hotspot/src/cpu/arm/vm/nativeInst_arm_64.hpp
changeset 42664 29142a56c193
equal deleted inserted replaced
42663:2335df372367 42664:29142a56c193
       
     1 /*
       
     2  * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #ifndef CPU_ARM_VM_NATIVEINST_ARM_64_HPP
       
    26 #define CPU_ARM_VM_NATIVEINST_ARM_64_HPP
       
    27 
       
    28 #include "asm/macroAssembler.hpp"
       
    29 #include "code/codeCache.hpp"
       
    30 #include "memory/allocation.hpp"
       
    31 #include "runtime/icache.hpp"
       
    32 #include "runtime/os.hpp"
       
    33 
       
    34 // -------------------------------------------------------------------
       
    35 
       
    36 // Some experimental projects extend the ARM back-end by implementing
       
    37 // what the front-end usually assumes is a single native instruction
       
    38 // with a sequence of instructions.
       
    39 //
       
    40 // The 'Raw' variants are the low level initial code (usually one
       
    41 // instruction wide but some of them were already composed
       
    42 // instructions). They should be used only by the back-end.
       
    43 //
       
    44 // The non-raw classes are the front-end entry point, hiding potential
       
    45 // back-end extensions or the actual instructions size.
       
    46 class NativeInstruction;
       
    47 
       
    48 class RawNativeInstruction VALUE_OBJ_CLASS_SPEC {
       
    49  public:
       
    50 
       
    51   enum ARM_specific {
       
    52     instruction_size = Assembler::InstructionSize,
       
    53     instruction_size_in_bits = instruction_size * BitsPerByte,
       
    54   };
       
    55 
       
    56   // illegal instruction used by NativeJump::patch_verified_entry
       
    57   static const int zombie_illegal_instruction = 0xd4000542; // hvc #42
       
    58 
       
    59   address addr_at(int offset)        const { return (address)this + offset; }
       
    60   address instruction_address()      const { return addr_at(0); }
       
    61   address next_raw_instruction_address() const { return addr_at(instruction_size); }
       
    62 
       
    63   static RawNativeInstruction* at(address address) {
       
    64     return (RawNativeInstruction*)address;
       
    65   }
       
    66 
       
    67   RawNativeInstruction* next_raw() const {
       
    68     return at(next_raw_instruction_address());
       
    69   }
       
    70 
       
    71   int encoding() const {
       
    72     return *(int*)this;
       
    73   }
       
    74 
       
    75   void set_encoding(int value) {
       
    76     int old = encoding();
       
    77     if (old != value) {
       
    78       *(int*)this = value;
       
    79       ICache::invalidate_word((address)this);
       
    80     }
       
    81   }
       
    82 
       
    83   bool is_nop()                      const { return encoding() == (int)0xd503201f; }
       
    84   bool is_b()                        const { return (encoding() & 0xfc000000) == 0x14000000; } // unconditional branch
       
    85   bool is_b_cond()                   const { return (encoding() & 0xff000010) == 0x54000000; } // conditional branch
       
    86   bool is_bl()                       const { return (encoding() & 0xfc000000) == 0x94000000; }
       
    87   bool is_br()                       const { return (encoding() & 0xfffffc1f) == 0xd61f0000; }
       
    88   bool is_blr()                      const { return (encoding() & 0xfffffc1f) == 0xd63f0000; }
       
    89   bool is_ldr_literal()              const { return (encoding() & 0xff000000) == 0x58000000; }
       
    90   bool is_adr_aligned()              const { return (encoding() & 0xff000000) == 0x10000000; } // adr Xn, <label>, where label is aligned to 4 bytes (address of instruction).
       
    91   bool is_adr_aligned_lr()           const { return (encoding() & 0xff00001f) == 0x1000001e; } // adr LR, <label>, where label is aligned to 4 bytes (address of instruction).
       
    92 
       
    93   bool is_ldr_str_gp_reg_unsigned_imm()   const { return (encoding() & 0x3f000000) == 0x39000000; } // ldr/str{b, sb, h, sh, _w, sw} Rt, [Rn, #imm]
       
    94   bool is_ldr_str_fp_reg_unsigned_imm()   const { return (encoding() & 0x3f000000) == 0x3D000000; } // ldr/str Rt(SIMD), [Rn, #imm]
       
    95   bool is_ldr_str_reg_unsigned_imm()      const { return is_ldr_str_gp_reg_unsigned_imm() || is_ldr_str_fp_reg_unsigned_imm(); }
       
    96 
       
    97   bool is_stp_preindex()             const { return (encoding() & 0xffc00000) == 0xa9800000; } // stp Xt1, Xt2, [Xn, #imm]!
       
    98   bool is_ldp_postindex()            const { return (encoding() & 0xffc00000) == 0xa8c00000; } // ldp Xt1, Xt2, [Xn] #imm
       
    99   bool is_mov_sp()                   const { return (encoding() & 0xfffffc00) == 0x91000000; } // mov <Xn|SP>, <Xm|SP>
       
   100   bool is_movn()                     const { return (encoding() & 0x7f800000) == 0x12800000; }
       
   101   bool is_movz()                     const { return (encoding() & 0x7f800000) == 0x52800000; }
       
   102   bool is_movk()                     const { return (encoding() & 0x7f800000) == 0x72800000; }
       
   103   bool is_orr_imm()                  const { return (encoding() & 0x7f800000) == 0x32000000; }
       
   104   bool is_cmp_rr()                   const { return (encoding() & 0x7fe00000) == 0x6b000000; }
       
   105   bool is_csel()                     const { return (encoding() & 0x7fe00000) == 0x1a800000; }
       
   106   bool is_sub_shift()                const { return (encoding() & 0x7f200000) == 0x4b000000; } // sub Rd, Rn, shift (Rm, imm)
       
   107   bool is_mov()                      const { return (encoding() & 0x7fe0ffe0) == 0x2a0003e0; } // mov Rd, Rm (orr Rd, ZR, shift (Rm, 0))
       
   108   bool is_tst()                      const { return (encoding() & 0x7f20001f) == 0x6a00001f; } // tst Rn, shift (Rm, imm) (ands ZR, Rn, shift(Rm, imm))
       
   109   bool is_lsr_imm()                  const { return (encoding() & 0x7f807c00) == 0x53007c00; } // lsr Rd, Rn, imm (ubfm Rd, Rn, imm, 31/63)
       
   110 
       
   111   bool is_far_jump()                 const { return is_ldr_literal() && next_raw()->is_br(); }
       
   112   bool is_fat_call()                 const {
       
   113     return
       
   114 #ifdef COMPILER2
       
   115       (is_blr() && next_raw()->is_b()) ||
       
   116 #endif
       
   117       (is_adr_aligned_lr() && next_raw()->is_br());
       
   118   }
       
   119   bool is_far_call()                 const {
       
   120     return is_ldr_literal() && next_raw()->is_fat_call();
       
   121   }
       
   122 
       
   123   bool is_ic_near_call()             const { return is_adr_aligned_lr() && next_raw()->is_b(); }
       
   124   bool is_ic_far_call()              const { return is_adr_aligned_lr() && next_raw()->is_ldr_literal() && next_raw()->next_raw()->is_br(); }
       
   125   bool is_ic_call()                  const { return is_ic_near_call() || is_ic_far_call(); }
       
   126 
       
   127   bool is_jump()                     const { return is_b() || is_far_jump(); }
       
   128   bool is_call()                     const { return is_bl() || is_far_call() || is_ic_call(); }
       
   129   bool is_branch()                   const { return is_b() || is_bl(); }
       
   130 
       
   131   // c2 doesn't use fixed registers for safepoint poll address
       
   132   bool is_safepoint_poll() const {
       
   133     return true;
       
   134   }
       
   135 
       
   136   bool is_save_all_registers(const RawNativeInstruction** next) const {
       
   137     const RawNativeInstruction* current = this;
       
   138 
       
   139     if (!current->is_stp_preindex()) return false; current = current->next_raw();
       
   140     for (int i = 28; i >= 0; i -= 2) {
       
   141       if (!current->is_stp_preindex()) return false; current = current->next_raw();
       
   142     }
       
   143 
       
   144     if (!current->is_adr_aligned())                 return false; current = current->next_raw();
       
   145     if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
       
   146     if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
       
   147 
       
   148     *next = (RawNativeInstruction*) current;
       
   149     return true;
       
   150   }
       
   151 
       
   152   bool is_restore_all_registers(const RawNativeInstruction** next) const {
       
   153     const RawNativeInstruction* current = this;
       
   154 
       
   155     for (int i = 0; i <= 28; i += 2) {
       
   156       if (!current->is_ldp_postindex()) return false; current = current->next_raw();
       
   157     }
       
   158     if (!current->is_ldp_postindex()) return false; current = current->next_raw();
       
   159 
       
   160     *next = (RawNativeInstruction*) current;
       
   161     return true;
       
   162   }
       
   163 
       
   164   const RawNativeInstruction* skip_bind_literal() const {
       
   165     const RawNativeInstruction* current = this;
       
   166     if (((uintptr_t)current) % wordSize != 0) {
       
   167       assert(current->is_nop(), "should be");
       
   168       current = current->next_raw();
       
   169     }
       
   170     assert(((uintptr_t)current) % wordSize == 0, "should be"); // bound literal should be aligned
       
   171     current = current->next_raw()->next_raw();
       
   172     return current;
       
   173   }
       
   174 
       
   175   bool is_stop(const RawNativeInstruction** next) const {
       
   176     const RawNativeInstruction* current = this;
       
   177 
       
   178     if (!current->is_save_all_registers(&current)) return false;
       
   179     if (!current->is_ldr_literal())                return false; current = current->next_raw();
       
   180     if (!current->is_mov_sp())                     return false; current = current->next_raw();
       
   181     if (!current->is_ldr_literal())                return false; current = current->next_raw();
       
   182     if (!current->is_br())                         return false; current = current->next_raw();
       
   183 
       
   184     current = current->skip_bind_literal();
       
   185     current = current->skip_bind_literal();
       
   186 
       
   187     *next = (RawNativeInstruction*) current;
       
   188     return true;
       
   189   }
       
   190 
       
   191   bool is_mov_slow(const RawNativeInstruction** next = NULL) const {
       
   192     const RawNativeInstruction* current = this;
       
   193 
       
   194     if (current->is_orr_imm()) {
       
   195       current = current->next_raw();
       
   196 
       
   197     } else if (current->is_movn() || current->is_movz()) {
       
   198       current = current->next_raw();
       
   199       int movkCount = 0;
       
   200       while (current->is_movk()) {
       
   201         movkCount++;
       
   202         if (movkCount > 3) return false;
       
   203         current = current->next_raw();
       
   204       }
       
   205 
       
   206     } else {
       
   207       return false;
       
   208     }
       
   209 
       
   210     if (next != NULL) {
       
   211       *next = (RawNativeInstruction*)current;
       
   212     }
       
   213     return true;
       
   214   }
       
   215 
       
   216 #ifdef ASSERT
       
   217   void skip_verify_heapbase(const RawNativeInstruction** next) const {
       
   218     const RawNativeInstruction* current = this;
       
   219 
       
   220     if (CheckCompressedOops) {
       
   221       if (!current->is_ldr_str_gp_reg_unsigned_imm()) return; current = current->next_raw();
       
   222       if (!current->is_stp_preindex())      return; current = current->next_raw();
       
   223       // NOTE: temporary workaround, remove with m6-01?
       
   224       // skip saving condition flags
       
   225       current = current->next_raw();
       
   226       current = current->next_raw();
       
   227 
       
   228       if (!current->is_mov_slow(&current))  return;
       
   229       if (!current->is_cmp_rr())            return; current = current->next_raw();
       
   230       if (!current->is_b_cond())            return; current = current->next_raw();
       
   231       if (!current->is_stop(&current))      return;
       
   232 
       
   233 #ifdef COMPILER2
       
   234       if (current->is_nop()) current = current->next_raw();
       
   235 #endif
       
   236       // NOTE: temporary workaround, remove with m6-01?
       
   237       // skip restoring condition flags
       
   238       current = current->next_raw();
       
   239       current = current->next_raw();
       
   240 
       
   241       if (!current->is_ldp_postindex())     return; current = current->next_raw();
       
   242       if (!current->is_ldr_str_gp_reg_unsigned_imm()) return; current = current->next_raw();
       
   243     }
       
   244 
       
   245     *next = (RawNativeInstruction*) current;
       
   246   }
       
   247 #endif // ASSERT
       
   248 
       
   249   bool is_ldr_global_ptr(const RawNativeInstruction** next) const {
       
   250     const RawNativeInstruction* current = this;
       
   251 
       
   252     if (!current->is_mov_slow(&current))            return false;
       
   253     if (!current->is_ldr_str_gp_reg_unsigned_imm()) return false; current = current->next_raw();
       
   254 
       
   255     *next = (RawNativeInstruction*) current;
       
   256     return true;
       
   257   }
       
   258 
       
   259   void skip_verify_oop(const RawNativeInstruction** next) const {
       
   260     const RawNativeInstruction* current = this;
       
   261 
       
   262     if (VerifyOops) {
       
   263       if (!current->is_save_all_registers(&current)) return;
       
   264 
       
   265       if (current->is_mov()) {
       
   266         current = current->next_raw();
       
   267       }
       
   268 
       
   269       if (!current->is_mov_sp())                        return; current = current->next_raw();
       
   270       if (!current->is_ldr_literal())                   return; current = current->next_raw();
       
   271       if (!current->is_ldr_global_ptr(&current))        return;
       
   272       if (!current->is_blr())                           return; current = current->next_raw();
       
   273       if (!current->is_restore_all_registers(&current)) return;
       
   274       if (!current->is_b())                             return; current = current->next_raw();
       
   275 
       
   276       current = current->skip_bind_literal();
       
   277     }
       
   278 
       
   279     *next = (RawNativeInstruction*) current;
       
   280   }
       
   281 
       
   282   void skip_encode_heap_oop(const RawNativeInstruction** next) const {
       
   283     const RawNativeInstruction* current = this;
       
   284 
       
   285     assert (Universe::heap() != NULL, "java heap should be initialized");
       
   286 #ifdef ASSERT
       
   287     current->skip_verify_heapbase(&current);
       
   288 #endif // ASSERT
       
   289     current->skip_verify_oop(&current);
       
   290 
       
   291     if (Universe::narrow_oop_base() == NULL) {
       
   292       if (Universe::narrow_oop_shift() != 0) {
       
   293         if (!current->is_lsr_imm()) return; current = current->next_raw();
       
   294       } else {
       
   295         if (current->is_mov()) {
       
   296           current = current->next_raw();
       
   297         }
       
   298       }
       
   299     } else {
       
   300       if (!current->is_tst())       return; current = current->next_raw();
       
   301       if (!current->is_csel())      return; current = current->next_raw();
       
   302       if (!current->is_sub_shift()) return; current = current->next_raw();
       
   303       if (Universe::narrow_oop_shift() != 0) {
       
   304         if (!current->is_lsr_imm())  return; current = current->next_raw();
       
   305       }
       
   306     }
       
   307 
       
   308     *next = (RawNativeInstruction*) current;
       
   309   }
       
   310 
       
   311   void verify();
       
   312 
       
   313   // For unit tests
       
   314   static void test() {}
       
   315 
       
   316  private:
       
   317 
       
   318   void check_bits_range(int bits, int scale, int low_bit) const {
       
   319     assert((0 <= low_bit) && (0 < bits) && (low_bit + bits <= instruction_size_in_bits), "invalid bits range");
       
   320     assert((0 <= scale) && (scale <= 4), "scale is out of range");
       
   321   }
       
   322 
       
   323   void set_imm(int imm_encoding, int bits, int low_bit) {
       
   324     int imm_mask = right_n_bits(bits) << low_bit;
       
   325     assert((imm_encoding & ~imm_mask) == 0, "invalid imm encoding");
       
   326     set_encoding((encoding() & ~imm_mask) | imm_encoding);
       
   327   }
       
   328 
       
   329  protected:
       
   330 
       
   331   // Returns signed immediate from [low_bit .. low_bit + bits - 1] bits of this instruction, scaled by given scale.
       
   332   int get_signed_imm(int bits, int scale, int low_bit) const {
       
   333     check_bits_range(bits, scale, low_bit);
       
   334     int high_bits_to_clean = (instruction_size_in_bits - (low_bit + bits));
       
   335     return encoding() << high_bits_to_clean >> (high_bits_to_clean + low_bit) << scale;
       
   336   }
       
   337 
       
   338   // Puts given signed immediate into the [low_bit .. low_bit + bits - 1] bits of this instruction.
       
   339   void set_signed_imm(int value, int bits, int scale, int low_bit) {
       
   340     set_imm(Assembler::encode_imm(value, bits, scale, low_bit), bits, low_bit);
       
   341   }
       
   342 
       
   343   // Returns unsigned immediate from [low_bit .. low_bit + bits - 1] bits of this instruction, scaled by given scale.
       
   344   int get_unsigned_imm(int bits, int scale, int low_bit) const {
       
   345     check_bits_range(bits, scale, low_bit);
       
   346     return ((encoding() >> low_bit) & right_n_bits(bits)) << scale;
       
   347   }
       
   348 
       
   349   // Puts given unsigned immediate into the [low_bit .. low_bit + bits - 1] bits of this instruction.
       
   350   void set_unsigned_imm(int value, int bits, int scale, int low_bit) {
       
   351     set_imm(Assembler::encode_unsigned_imm(value, bits, scale, low_bit), bits, low_bit);
       
   352   }
       
   353 
       
   354   int get_signed_offset(int bits, int low_bit) const {
       
   355     return get_signed_imm(bits, 2, low_bit);
       
   356   }
       
   357 
       
   358   void set_signed_offset(int offset, int bits, int low_bit) {
       
   359     set_signed_imm(offset, bits, 2, low_bit);
       
   360   }
       
   361 };
       
   362 
       
   363 inline RawNativeInstruction* rawNativeInstruction_at(address address) {
       
   364   RawNativeInstruction* instr = RawNativeInstruction::at(address);
       
   365 #ifdef ASSERT
       
   366   instr->verify();
       
   367 #endif // ASSERT
       
   368   return instr;
       
   369 }
       
   370 
       
   371 // -------------------------------------------------------------------
       
   372 
       
   373 // Load/store register (unsigned scaled immediate)
       
   374 class NativeMovRegMem: public RawNativeInstruction {
       
   375  private:
       
   376   int get_offset_scale() const {
       
   377     return get_unsigned_imm(2, 0, 30);
       
   378   }
       
   379 
       
   380  public:
       
   381   int offset() const {
       
   382     return get_unsigned_imm(12, get_offset_scale(), 10);
       
   383   }
       
   384 
       
   385   void set_offset(int x);
       
   386 
       
   387   void add_offset_in_bytes(int add_offset) {
       
   388     set_offset(offset() + add_offset);
       
   389   }
       
   390 };
       
   391 
       
   392 inline NativeMovRegMem* nativeMovRegMem_at(address address) {
       
   393   const RawNativeInstruction* instr = rawNativeInstruction_at(address);
       
   394 
       
   395 #ifdef COMPILER1
       
   396     // NOP required for C1 patching
       
   397     if (instr->is_nop()) {
       
   398       instr = instr->next_raw();
       
   399     }
       
   400 #endif
       
   401 
       
   402   instr->skip_encode_heap_oop(&instr);
       
   403 
       
   404   assert(instr->is_ldr_str_reg_unsigned_imm(), "must be");
       
   405   return (NativeMovRegMem*)instr;
       
   406 }
       
   407 
       
   408 // -------------------------------------------------------------------
       
   409 
       
   410 class NativeInstruction : public RawNativeInstruction {
       
   411 public:
       
   412   static NativeInstruction* at(address address) {
       
   413     return (NativeInstruction*)address;
       
   414   }
       
   415 
       
   416 public:
       
   417   // No need to consider indirections while parsing NativeInstruction
       
   418   address next_instruction_address() const {
       
   419     return next_raw_instruction_address();
       
   420   }
       
   421 
       
   422   // next() is no longer defined to avoid confusion.
       
   423   //
       
   424   // The front end and most classes except for those defined in nativeInst_arm
       
   425   // or relocInfo_arm should only use next_instruction_address(), skipping
       
   426   // over composed instruction and ignoring back-end extensions.
       
   427   //
       
   428   // The back-end can use next_raw() when it knows the instruction sequence
       
   429   // and only wants to skip a single native instruction.
       
   430 };
       
   431 
       
   432 inline NativeInstruction* nativeInstruction_at(address address) {
       
   433   NativeInstruction* instr = NativeInstruction::at(address);
       
   434 #ifdef ASSERT
       
   435   instr->verify();
       
   436 #endif // ASSERT
       
   437   return instr;
       
   438 }
       
   439 
       
   440 // -------------------------------------------------------------------
       
   441 class NativeInstructionLdrLiteral: public NativeInstruction {
       
   442  public:
       
   443   address literal_address() {
       
   444     address la = instruction_address() + get_signed_offset(19, 5);
       
   445     assert(la != instruction_address(), "literal points to instruction");
       
   446     return la;
       
   447   }
       
   448 
       
   449   address after_literal_address() {
       
   450     return literal_address() + wordSize;
       
   451   }
       
   452 
       
   453   void set_literal_address(address addr, address pc) {
       
   454     assert(is_ldr_literal(), "must be");
       
   455     int opc = (encoding() >> 30) & 0x3;
       
   456     assert (opc != 0b01 || addr == pc || ((uintx)addr & 7) == 0, "ldr target should be aligned");
       
   457     set_signed_offset(addr - pc, 19, 5);
       
   458   }
       
   459 
       
   460   void set_literal_address(address addr) {
       
   461     set_literal_address(addr, instruction_address());
       
   462   }
       
   463 
       
   464   address literal_value() {
       
   465     return *(address*)literal_address();
       
   466   }
       
   467 
       
   468   void set_literal_value(address dest) {
       
   469     *(address*)literal_address() = dest;
       
   470   }
       
   471 };
       
   472 
       
   473 inline NativeInstructionLdrLiteral* nativeLdrLiteral_at(address address) {
       
   474   assert(nativeInstruction_at(address)->is_ldr_literal(), "must be");
       
   475   return (NativeInstructionLdrLiteral*)address;
       
   476 }
       
   477 
       
   478 // -------------------------------------------------------------------
       
   479 // Common class for branch instructions with 26-bit immediate offset: B (unconditional) and BL
       
   480 class NativeInstructionBranchImm26: public NativeInstruction {
       
   481  public:
       
   482   address destination(int adj = 0) const {
       
   483     return instruction_address() + get_signed_offset(26, 0) + adj;
       
   484   }
       
   485 
       
   486   void set_destination(address dest) {
       
   487     intptr_t offset = (intptr_t)(dest - instruction_address());
       
   488     assert((offset & 0x3) == 0, "should be aligned");
       
   489     set_signed_offset(offset, 26, 0);
       
   490   }
       
   491 };
       
   492 
       
   493 inline NativeInstructionBranchImm26* nativeB_at(address address) {
       
   494   assert(nativeInstruction_at(address)->is_b(), "must be");
       
   495   return (NativeInstructionBranchImm26*)address;
       
   496 }
       
   497 
       
   498 inline NativeInstructionBranchImm26* nativeBL_at(address address) {
       
   499   assert(nativeInstruction_at(address)->is_bl(), "must be");
       
   500   return (NativeInstructionBranchImm26*)address;
       
   501 }
       
   502 
       
   503 // -------------------------------------------------------------------
       
   504 class NativeInstructionAdrLR: public NativeInstruction {
       
   505  public:
       
   506   // Returns address which is loaded into LR by this instruction.
       
   507   address target_lr_value() {
       
   508     return instruction_address() + get_signed_offset(19, 5);
       
   509   }
       
   510 };
       
   511 
       
   512 inline NativeInstructionAdrLR* nativeAdrLR_at(address address) {
       
   513   assert(nativeInstruction_at(address)->is_adr_aligned_lr(), "must be");
       
   514   return (NativeInstructionAdrLR*)address;
       
   515 }
       
   516 
       
   517 // -------------------------------------------------------------------
       
   518 class RawNativeCall: public NativeInstruction {
       
   519  public:
       
   520 
       
   521   address return_address() const {
       
   522     if (is_bl()) {
       
   523       return next_raw_instruction_address();
       
   524 
       
   525     } else if (is_far_call()) {
       
   526 #ifdef COMPILER2
       
   527       if (next_raw()->is_blr()) {
       
   528         // ldr_literal; blr; ret_addr: b skip_literal;
       
   529         return addr_at(2 * instruction_size);
       
   530       }
       
   531 #endif
       
   532       assert(next_raw()->is_adr_aligned_lr() && next_raw()->next_raw()->is_br(), "must be");
       
   533       return nativeLdrLiteral_at(instruction_address())->after_literal_address();
       
   534 
       
   535     } else if (is_ic_call()) {
       
   536       return nativeAdrLR_at(instruction_address())->target_lr_value();
       
   537 
       
   538     } else {
       
   539       ShouldNotReachHere();
       
   540       return NULL;
       
   541     }
       
   542   }
       
   543 
       
   544   address destination(int adj = 0) const {
       
   545     if (is_bl()) {
       
   546       return nativeBL_at(instruction_address())->destination(adj);
       
   547 
       
   548     } else if (is_far_call()) {
       
   549       return nativeLdrLiteral_at(instruction_address())->literal_value();
       
   550 
       
   551     } else if (is_adr_aligned_lr()) {
       
   552       RawNativeInstruction *next = next_raw();
       
   553       if (next->is_b()) {
       
   554         // ic_near_call
       
   555         return nativeB_at(next->instruction_address())->destination(adj);
       
   556       } else if (next->is_far_jump()) {
       
   557         // ic_far_call
       
   558         return nativeLdrLiteral_at(next->instruction_address())->literal_value();
       
   559       }
       
   560     }
       
   561     ShouldNotReachHere();
       
   562     return NULL;
       
   563   }
       
   564 
       
   565   void set_destination(address dest) {
       
   566     if (is_bl()) {
       
   567       nativeBL_at(instruction_address())->set_destination(dest);
       
   568       return;
       
   569     }
       
   570     if (is_far_call()) {
       
   571       nativeLdrLiteral_at(instruction_address())->set_literal_value(dest);
       
   572       OrderAccess::storeload(); // overkill if caller holds lock?
       
   573       return;
       
   574     }
       
   575     if (is_adr_aligned_lr()) {
       
   576       RawNativeInstruction *next = next_raw();
       
   577       if (next->is_b()) {
       
   578         // ic_near_call
       
   579         nativeB_at(next->instruction_address())->set_destination(dest);
       
   580         return;
       
   581       }
       
   582       if (next->is_far_jump()) {
       
   583         // ic_far_call
       
   584         nativeLdrLiteral_at(next->instruction_address())->set_literal_value(dest);
       
   585         OrderAccess::storeload(); // overkill if caller holds lock?
       
   586         return;
       
   587       }
       
   588     }
       
   589     ShouldNotReachHere();
       
   590   }
       
   591 
       
   592   void set_destination_mt_safe(address dest) {
       
   593     assert(CodeCache::contains(dest), "call target should be from code cache (required by ic_call and patchable_call)");
       
   594     set_destination(dest);
       
   595   }
       
   596 
       
   597   void verify() {
       
   598     assert(RawNativeInstruction::is_call(), "should be");
       
   599   }
       
   600 
       
   601   void verify_alignment() {
       
   602     // Nothing to do on ARM
       
   603   }
       
   604 };
       
   605 
       
   606 inline RawNativeCall* rawNativeCall_at(address address) {
       
   607   RawNativeCall * call = (RawNativeCall*)address;
       
   608   call->verify();
       
   609   return call;
       
   610 }
       
   611 
       
   612 class NativeCall: public RawNativeCall {
       
   613  public:
       
   614 
       
   615   // NativeCall::next_instruction_address() is used only to define the
       
   616   // range where to look for the relocation information. We need not
       
   617   // walk over composed instructions (as long as the relocation information
       
   618   // is associated to the first instruction).
       
   619   address next_instruction_address() const {
       
   620     return next_raw_instruction_address();
       
   621   }
       
   622 
       
   623   static bool is_call_before(address return_address);
       
   624 };
       
   625 
       
   626 inline NativeCall* nativeCall_at(address address) {
       
   627   NativeCall * call = (NativeCall*)address;
       
   628   call->verify();
       
   629   return call;
       
   630 }
       
   631 
       
   632 NativeCall* nativeCall_before(address return_address);
       
   633 
       
   634 // -------------------------------------------------------------------
       
   635 class NativeGeneralJump: public NativeInstruction {
       
   636  public:
       
   637 
       
   638   address jump_destination() const {
       
   639     return nativeB_at(instruction_address())->destination();
       
   640   }
       
   641 
       
   642   static void replace_mt_safe(address instr_addr, address code_buffer);
       
   643 
       
   644   static void insert_unconditional(address code_pos, address entry);
       
   645 
       
   646 };
       
   647 
       
   648 inline NativeGeneralJump* nativeGeneralJump_at(address address) {
       
   649   assert(nativeInstruction_at(address)->is_b(), "must be");
       
   650   return (NativeGeneralJump*)address;
       
   651 }
       
   652 
       
   653 // -------------------------------------------------------------------
       
   654 class RawNativeJump: public NativeInstruction {
       
   655  public:
       
   656 
       
   657   address jump_destination(int adj = 0) const {
       
   658     if (is_b()) {
       
   659       address a = nativeB_at(instruction_address())->destination(adj);
       
   660       // Jump destination -1 is encoded as a jump to self
       
   661       if (a == instruction_address()) {
       
   662         return (address)-1;
       
   663       }
       
   664       return a;
       
   665     } else {
       
   666       assert(is_far_jump(), "should be");
       
   667       return nativeLdrLiteral_at(instruction_address())->literal_value();
       
   668     }
       
   669   }
       
   670 
       
   671   void set_jump_destination(address dest) {
       
   672     if (is_b()) {
       
   673       // Jump destination -1 is encoded as a jump to self
       
   674       if (dest == (address)-1) {
       
   675         dest = instruction_address();
       
   676       }
       
   677       nativeB_at(instruction_address())->set_destination(dest);
       
   678     } else {
       
   679       assert(is_far_jump(), "should be");
       
   680       nativeLdrLiteral_at(instruction_address())->set_literal_value(dest);
       
   681     }
       
   682   }
       
   683 };
       
   684 
       
   685 inline RawNativeJump* rawNativeJump_at(address address) {
       
   686   assert(rawNativeInstruction_at(address)->is_jump(), "must be");
       
   687   return (RawNativeJump*)address;
       
   688 }
       
   689 
       
   690 // -------------------------------------------------------------------
       
   691 class NativeMovConstReg: public NativeInstruction {
       
   692 
       
   693   NativeMovConstReg *adjust() const {
       
   694     return (NativeMovConstReg *)adjust(this);
       
   695   }
       
   696 
       
   697  public:
       
   698 
       
   699   static RawNativeInstruction *adjust(const RawNativeInstruction *ni) {
       
   700 #ifdef COMPILER1
       
   701     // NOP required for C1 patching
       
   702     if (ni->is_nop()) {
       
   703       return ni->next_raw();
       
   704     }
       
   705 #endif
       
   706     return (RawNativeInstruction *)ni;
       
   707   }
       
   708 
       
   709   intptr_t _data() const;
       
   710   void set_data(intptr_t x);
       
   711 
       
   712   intptr_t data() const {
       
   713     return adjust()->_data();
       
   714   }
       
   715 
       
   716   bool is_pc_relative() {
       
   717     return adjust()->is_ldr_literal();
       
   718   }
       
   719 
       
   720   void _set_pc_relative_offset(address addr, address pc) {
       
   721     assert(is_ldr_literal(), "must be");
       
   722     nativeLdrLiteral_at(instruction_address())->set_literal_address(addr, pc);
       
   723   }
       
   724 
       
   725   void set_pc_relative_offset(address addr, address pc) {
       
   726     NativeMovConstReg *ni = adjust();
       
   727     int dest_adj = ni->instruction_address() - instruction_address();
       
   728     ni->_set_pc_relative_offset(addr, pc + dest_adj);
       
   729   }
       
   730 
       
   731   address _next_instruction_address() const {
       
   732 #ifdef COMPILER2
       
   733     if (is_movz()) {
       
   734       // narrow constant
       
   735       RawNativeInstruction* ni = next_raw();
       
   736       assert(ni->is_movk(), "movz;movk expected");
       
   737       return ni->next_raw_instruction_address();
       
   738     }
       
   739 #endif
       
   740     assert(is_ldr_literal(), "must be");
       
   741     return NativeInstruction::next_raw_instruction_address();
       
   742   }
       
   743 
       
   744   address next_instruction_address() const {
       
   745     return adjust()->_next_instruction_address();
       
   746   }
       
   747 };
       
   748 
       
   749 inline NativeMovConstReg* nativeMovConstReg_at(address address) {
       
   750   RawNativeInstruction* ni = rawNativeInstruction_at(address);
       
   751 
       
   752   ni = NativeMovConstReg::adjust(ni);
       
   753 
       
   754   assert(ni->is_mov_slow() || ni->is_ldr_literal(), "must be");
       
   755   return (NativeMovConstReg*)address;
       
   756 }
       
   757 
       
   758 // -------------------------------------------------------------------
       
   759 class NativeJump: public RawNativeJump {
       
   760  public:
       
   761 
       
   762   static void check_verified_entry_alignment(address entry, address verified_entry);
       
   763 
       
   764   static void patch_verified_entry(address entry, address verified_entry, address dest);
       
   765 };
       
   766 
       
   767 inline NativeJump* nativeJump_at(address address) {
       
   768   assert(nativeInstruction_at(address)->is_jump(), "must be");
       
   769   return (NativeJump*)address;
       
   770 }
       
   771 
       
   772 #endif // CPU_ARM_VM_NATIVEINST_ARM_64_HPP