jdk/src/share/classes/java/lang/Float.java
changeset 2 90ce3da70b43
child 1824 7a685390c6ab
equal deleted inserted replaced
0:fd16c54261b3 2:90ce3da70b43
       
     1 /*
       
     2  * Copyright 1994-2006 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.  Sun designates this
       
     8  * particular file as subject to the "Classpath" exception as provided
       
     9  * by Sun in the LICENSE file that accompanied this code.
       
    10  *
       
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    14  * version 2 for more details (a copy is included in the LICENSE file that
       
    15  * accompanied this code).
       
    16  *
       
    17  * You should have received a copy of the GNU General Public License version
       
    18  * 2 along with this work; if not, write to the Free Software Foundation,
       
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    20  *
       
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    23  * have any questions.
       
    24  */
       
    25 
       
    26 package java.lang;
       
    27 
       
    28 import sun.misc.FloatingDecimal;
       
    29 import sun.misc.FpUtils;
       
    30 import sun.misc.FloatConsts;
       
    31 import sun.misc.DoubleConsts;
       
    32 
       
    33 /**
       
    34  * The {@code Float} class wraps a value of primitive type
       
    35  * {@code float} in an object. An object of type
       
    36  * {@code Float} contains a single field whose type is
       
    37  * {@code float}.
       
    38  *
       
    39  * <p>In addition, this class provides several methods for converting a
       
    40  * {@code float} to a {@code String} and a
       
    41  * {@code String} to a {@code float}, as well as other
       
    42  * constants and methods useful when dealing with a
       
    43  * {@code float}.
       
    44  *
       
    45  * @author  Lee Boynton
       
    46  * @author  Arthur van Hoff
       
    47  * @author  Joseph D. Darcy
       
    48  * @since JDK1.0
       
    49  */
       
    50 public final class Float extends Number implements Comparable<Float> {
       
    51     /**
       
    52      * A constant holding the positive infinity of type
       
    53      * {@code float}. It is equal to the value returned by
       
    54      * {@code Float.intBitsToFloat(0x7f800000)}.
       
    55      */
       
    56     public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
       
    57 
       
    58     /**
       
    59      * A constant holding the negative infinity of type
       
    60      * {@code float}. It is equal to the value returned by
       
    61      * {@code Float.intBitsToFloat(0xff800000)}.
       
    62      */
       
    63     public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
       
    64 
       
    65     /**
       
    66      * A constant holding a Not-a-Number (NaN) value of type
       
    67      * {@code float}.  It is equivalent to the value returned by
       
    68      * {@code Float.intBitsToFloat(0x7fc00000)}.
       
    69      */
       
    70     public static final float NaN = 0.0f / 0.0f;
       
    71 
       
    72     /**
       
    73      * A constant holding the largest positive finite value of type
       
    74      * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
       
    75      * It is equal to the hexadecimal floating-point literal
       
    76      * {@code 0x1.fffffeP+127f} and also equal to
       
    77      * {@code Float.intBitsToFloat(0x7f7fffff)}.
       
    78      */
       
    79     public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
       
    80 
       
    81     /**
       
    82      * A constant holding the smallest positive normal value of type
       
    83      * {@code float}, 2<sup>-126</sup>.  It is equal to the
       
    84      * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
       
    85      * equal to {@code Float.intBitsToFloat(0x00800000)}.
       
    86      *
       
    87      * @since 1.6
       
    88      */
       
    89     public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
       
    90 
       
    91     /**
       
    92      * A constant holding the smallest positive nonzero value of type
       
    93      * {@code float}, 2<sup>-149</sup>. It is equal to the
       
    94      * hexadecimal floating-point literal {@code 0x0.000002P-126f}
       
    95      * and also equal to {@code Float.intBitsToFloat(0x1)}.
       
    96      */
       
    97     public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
       
    98 
       
    99     /**
       
   100      * Maximum exponent a finite {@code float} variable may have.  It
       
   101      * is equal to the value returned by {@code
       
   102      * Math.getExponent(Float.MAX_VALUE)}.
       
   103      *
       
   104      * @since 1.6
       
   105      */
       
   106     public static final int MAX_EXPONENT = 127;
       
   107 
       
   108     /**
       
   109      * Minimum exponent a normalized {@code float} variable may have.
       
   110      * It is equal to the value returned by {@code
       
   111      * Math.getExponent(Float.MIN_NORMAL)}.
       
   112      *
       
   113      * @since 1.6
       
   114      */
       
   115     public static final int MIN_EXPONENT = -126;
       
   116 
       
   117     /**
       
   118      * The number of bits used to represent a {@code float} value.
       
   119      *
       
   120      * @since 1.5
       
   121      */
       
   122     public static final int SIZE = 32;
       
   123 
       
   124     /**
       
   125      * The {@code Class} instance representing the primitive type
       
   126      * {@code float}.
       
   127      *
       
   128      * @since JDK1.1
       
   129      */
       
   130     public static final Class<Float> TYPE = Class.getPrimitiveClass("float");
       
   131 
       
   132     /**
       
   133      * Returns a string representation of the {@code float}
       
   134      * argument. All characters mentioned below are ASCII characters.
       
   135      * <ul>
       
   136      * <li>If the argument is NaN, the result is the string
       
   137      * "{@code NaN}".
       
   138      * <li>Otherwise, the result is a string that represents the sign and
       
   139      *     magnitude (absolute value) of the argument. If the sign is
       
   140      *     negative, the first character of the result is
       
   141      *     '{@code -}' (<code>'&#92;u002D'</code>); if the sign is
       
   142      *     positive, no sign character appears in the result. As for
       
   143      *     the magnitude <i>m</i>:
       
   144      * <ul>
       
   145      * <li>If <i>m</i> is infinity, it is represented by the characters
       
   146      *     {@code "Infinity"}; thus, positive infinity produces
       
   147      *     the result {@code "Infinity"} and negative infinity
       
   148      *     produces the result {@code "-Infinity"}.
       
   149      * <li>If <i>m</i> is zero, it is represented by the characters
       
   150      *     {@code "0.0"}; thus, negative zero produces the result
       
   151      *     {@code "-0.0"} and positive zero produces the result
       
   152      *     {@code "0.0"}.
       
   153      * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
       
   154      *      less than 10<sup>7</sup>, then it is represented as the
       
   155      *      integer part of <i>m</i>, in decimal form with no leading
       
   156      *      zeroes, followed by '{@code .}'
       
   157      *      (<code>'&#92;u002E'</code>), followed by one or more
       
   158      *      decimal digits representing the fractional part of
       
   159      *      <i>m</i>.
       
   160      * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
       
   161      *      equal to 10<sup>7</sup>, then it is represented in
       
   162      *      so-called "computerized scientific notation." Let <i>n</i>
       
   163      *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
       
   164      *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
       
   165      *      be the mathematically exact quotient of <i>m</i> and
       
   166      *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
       
   167      *      The magnitude is then represented as the integer part of
       
   168      *      <i>a</i>, as a single decimal digit, followed by
       
   169      *      '{@code .}' (<code>'&#92;u002E'</code>), followed by
       
   170      *      decimal digits representing the fractional part of
       
   171      *      <i>a</i>, followed by the letter '{@code E}'
       
   172      *      (<code>'&#92;u0045'</code>), followed by a representation
       
   173      *      of <i>n</i> as a decimal integer, as produced by the
       
   174      *      method {@link java.lang.Integer#toString(int)}.
       
   175      *
       
   176      * </ul>
       
   177      * </ul>
       
   178      * How many digits must be printed for the fractional part of
       
   179      * <i>m</i> or <i>a</i>? There must be at least one digit
       
   180      * to represent the fractional part, and beyond that as many, but
       
   181      * only as many, more digits as are needed to uniquely distinguish
       
   182      * the argument value from adjacent values of type
       
   183      * {@code float}. That is, suppose that <i>x</i> is the
       
   184      * exact mathematical value represented by the decimal
       
   185      * representation produced by this method for a finite nonzero
       
   186      * argument <i>f</i>. Then <i>f</i> must be the {@code float}
       
   187      * value nearest to <i>x</i>; or, if two {@code float} values are
       
   188      * equally close to <i>x</i>, then <i>f</i> must be one of
       
   189      * them and the least significant bit of the significand of
       
   190      * <i>f</i> must be {@code 0}.
       
   191      *
       
   192      * <p>To create localized string representations of a floating-point
       
   193      * value, use subclasses of {@link java.text.NumberFormat}.
       
   194      *
       
   195      * @param   f   the float to be converted.
       
   196      * @return a string representation of the argument.
       
   197      */
       
   198     public static String toString(float f) {
       
   199         return new FloatingDecimal(f).toJavaFormatString();
       
   200     }
       
   201 
       
   202     /**
       
   203      * Returns a hexadecimal string representation of the
       
   204      * {@code float} argument. All characters mentioned below are
       
   205      * ASCII characters.
       
   206      *
       
   207      * <ul>
       
   208      * <li>If the argument is NaN, the result is the string
       
   209      *     "{@code NaN}".
       
   210      * <li>Otherwise, the result is a string that represents the sign and
       
   211      * magnitude (absolute value) of the argument. If the sign is negative,
       
   212      * the first character of the result is '{@code -}'
       
   213      * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
       
   214      * appears in the result. As for the magnitude <i>m</i>:
       
   215      *
       
   216      * <ul>
       
   217      * <li>If <i>m</i> is infinity, it is represented by the string
       
   218      * {@code "Infinity"}; thus, positive infinity produces the
       
   219      * result {@code "Infinity"} and negative infinity produces
       
   220      * the result {@code "-Infinity"}.
       
   221      *
       
   222      * <li>If <i>m</i> is zero, it is represented by the string
       
   223      * {@code "0x0.0p0"}; thus, negative zero produces the result
       
   224      * {@code "-0x0.0p0"} and positive zero produces the result
       
   225      * {@code "0x0.0p0"}.
       
   226      *
       
   227      * <li>If <i>m</i> is a {@code float} value with a
       
   228      * normalized representation, substrings are used to represent the
       
   229      * significand and exponent fields.  The significand is
       
   230      * represented by the characters {@code "0x1."}
       
   231      * followed by a lowercase hexadecimal representation of the rest
       
   232      * of the significand as a fraction.  Trailing zeros in the
       
   233      * hexadecimal representation are removed unless all the digits
       
   234      * are zero, in which case a single zero is used. Next, the
       
   235      * exponent is represented by {@code "p"} followed
       
   236      * by a decimal string of the unbiased exponent as if produced by
       
   237      * a call to {@link Integer#toString(int) Integer.toString} on the
       
   238      * exponent value.
       
   239      *
       
   240      * <li>If <i>m</i> is a {@code float} value with a subnormal
       
   241      * representation, the significand is represented by the
       
   242      * characters {@code "0x0."} followed by a
       
   243      * hexadecimal representation of the rest of the significand as a
       
   244      * fraction.  Trailing zeros in the hexadecimal representation are
       
   245      * removed. Next, the exponent is represented by
       
   246      * {@code "p-126"}.  Note that there must be at
       
   247      * least one nonzero digit in a subnormal significand.
       
   248      *
       
   249      * </ul>
       
   250      *
       
   251      * </ul>
       
   252      *
       
   253      * <table border>
       
   254      * <caption><h3>Examples</h3></caption>
       
   255      * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
       
   256      * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
       
   257      * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
       
   258      * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
       
   259      * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
       
   260      * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
       
   261      * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
       
   262      * <tr><td>{@code Float.MAX_VALUE}</td>
       
   263      *     <td>{@code 0x1.fffffep127}</td>
       
   264      * <tr><td>{@code Minimum Normal Value}</td>
       
   265      *     <td>{@code 0x1.0p-126}</td>
       
   266      * <tr><td>{@code Maximum Subnormal Value}</td>
       
   267      *     <td>{@code 0x0.fffffep-126}</td>
       
   268      * <tr><td>{@code Float.MIN_VALUE}</td>
       
   269      *     <td>{@code 0x0.000002p-126}</td>
       
   270      * </table>
       
   271      * @param   f   the {@code float} to be converted.
       
   272      * @return a hex string representation of the argument.
       
   273      * @since 1.5
       
   274      * @author Joseph D. Darcy
       
   275      */
       
   276     public static String toHexString(float f) {
       
   277         if (Math.abs(f) < FloatConsts.MIN_NORMAL
       
   278             &&  f != 0.0f ) {// float subnormal
       
   279             // Adjust exponent to create subnormal double, then
       
   280             // replace subnormal double exponent with subnormal float
       
   281             // exponent
       
   282             String s = Double.toHexString(FpUtils.scalb((double)f,
       
   283                                                         /* -1022+126 */
       
   284                                                         DoubleConsts.MIN_EXPONENT-
       
   285                                                         FloatConsts.MIN_EXPONENT));
       
   286             return s.replaceFirst("p-1022$", "p-126");
       
   287         }
       
   288         else // double string will be the same as float string
       
   289             return Double.toHexString(f);
       
   290     }
       
   291 
       
   292     /**
       
   293      * Returns a {@code Float} object holding the
       
   294      * {@code float} value represented by the argument string
       
   295      * {@code s}.
       
   296      *
       
   297      * <p>If {@code s} is {@code null}, then a
       
   298      * {@code NullPointerException} is thrown.
       
   299      *
       
   300      * <p>Leading and trailing whitespace characters in {@code s}
       
   301      * are ignored.  Whitespace is removed as if by the {@link
       
   302      * String#trim} method; that is, both ASCII space and control
       
   303      * characters are removed. The rest of {@code s} should
       
   304      * constitute a <i>FloatValue</i> as described by the lexical
       
   305      * syntax rules:
       
   306      *
       
   307      * <blockquote>
       
   308      * <dl>
       
   309      * <dt><i>FloatValue:</i>
       
   310      * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
       
   311      * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
       
   312      * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
       
   313      * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
       
   314      * <dd><i>SignedInteger</i>
       
   315      * </dl>
       
   316      *
       
   317      * <p>
       
   318      *
       
   319      * <dl>
       
   320      * <dt><i>HexFloatingPointLiteral</i>:
       
   321      * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
       
   322      * </dl>
       
   323      *
       
   324      * <p>
       
   325      *
       
   326      * <dl>
       
   327      * <dt><i>HexSignificand:</i>
       
   328      * <dd><i>HexNumeral</i>
       
   329      * <dd><i>HexNumeral</i> {@code .}
       
   330      * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
       
   331      *     </i>{@code .}<i> HexDigits</i>
       
   332      * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
       
   333      *     </i>{@code .} <i>HexDigits</i>
       
   334      * </dl>
       
   335      *
       
   336      * <p>
       
   337      *
       
   338      * <dl>
       
   339      * <dt><i>BinaryExponent:</i>
       
   340      * <dd><i>BinaryExponentIndicator SignedInteger</i>
       
   341      * </dl>
       
   342      *
       
   343      * <p>
       
   344      *
       
   345      * <dl>
       
   346      * <dt><i>BinaryExponentIndicator:</i>
       
   347      * <dd>{@code p}
       
   348      * <dd>{@code P}
       
   349      * </dl>
       
   350      *
       
   351      * </blockquote>
       
   352      *
       
   353      * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
       
   354      * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
       
   355      * <i>FloatTypeSuffix</i> are as defined in the lexical structure
       
   356      * sections of the <a
       
   357      * href="http://java.sun.com/docs/books/jls/html/">Java Language
       
   358      * Specification</a>. If {@code s} does not have the form of
       
   359      * a <i>FloatValue</i>, then a {@code NumberFormatException}
       
   360      * is thrown. Otherwise, {@code s} is regarded as
       
   361      * representing an exact decimal value in the usual
       
   362      * "computerized scientific notation" or as an exact
       
   363      * hexadecimal value; this exact numerical value is then
       
   364      * conceptually converted to an "infinitely precise"
       
   365      * binary value that is then rounded to type {@code float}
       
   366      * by the usual round-to-nearest rule of IEEE 754 floating-point
       
   367      * arithmetic, which includes preserving the sign of a zero
       
   368      * value. Finally, a {@code Float} object representing this
       
   369      * {@code float} value is returned.
       
   370      *
       
   371      * <p>To interpret localized string representations of a
       
   372      * floating-point value, use subclasses of {@link
       
   373      * java.text.NumberFormat}.
       
   374      *
       
   375      * <p>Note that trailing format specifiers, specifiers that
       
   376      * determine the type of a floating-point literal
       
   377      * ({@code 1.0f} is a {@code float} value;
       
   378      * {@code 1.0d} is a {@code double} value), do
       
   379      * <em>not</em> influence the results of this method.  In other
       
   380      * words, the numerical value of the input string is converted
       
   381      * directly to the target floating-point type.  In general, the
       
   382      * two-step sequence of conversions, string to {@code double}
       
   383      * followed by {@code double} to {@code float}, is
       
   384      * <em>not</em> equivalent to converting a string directly to
       
   385      * {@code float}.  For example, if first converted to an
       
   386      * intermediate {@code double} and then to
       
   387      * {@code float}, the string<br>
       
   388      * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
       
   389      * results in the {@code float} value
       
   390      * {@code 1.0000002f}; if the string is converted directly to
       
   391      * {@code float}, <code>1.000000<b>1</b>f</code> results.
       
   392      *
       
   393      * <p>To avoid calling this method on an invalid string and having
       
   394      * a {@code NumberFormatException} be thrown, the documentation
       
   395      * for {@link Double#valueOf Double.valueOf} lists a regular
       
   396      * expression which can be used to screen the input.
       
   397      *
       
   398      * @param   s   the string to be parsed.
       
   399      * @return  a {@code Float} object holding the value
       
   400      *          represented by the {@code String} argument.
       
   401      * @throws  NumberFormatException  if the string does not contain a
       
   402      *          parsable number.
       
   403      */
       
   404     public static Float valueOf(String s) throws NumberFormatException {
       
   405         return new Float(FloatingDecimal.readJavaFormatString(s).floatValue());
       
   406     }
       
   407 
       
   408     /**
       
   409      * Returns a {@code Float} instance representing the specified
       
   410      * {@code float} value.
       
   411      * If a new {@code Float} instance is not required, this method
       
   412      * should generally be used in preference to the constructor
       
   413      * {@link #Float(float)}, as this method is likely to yield
       
   414      * significantly better space and time performance by caching
       
   415      * frequently requested values.
       
   416      *
       
   417      * @param  f a float value.
       
   418      * @return a {@code Float} instance representing {@code f}.
       
   419      * @since  1.5
       
   420      */
       
   421     public static Float valueOf(float f) {
       
   422         return new Float(f);
       
   423     }
       
   424 
       
   425     /**
       
   426      * Returns a new {@code float} initialized to the value
       
   427      * represented by the specified {@code String}, as performed
       
   428      * by the {@code valueOf} method of class {@code Float}.
       
   429      *
       
   430      * @param      s   the string to be parsed.
       
   431      * @return the {@code float} value represented by the string
       
   432      *         argument.
       
   433      * @throws  NumberFormatException  if the string does not contain a
       
   434      *               parsable {@code float}.
       
   435      * @see        java.lang.Float#valueOf(String)
       
   436      * @since 1.2
       
   437      */
       
   438     public static float parseFloat(String s) throws NumberFormatException {
       
   439         return FloatingDecimal.readJavaFormatString(s).floatValue();
       
   440     }
       
   441 
       
   442     /**
       
   443      * Returns {@code true} if the specified number is a
       
   444      * Not-a-Number (NaN) value, {@code false} otherwise.
       
   445      *
       
   446      * @param   v   the value to be tested.
       
   447      * @return  {@code true} if the argument is NaN;
       
   448      *          {@code false} otherwise.
       
   449      */
       
   450     static public boolean isNaN(float v) {
       
   451         return (v != v);
       
   452     }
       
   453 
       
   454     /**
       
   455      * Returns {@code true} if the specified number is infinitely
       
   456      * large in magnitude, {@code false} otherwise.
       
   457      *
       
   458      * @param   v   the value to be tested.
       
   459      * @return  {@code true} if the argument is positive infinity or
       
   460      *          negative infinity; {@code false} otherwise.
       
   461      */
       
   462     static public boolean isInfinite(float v) {
       
   463         return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
       
   464     }
       
   465 
       
   466     /**
       
   467      * The value of the Float.
       
   468      *
       
   469      * @serial
       
   470      */
       
   471     private final float value;
       
   472 
       
   473     /**
       
   474      * Constructs a newly allocated {@code Float} object that
       
   475      * represents the primitive {@code float} argument.
       
   476      *
       
   477      * @param   value   the value to be represented by the {@code Float}.
       
   478      */
       
   479     public Float(float value) {
       
   480         this.value = value;
       
   481     }
       
   482 
       
   483     /**
       
   484      * Constructs a newly allocated {@code Float} object that
       
   485      * represents the argument converted to type {@code float}.
       
   486      *
       
   487      * @param   value   the value to be represented by the {@code Float}.
       
   488      */
       
   489     public Float(double value) {
       
   490         this.value = (float)value;
       
   491     }
       
   492 
       
   493     /**
       
   494      * Constructs a newly allocated {@code Float} object that
       
   495      * represents the floating-point value of type {@code float}
       
   496      * represented by the string. The string is converted to a
       
   497      * {@code float} value as if by the {@code valueOf} method.
       
   498      *
       
   499      * @param      s   a string to be converted to a {@code Float}.
       
   500      * @throws  NumberFormatException  if the string does not contain a
       
   501      *               parsable number.
       
   502      * @see        java.lang.Float#valueOf(java.lang.String)
       
   503      */
       
   504     public Float(String s) throws NumberFormatException {
       
   505         // REMIND: this is inefficient
       
   506         this(valueOf(s).floatValue());
       
   507     }
       
   508 
       
   509     /**
       
   510      * Returns {@code true} if this {@code Float} value is a
       
   511      * Not-a-Number (NaN), {@code false} otherwise.
       
   512      *
       
   513      * @return  {@code true} if the value represented by this object is
       
   514      *          NaN; {@code false} otherwise.
       
   515      */
       
   516     public boolean isNaN() {
       
   517         return isNaN(value);
       
   518     }
       
   519 
       
   520     /**
       
   521      * Returns {@code true} if this {@code Float} value is
       
   522      * infinitely large in magnitude, {@code false} otherwise.
       
   523      *
       
   524      * @return  {@code true} if the value represented by this object is
       
   525      *          positive infinity or negative infinity;
       
   526      *          {@code false} otherwise.
       
   527      */
       
   528     public boolean isInfinite() {
       
   529         return isInfinite(value);
       
   530     }
       
   531 
       
   532     /**
       
   533      * Returns a string representation of this {@code Float} object.
       
   534      * The primitive {@code float} value represented by this object
       
   535      * is converted to a {@code String} exactly as if by the method
       
   536      * {@code toString} of one argument.
       
   537      *
       
   538      * @return  a {@code String} representation of this object.
       
   539      * @see java.lang.Float#toString(float)
       
   540      */
       
   541     public String toString() {
       
   542         return String.valueOf(value);
       
   543     }
       
   544 
       
   545     /**
       
   546      * Returns the value of this {@code Float} as a {@code byte} (by
       
   547      * casting to a {@code byte}).
       
   548      *
       
   549      * @return  the {@code float} value represented by this object
       
   550      *          converted to type {@code byte}
       
   551      */
       
   552     public byte byteValue() {
       
   553         return (byte)value;
       
   554     }
       
   555 
       
   556     /**
       
   557      * Returns the value of this {@code Float} as a {@code short} (by
       
   558      * casting to a {@code short}).
       
   559      *
       
   560      * @return  the {@code float} value represented by this object
       
   561      *          converted to type {@code short}
       
   562      * @since JDK1.1
       
   563      */
       
   564     public short shortValue() {
       
   565         return (short)value;
       
   566     }
       
   567 
       
   568     /**
       
   569      * Returns the value of this {@code Float} as an {@code int} (by
       
   570      * casting to type {@code int}).
       
   571      *
       
   572      * @return  the {@code float} value represented by this object
       
   573      *          converted to type {@code int}
       
   574      */
       
   575     public int intValue() {
       
   576         return (int)value;
       
   577     }
       
   578 
       
   579     /**
       
   580      * Returns value of this {@code Float} as a {@code long} (by
       
   581      * casting to type {@code long}).
       
   582      *
       
   583      * @return  the {@code float} value represented by this object
       
   584      *          converted to type {@code long}
       
   585      */
       
   586     public long longValue() {
       
   587         return (long)value;
       
   588     }
       
   589 
       
   590     /**
       
   591      * Returns the {@code float} value of this {@code Float} object.
       
   592      *
       
   593      * @return the {@code float} value represented by this object
       
   594      */
       
   595     public float floatValue() {
       
   596         return value;
       
   597     }
       
   598 
       
   599     /**
       
   600      * Returns the {@code double} value of this {@code Float} object.
       
   601      *
       
   602      * @return the {@code float} value represented by this
       
   603      *         object is converted to type {@code double} and the
       
   604      *         result of the conversion is returned.
       
   605      */
       
   606     public double doubleValue() {
       
   607         return (double)value;
       
   608     }
       
   609 
       
   610     /**
       
   611      * Returns a hash code for this {@code Float} object. The
       
   612      * result is the integer bit representation, exactly as produced
       
   613      * by the method {@link #floatToIntBits(float)}, of the primitive
       
   614      * {@code float} value represented by this {@code Float}
       
   615      * object.
       
   616      *
       
   617      * @return a hash code value for this object.
       
   618      */
       
   619     public int hashCode() {
       
   620         return floatToIntBits(value);
       
   621     }
       
   622 
       
   623     /**
       
   624 
       
   625      * Compares this object against the specified object.  The result
       
   626      * is {@code true} if and only if the argument is not
       
   627      * {@code null} and is a {@code Float} object that
       
   628      * represents a {@code float} with the same value as the
       
   629      * {@code float} represented by this object. For this
       
   630      * purpose, two {@code float} values are considered to be the
       
   631      * same if and only if the method {@link #floatToIntBits(float)}
       
   632      * returns the identical {@code int} value when applied to
       
   633      * each.
       
   634      *
       
   635      * <p>Note that in most cases, for two instances of class
       
   636      * {@code Float}, {@code f1} and {@code f2}, the value
       
   637      * of {@code f1.equals(f2)} is {@code true} if and only if
       
   638      *
       
   639      * <blockquote><pre>
       
   640      *   f1.floatValue() == f2.floatValue()
       
   641      * </pre></blockquote>
       
   642      *
       
   643      * <p>also has the value {@code true}. However, there are two exceptions:
       
   644      * <ul>
       
   645      * <li>If {@code f1} and {@code f2} both represent
       
   646      *     {@code Float.NaN}, then the {@code equals} method returns
       
   647      *     {@code true}, even though {@code Float.NaN==Float.NaN}
       
   648      *     has the value {@code false}.
       
   649      * <li>If {@code f1} represents {@code +0.0f} while
       
   650      *     {@code f2} represents {@code -0.0f}, or vice
       
   651      *     versa, the {@code equal} test has the value
       
   652      *     {@code false}, even though {@code 0.0f==-0.0f}
       
   653      *     has the value {@code true}.
       
   654      * </ul>
       
   655      *
       
   656      * This definition allows hash tables to operate properly.
       
   657      *
       
   658      * @param obj the object to be compared
       
   659      * @return  {@code true} if the objects are the same;
       
   660      *          {@code false} otherwise.
       
   661      * @see java.lang.Float#floatToIntBits(float)
       
   662      */
       
   663     public boolean equals(Object obj) {
       
   664         return (obj instanceof Float)
       
   665                && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
       
   666     }
       
   667 
       
   668     /**
       
   669      * Returns a representation of the specified floating-point value
       
   670      * according to the IEEE 754 floating-point "single format" bit
       
   671      * layout.
       
   672      *
       
   673      * <p>Bit 31 (the bit that is selected by the mask
       
   674      * {@code 0x80000000}) represents the sign of the floating-point
       
   675      * number.
       
   676      * Bits 30-23 (the bits that are selected by the mask
       
   677      * {@code 0x7f800000}) represent the exponent.
       
   678      * Bits 22-0 (the bits that are selected by the mask
       
   679      * {@code 0x007fffff}) represent the significand (sometimes called
       
   680      * the mantissa) of the floating-point number.
       
   681      *
       
   682      * <p>If the argument is positive infinity, the result is
       
   683      * {@code 0x7f800000}.
       
   684      *
       
   685      * <p>If the argument is negative infinity, the result is
       
   686      * {@code 0xff800000}.
       
   687      *
       
   688      * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
       
   689      *
       
   690      * <p>In all cases, the result is an integer that, when given to the
       
   691      * {@link #intBitsToFloat(int)} method, will produce a floating-point
       
   692      * value the same as the argument to {@code floatToIntBits}
       
   693      * (except all NaN values are collapsed to a single
       
   694      * "canonical" NaN value).
       
   695      *
       
   696      * @param   value   a floating-point number.
       
   697      * @return the bits that represent the floating-point number.
       
   698      */
       
   699     public static int floatToIntBits(float value) {
       
   700         int result = floatToRawIntBits(value);
       
   701         // Check for NaN based on values of bit fields, maximum
       
   702         // exponent and nonzero significand.
       
   703         if ( ((result & FloatConsts.EXP_BIT_MASK) ==
       
   704               FloatConsts.EXP_BIT_MASK) &&
       
   705              (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
       
   706             result = 0x7fc00000;
       
   707         return result;
       
   708     }
       
   709 
       
   710     /**
       
   711      * Returns a representation of the specified floating-point value
       
   712      * according to the IEEE 754 floating-point "single format" bit
       
   713      * layout, preserving Not-a-Number (NaN) values.
       
   714      *
       
   715      * <p>Bit 31 (the bit that is selected by the mask
       
   716      * {@code 0x80000000}) represents the sign of the floating-point
       
   717      * number.
       
   718      * Bits 30-23 (the bits that are selected by the mask
       
   719      * {@code 0x7f800000}) represent the exponent.
       
   720      * Bits 22-0 (the bits that are selected by the mask
       
   721      * {@code 0x007fffff}) represent the significand (sometimes called
       
   722      * the mantissa) of the floating-point number.
       
   723      *
       
   724      * <p>If the argument is positive infinity, the result is
       
   725      * {@code 0x7f800000}.
       
   726      *
       
   727      * <p>If the argument is negative infinity, the result is
       
   728      * {@code 0xff800000}.
       
   729      *
       
   730      * <p>If the argument is NaN, the result is the integer representing
       
   731      * the actual NaN value.  Unlike the {@code floatToIntBits}
       
   732      * method, {@code floatToRawIntBits} does not collapse all the
       
   733      * bit patterns encoding a NaN to a single "canonical"
       
   734      * NaN value.
       
   735      *
       
   736      * <p>In all cases, the result is an integer that, when given to the
       
   737      * {@link #intBitsToFloat(int)} method, will produce a
       
   738      * floating-point value the same as the argument to
       
   739      * {@code floatToRawIntBits}.
       
   740      *
       
   741      * @param   value   a floating-point number.
       
   742      * @return the bits that represent the floating-point number.
       
   743      * @since 1.3
       
   744      */
       
   745     public static native int floatToRawIntBits(float value);
       
   746 
       
   747     /**
       
   748      * Returns the {@code float} value corresponding to a given
       
   749      * bit representation.
       
   750      * The argument is considered to be a representation of a
       
   751      * floating-point value according to the IEEE 754 floating-point
       
   752      * "single format" bit layout.
       
   753      *
       
   754      * <p>If the argument is {@code 0x7f800000}, the result is positive
       
   755      * infinity.
       
   756      *
       
   757      * <p>If the argument is {@code 0xff800000}, the result is negative
       
   758      * infinity.
       
   759      *
       
   760      * <p>If the argument is any value in the range
       
   761      * {@code 0x7f800001} through {@code 0x7fffffff} or in
       
   762      * the range {@code 0xff800001} through
       
   763      * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
       
   764      * floating-point operation provided by Java can distinguish
       
   765      * between two NaN values of the same type with different bit
       
   766      * patterns.  Distinct values of NaN are only distinguishable by
       
   767      * use of the {@code Float.floatToRawIntBits} method.
       
   768      *
       
   769      * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
       
   770      * values that can be computed from the argument:
       
   771      *
       
   772      * <blockquote><pre>
       
   773      * int s = ((bits &gt;&gt; 31) == 0) ? 1 : -1;
       
   774      * int e = ((bits &gt;&gt; 23) & 0xff);
       
   775      * int m = (e == 0) ?
       
   776      *                 (bits & 0x7fffff) &lt;&lt; 1 :
       
   777      *                 (bits & 0x7fffff) | 0x800000;
       
   778      * </pre></blockquote>
       
   779      *
       
   780      * Then the floating-point result equals the value of the mathematical
       
   781      * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
       
   782      *
       
   783      * <p>Note that this method may not be able to return a
       
   784      * {@code float} NaN with exactly same bit pattern as the
       
   785      * {@code int} argument.  IEEE 754 distinguishes between two
       
   786      * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
       
   787      * differences between the two kinds of NaN are generally not
       
   788      * visible in Java.  Arithmetic operations on signaling NaNs turn
       
   789      * them into quiet NaNs with a different, but often similar, bit
       
   790      * pattern.  However, on some processors merely copying a
       
   791      * signaling NaN also performs that conversion.  In particular,
       
   792      * copying a signaling NaN to return it to the calling method may
       
   793      * perform this conversion.  So {@code intBitsToFloat} may
       
   794      * not be able to return a {@code float} with a signaling NaN
       
   795      * bit pattern.  Consequently, for some {@code int} values,
       
   796      * {@code floatToRawIntBits(intBitsToFloat(start))} may
       
   797      * <i>not</i> equal {@code start}.  Moreover, which
       
   798      * particular bit patterns represent signaling NaNs is platform
       
   799      * dependent; although all NaN bit patterns, quiet or signaling,
       
   800      * must be in the NaN range identified above.
       
   801      *
       
   802      * @param   bits   an integer.
       
   803      * @return  the {@code float} floating-point value with the same bit
       
   804      *          pattern.
       
   805      */
       
   806     public static native float intBitsToFloat(int bits);
       
   807 
       
   808     /**
       
   809      * Compares two {@code Float} objects numerically.  There are
       
   810      * two ways in which comparisons performed by this method differ
       
   811      * from those performed by the Java language numerical comparison
       
   812      * operators ({@code <, <=, ==, >=, >}) when
       
   813      * applied to primitive {@code float} values:
       
   814      *
       
   815      * <ul><li>
       
   816      *          {@code Float.NaN} is considered by this method to
       
   817      *          be equal to itself and greater than all other
       
   818      *          {@code float} values
       
   819      *          (including {@code Float.POSITIVE_INFINITY}).
       
   820      * <li>
       
   821      *          {@code 0.0f} is considered by this method to be greater
       
   822      *          than {@code -0.0f}.
       
   823      * </ul>
       
   824      *
       
   825      * This ensures that the <i>natural ordering</i> of {@code Float}
       
   826      * objects imposed by this method is <i>consistent with equals</i>.
       
   827      *
       
   828      * @param   anotherFloat   the {@code Float} to be compared.
       
   829      * @return  the value {@code 0} if {@code anotherFloat} is
       
   830      *          numerically equal to this {@code Float}; a value
       
   831      *          less than {@code 0} if this {@code Float}
       
   832      *          is numerically less than {@code anotherFloat};
       
   833      *          and a value greater than {@code 0} if this
       
   834      *          {@code Float} is numerically greater than
       
   835      *          {@code anotherFloat}.
       
   836      *
       
   837      * @since   1.2
       
   838      * @see Comparable#compareTo(Object)
       
   839      */
       
   840     public int compareTo(Float anotherFloat) {
       
   841         return Float.compare(value, anotherFloat.value);
       
   842     }
       
   843 
       
   844     /**
       
   845      * Compares the two specified {@code float} values. The sign
       
   846      * of the integer value returned is the same as that of the
       
   847      * integer that would be returned by the call:
       
   848      * <pre>
       
   849      *    new Float(f1).compareTo(new Float(f2))
       
   850      * </pre>
       
   851      *
       
   852      * @param   f1        the first {@code float} to compare.
       
   853      * @param   f2        the second {@code float} to compare.
       
   854      * @return  the value {@code 0} if {@code f1} is
       
   855      *          numerically equal to {@code f2}; a value less than
       
   856      *          {@code 0} if {@code f1} is numerically less than
       
   857      *          {@code f2}; and a value greater than {@code 0}
       
   858      *          if {@code f1} is numerically greater than
       
   859      *          {@code f2}.
       
   860      * @since 1.4
       
   861      */
       
   862     public static int compare(float f1, float f2) {
       
   863        if (f1 < f2)
       
   864             return -1;           // Neither val is NaN, thisVal is smaller
       
   865         if (f1 > f2)
       
   866             return 1;            // Neither val is NaN, thisVal is larger
       
   867 
       
   868         int thisBits = Float.floatToIntBits(f1);
       
   869         int anotherBits = Float.floatToIntBits(f2);
       
   870 
       
   871         return (thisBits == anotherBits ?  0 : // Values are equal
       
   872                 (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
       
   873                  1));                          // (0.0, -0.0) or (NaN, !NaN)
       
   874     }
       
   875 
       
   876     /** use serialVersionUID from JDK 1.0.2 for interoperability */
       
   877     private static final long serialVersionUID = -2671257302660747028L;
       
   878 }