = next_raw();
+      if (next->is_b()) {
+        // ic_near_call
+        nativeB_at(next->instruction_address())->set_destination(dest);
+        return;
+      }
+      if (next->is_far_jump()) {
+        // ic_far_call
+        nativeLdrLiteral_at(next->instruction_address())->set_literal_value(dest);
+        OrderAccess::storeload(); // overkill if caller holds lock?
+        return;
+      }
+    }
+    ShouldNotReachHere();
+  }
+
+  void set_destination_mt_safe(address dest) {
+    assert(CodeCache::contains(dest), "call target should be from code cache (required by ic_call and patchable_call)");
+    set_destination(dest);
+  }
+
+  void verify() {
+    assert(RawNativeInstruction::is_call(), "should be");
+  }
+
+  void verify_alignment() {
+    // Nothing to do on ARM
+  }
+};
+
+inline RawNativeCall* rawNativeCall_at(address address) {
+  RawNativeCall * call = (RawNativeCall*)address;
+  call->verify();
+  return call;
+}
+
+class NativeCall: public RawNativeCall {
+ public:
+
+  // NativeCall::next_instruction_address() is used only to define the
+  // range where to look for the relocation information. We need not
+  // walk over composed instructions (as long as the relocation information
+  // is associated to the first instruction).
+  address next_instruction_address() const {
+    return next_raw_instruction_address();
+  }
+
+  static bool is_call_before(address return_address);
+};
+
+inline NativeCall* nativeCall_at(address address) {
+  NativeCall * call = (NativeCall*)address;
+  call->verify();
+  return call;
+}
+
+NativeCall* nativeCall_before(address return_address);
+
+// -------------------------------------------------------------------
+class NativeGeneralJump: public NativeInstruction {
+ public:
+
+  address jump_destination() const {
+    return nativeB_at(instruction_address())->destination();
+  }
+
+  static void replace_mt_safe(address instr_addr, address code_buffer);
+
+  static void insert_unconditional(address code_pos, address entry);
+
+};
+
+inline NativeGeneralJump* nativeGeneralJump_at(address address) {
+  assert(nativeInstruction_at(address)->is_b(), "must be");
+  return (NativeGeneralJump*)address;
+}
+
+// -------------------------------------------------------------------
+class RawNativeJump: public NativeInstruction {
+ public:
+
+  address jump_destination(int adj = 0) const {
+    if (is_b()) {
+      address a = nativeB_at(instruction_address())->destination(adj);
+      // Jump destination -1 is encoded as a jump to self
+      if (a == instruction_address()) {
+        return (address)-1;
+      }
+      return a;
+    } else {
+      assert(is_far_jump(), "should be");
+      return nativeLdrLiteral_at(instruction_address())->literal_value();
+    }
+  }
+
+  void set_jump_destination(address dest) {
+    if (is_b()) {
+      // Jump destination -1 is encoded as a jump to self
+      if (dest == (address)-1) {
+        dest = instruction_address();
+      }
+      nativeB_at(instruction_address())->set_destination(dest);
+    } else {
+      assert(is_far_jump(), "should be");
+      nativeLdrLiteral_at(instruction_address())->set_literal_value(dest);
+    }
+  }
+};
+
+inline RawNativeJump* rawNativeJump_at(address address) {
+  assert(rawNativeInstruction_at(address)->is_jump(), "must be");
+  return (RawNativeJump*)address;
+}
+
+// -------------------------------------------------------------------
+class NativeMovConstReg: public NativeInstruction {
+
+  NativeMovConstReg *adjust() const {
+    return (NativeMovConstReg *)adjust(this);
+  }
+
+ public:
+
+  static RawNativeInstruction *adjust(const RawNativeInstruction *ni) {
+#ifdef COMPILER1
+    // NOP required for C1 patching
+    if (ni->is_nop()) {
+      return ni->next_raw();
+    }
+#endif
+    return (RawNativeInstruction *)ni;
+  }
+
+  intptr_t _data() const;
+  void set_data(intptr_t x);
+
+  intptr_t data() const {
+    return adjust()->_data();
+  }
+
+  bool is_pc_relative() {
+    return adjust()->is_ldr_literal();
+  }
+
+  void _set_pc_relative_offset(address addr, address pc) {
+    assert(is_ldr_literal(), "must be");
+    nativeLdrLiteral_at(instruction_address())->set_literal_address(addr, pc);
+  }
+
+  void set_pc_relative_offset(address addr, address pc) {
+    NativeMovConstReg *ni = adjust();
+    int dest_adj = ni->instruction_address() - instruction_address();
+    ni->_set_pc_relative_offset(addr, pc + dest_adj);
+  }
+
+  address _next_instruction_address() const {
+#ifdef COMPILER2
+    if (is_movz()) {
+      // narrow constant
+      RawNativeInstruction* ni = next_raw();
+      assert(ni->is_movk(), "movz;movk expected");
+      return ni->next_raw_instruction_address();
+    }
+#endif
+    assert(is_ldr_literal(), "must be");
+    return NativeInstruction::next_raw_instruction_address();
+  }
+
+  address next_instruction_address() const {
+    return adjust()->_next_instruction_address();
+  }
+};
+
+inline NativeMovConstReg* nativeMovConstReg_at(address address) {
+  RawNativeInstruction* ni = rawNativeInstruction_at(address);
+
+  ni = NativeMovConstReg::adjust(ni);
+
+  assert(ni->is_mov_slow() || ni->is_ldr_literal(), "must be");
+  return (NativeMovConstReg*)address;
+}
+
+// -------------------------------------------------------------------
+class NativeJump: public RawNativeJump {
+ public:
+
+  static void check_verified_entry_alignment(address entry, address verified_entry);
+
+  static void patch_verified_entry(address entry, address verified_entry, address dest);
+};
+
+inline NativeJump* nativeJump_at(address address) {
+  assert(nativeInstruction_at(address)->is_jump(), "must be");
+  return (NativeJump*)address;
+}
+
+#endif // CPU_ARM_VM_NATIVEINST_ARM_64_HPP