jdk/src/share/classes/java/lang/Float.java
changeset 2 90ce3da70b43
child 1824 7a685390c6ab
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/lang/Float.java	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,878 @@
+/*
+ * Copyright 1994-2006 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Sun designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Sun in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+package java.lang;
+
+import sun.misc.FloatingDecimal;
+import sun.misc.FpUtils;
+import sun.misc.FloatConsts;
+import sun.misc.DoubleConsts;
+
+/**
+ * The {@code Float} class wraps a value of primitive type
+ * {@code float} in an object. An object of type
+ * {@code Float} contains a single field whose type is
+ * {@code float}.
+ *
+ * <p>In addition, this class provides several methods for converting a
+ * {@code float} to a {@code String} and a
+ * {@code String} to a {@code float}, as well as other
+ * constants and methods useful when dealing with a
+ * {@code float}.
+ *
+ * @author  Lee Boynton
+ * @author  Arthur van Hoff
+ * @author  Joseph D. Darcy
+ * @since JDK1.0
+ */
+public final class Float extends Number implements Comparable<Float> {
+    /**
+     * A constant holding the positive infinity of type
+     * {@code float}. It is equal to the value returned by
+     * {@code Float.intBitsToFloat(0x7f800000)}.
+     */
+    public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
+
+    /**
+     * A constant holding the negative infinity of type
+     * {@code float}. It is equal to the value returned by
+     * {@code Float.intBitsToFloat(0xff800000)}.
+     */
+    public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
+
+    /**
+     * A constant holding a Not-a-Number (NaN) value of type
+     * {@code float}.  It is equivalent to the value returned by
+     * {@code Float.intBitsToFloat(0x7fc00000)}.
+     */
+    public static final float NaN = 0.0f / 0.0f;
+
+    /**
+     * A constant holding the largest positive finite value of type
+     * {@code float}, (2-2<sup>-23</sup>)&middot;2<sup>127</sup>.
+     * It is equal to the hexadecimal floating-point literal
+     * {@code 0x1.fffffeP+127f} and also equal to
+     * {@code Float.intBitsToFloat(0x7f7fffff)}.
+     */
+    public static final float MAX_VALUE = 0x1.fffffeP+127f; // 3.4028235e+38f
+
+    /**
+     * A constant holding the smallest positive normal value of type
+     * {@code float}, 2<sup>-126</sup>.  It is equal to the
+     * hexadecimal floating-point literal {@code 0x1.0p-126f} and also
+     * equal to {@code Float.intBitsToFloat(0x00800000)}.
+     *
+     * @since 1.6
+     */
+    public static final float MIN_NORMAL = 0x1.0p-126f; // 1.17549435E-38f
+
+    /**
+     * A constant holding the smallest positive nonzero value of type
+     * {@code float}, 2<sup>-149</sup>. It is equal to the
+     * hexadecimal floating-point literal {@code 0x0.000002P-126f}
+     * and also equal to {@code Float.intBitsToFloat(0x1)}.
+     */
+    public static final float MIN_VALUE = 0x0.000002P-126f; // 1.4e-45f
+
+    /**
+     * Maximum exponent a finite {@code float} variable may have.  It
+     * is equal to the value returned by {@code
+     * Math.getExponent(Float.MAX_VALUE)}.
+     *
+     * @since 1.6
+     */
+    public static final int MAX_EXPONENT = 127;
+
+    /**
+     * Minimum exponent a normalized {@code float} variable may have.
+     * It is equal to the value returned by {@code
+     * Math.getExponent(Float.MIN_NORMAL)}.
+     *
+     * @since 1.6
+     */
+    public static final int MIN_EXPONENT = -126;
+
+    /**
+     * The number of bits used to represent a {@code float} value.
+     *
+     * @since 1.5
+     */
+    public static final int SIZE = 32;
+
+    /**
+     * The {@code Class} instance representing the primitive type
+     * {@code float}.
+     *
+     * @since JDK1.1
+     */
+    public static final Class<Float> TYPE = Class.getPrimitiveClass("float");
+
+    /**
+     * Returns a string representation of the {@code float}
+     * argument. All characters mentioned below are ASCII characters.
+     * <ul>
+     * <li>If the argument is NaN, the result is the string
+     * "{@code NaN}".
+     * <li>Otherwise, the result is a string that represents the sign and
+     *     magnitude (absolute value) of the argument. If the sign is
+     *     negative, the first character of the result is
+     *     '{@code -}' (<code>'&#92;u002D'</code>); if the sign is
+     *     positive, no sign character appears in the result. As for
+     *     the magnitude <i>m</i>:
+     * <ul>
+     * <li>If <i>m</i> is infinity, it is represented by the characters
+     *     {@code "Infinity"}; thus, positive infinity produces
+     *     the result {@code "Infinity"} and negative infinity
+     *     produces the result {@code "-Infinity"}.
+     * <li>If <i>m</i> is zero, it is represented by the characters
+     *     {@code "0.0"}; thus, negative zero produces the result
+     *     {@code "-0.0"} and positive zero produces the result
+     *     {@code "0.0"}.
+     * <li> If <i>m</i> is greater than or equal to 10<sup>-3</sup> but
+     *      less than 10<sup>7</sup>, then it is represented as the
+     *      integer part of <i>m</i>, in decimal form with no leading
+     *      zeroes, followed by '{@code .}'
+     *      (<code>'&#92;u002E'</code>), followed by one or more
+     *      decimal digits representing the fractional part of
+     *      <i>m</i>.
+     * <li> If <i>m</i> is less than 10<sup>-3</sup> or greater than or
+     *      equal to 10<sup>7</sup>, then it is represented in
+     *      so-called "computerized scientific notation." Let <i>n</i>
+     *      be the unique integer such that 10<sup><i>n</i> </sup>&le;
+     *      <i>m</i> {@literal <} 10<sup><i>n</i>+1</sup>; then let <i>a</i>
+     *      be the mathematically exact quotient of <i>m</i> and
+     *      10<sup><i>n</i></sup> so that 1 &le; <i>a</i> {@literal <} 10.
+     *      The magnitude is then represented as the integer part of
+     *      <i>a</i>, as a single decimal digit, followed by
+     *      '{@code .}' (<code>'&#92;u002E'</code>), followed by
+     *      decimal digits representing the fractional part of
+     *      <i>a</i>, followed by the letter '{@code E}'
+     *      (<code>'&#92;u0045'</code>), followed by a representation
+     *      of <i>n</i> as a decimal integer, as produced by the
+     *      method {@link java.lang.Integer#toString(int)}.
+     *
+     * </ul>
+     * </ul>
+     * How many digits must be printed for the fractional part of
+     * <i>m</i> or <i>a</i>? There must be at least one digit
+     * to represent the fractional part, and beyond that as many, but
+     * only as many, more digits as are needed to uniquely distinguish
+     * the argument value from adjacent values of type
+     * {@code float}. That is, suppose that <i>x</i> is the
+     * exact mathematical value represented by the decimal
+     * representation produced by this method for a finite nonzero
+     * argument <i>f</i>. Then <i>f</i> must be the {@code float}
+     * value nearest to <i>x</i>; or, if two {@code float} values are
+     * equally close to <i>x</i>, then <i>f</i> must be one of
+     * them and the least significant bit of the significand of
+     * <i>f</i> must be {@code 0}.
+     *
+     * <p>To create localized string representations of a floating-point
+     * value, use subclasses of {@link java.text.NumberFormat}.
+     *
+     * @param   f   the float to be converted.
+     * @return a string representation of the argument.
+     */
+    public static String toString(float f) {
+        return new FloatingDecimal(f).toJavaFormatString();
+    }
+
+    /**
+     * Returns a hexadecimal string representation of the
+     * {@code float} argument. All characters mentioned below are
+     * ASCII characters.
+     *
+     * <ul>
+     * <li>If the argument is NaN, the result is the string
+     *     "{@code NaN}".
+     * <li>Otherwise, the result is a string that represents the sign and
+     * magnitude (absolute value) of the argument. If the sign is negative,
+     * the first character of the result is '{@code -}'
+     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character
+     * appears in the result. As for the magnitude <i>m</i>:
+     *
+     * <ul>
+     * <li>If <i>m</i> is infinity, it is represented by the string
+     * {@code "Infinity"}; thus, positive infinity produces the
+     * result {@code "Infinity"} and negative infinity produces
+     * the result {@code "-Infinity"}.
+     *
+     * <li>If <i>m</i> is zero, it is represented by the string
+     * {@code "0x0.0p0"}; thus, negative zero produces the result
+     * {@code "-0x0.0p0"} and positive zero produces the result
+     * {@code "0x0.0p0"}.
+     *
+     * <li>If <i>m</i> is a {@code float} value with a
+     * normalized representation, substrings are used to represent the
+     * significand and exponent fields.  The significand is
+     * represented by the characters {@code "0x1."}
+     * followed by a lowercase hexadecimal representation of the rest
+     * of the significand as a fraction.  Trailing zeros in the
+     * hexadecimal representation are removed unless all the digits
+     * are zero, in which case a single zero is used. Next, the
+     * exponent is represented by {@code "p"} followed
+     * by a decimal string of the unbiased exponent as if produced by
+     * a call to {@link Integer#toString(int) Integer.toString} on the
+     * exponent value.
+     *
+     * <li>If <i>m</i> is a {@code float} value with a subnormal
+     * representation, the significand is represented by the
+     * characters {@code "0x0."} followed by a
+     * hexadecimal representation of the rest of the significand as a
+     * fraction.  Trailing zeros in the hexadecimal representation are
+     * removed. Next, the exponent is represented by
+     * {@code "p-126"}.  Note that there must be at
+     * least one nonzero digit in a subnormal significand.
+     *
+     * </ul>
+     *
+     * </ul>
+     *
+     * <table border>
+     * <caption><h3>Examples</h3></caption>
+     * <tr><th>Floating-point Value</th><th>Hexadecimal String</th>
+     * <tr><td>{@code 1.0}</td> <td>{@code 0x1.0p0}</td>
+     * <tr><td>{@code -1.0}</td>        <td>{@code -0x1.0p0}</td>
+     * <tr><td>{@code 2.0}</td> <td>{@code 0x1.0p1}</td>
+     * <tr><td>{@code 3.0}</td> <td>{@code 0x1.8p1}</td>
+     * <tr><td>{@code 0.5}</td> <td>{@code 0x1.0p-1}</td>
+     * <tr><td>{@code 0.25}</td>        <td>{@code 0x1.0p-2}</td>
+     * <tr><td>{@code Float.MAX_VALUE}</td>
+     *     <td>{@code 0x1.fffffep127}</td>
+     * <tr><td>{@code Minimum Normal Value}</td>
+     *     <td>{@code 0x1.0p-126}</td>
+     * <tr><td>{@code Maximum Subnormal Value}</td>
+     *     <td>{@code 0x0.fffffep-126}</td>
+     * <tr><td>{@code Float.MIN_VALUE}</td>
+     *     <td>{@code 0x0.000002p-126}</td>
+     * </table>
+     * @param   f   the {@code float} to be converted.
+     * @return a hex string representation of the argument.
+     * @since 1.5
+     * @author Joseph D. Darcy
+     */
+    public static String toHexString(float f) {
+        if (Math.abs(f) < FloatConsts.MIN_NORMAL
+            &&  f != 0.0f ) {// float subnormal
+            // Adjust exponent to create subnormal double, then
+            // replace subnormal double exponent with subnormal float
+            // exponent
+            String s = Double.toHexString(FpUtils.scalb((double)f,
+                                                        /* -1022+126 */
+                                                        DoubleConsts.MIN_EXPONENT-
+                                                        FloatConsts.MIN_EXPONENT));
+            return s.replaceFirst("p-1022$", "p-126");
+        }
+        else // double string will be the same as float string
+            return Double.toHexString(f);
+    }
+
+    /**
+     * Returns a {@code Float} object holding the
+     * {@code float} value represented by the argument string
+     * {@code s}.
+     *
+     * <p>If {@code s} is {@code null}, then a
+     * {@code NullPointerException} is thrown.
+     *
+     * <p>Leading and trailing whitespace characters in {@code s}
+     * are ignored.  Whitespace is removed as if by the {@link
+     * String#trim} method; that is, both ASCII space and control
+     * characters are removed. The rest of {@code s} should
+     * constitute a <i>FloatValue</i> as described by the lexical
+     * syntax rules:
+     *
+     * <blockquote>
+     * <dl>
+     * <dt><i>FloatValue:</i>
+     * <dd><i>Sign<sub>opt</sub></i> {@code NaN}
+     * <dd><i>Sign<sub>opt</sub></i> {@code Infinity}
+     * <dd><i>Sign<sub>opt</sub> FloatingPointLiteral</i>
+     * <dd><i>Sign<sub>opt</sub> HexFloatingPointLiteral</i>
+     * <dd><i>SignedInteger</i>
+     * </dl>
+     *
+     * <p>
+     *
+     * <dl>
+     * <dt><i>HexFloatingPointLiteral</i>:
+     * <dd> <i>HexSignificand BinaryExponent FloatTypeSuffix<sub>opt</sub></i>
+     * </dl>
+     *
+     * <p>
+     *
+     * <dl>
+     * <dt><i>HexSignificand:</i>
+     * <dd><i>HexNumeral</i>
+     * <dd><i>HexNumeral</i> {@code .}
+     * <dd>{@code 0x} <i>HexDigits<sub>opt</sub>
+     *     </i>{@code .}<i> HexDigits</i>
+     * <dd>{@code 0X}<i> HexDigits<sub>opt</sub>
+     *     </i>{@code .} <i>HexDigits</i>
+     * </dl>
+     *
+     * <p>
+     *
+     * <dl>
+     * <dt><i>BinaryExponent:</i>
+     * <dd><i>BinaryExponentIndicator SignedInteger</i>
+     * </dl>
+     *
+     * <p>
+     *
+     * <dl>
+     * <dt><i>BinaryExponentIndicator:</i>
+     * <dd>{@code p}
+     * <dd>{@code P}
+     * </dl>
+     *
+     * </blockquote>
+     *
+     * where <i>Sign</i>, <i>FloatingPointLiteral</i>,
+     * <i>HexNumeral</i>, <i>HexDigits</i>, <i>SignedInteger</i> and
+     * <i>FloatTypeSuffix</i> are as defined in the lexical structure
+     * sections of the <a
+     * href="http://java.sun.com/docs/books/jls/html/">Java Language
+     * Specification</a>. If {@code s} does not have the form of
+     * a <i>FloatValue</i>, then a {@code NumberFormatException}
+     * is thrown. Otherwise, {@code s} is regarded as
+     * representing an exact decimal value in the usual
+     * "computerized scientific notation" or as an exact
+     * hexadecimal value; this exact numerical value is then
+     * conceptually converted to an "infinitely precise"
+     * binary value that is then rounded to type {@code float}
+     * by the usual round-to-nearest rule of IEEE 754 floating-point
+     * arithmetic, which includes preserving the sign of a zero
+     * value. Finally, a {@code Float} object representing this
+     * {@code float} value is returned.
+     *
+     * <p>To interpret localized string representations of a
+     * floating-point value, use subclasses of {@link
+     * java.text.NumberFormat}.
+     *
+     * <p>Note that trailing format specifiers, specifiers that
+     * determine the type of a floating-point literal
+     * ({@code 1.0f} is a {@code float} value;
+     * {@code 1.0d} is a {@code double} value), do
+     * <em>not</em> influence the results of this method.  In other
+     * words, the numerical value of the input string is converted
+     * directly to the target floating-point type.  In general, the
+     * two-step sequence of conversions, string to {@code double}
+     * followed by {@code double} to {@code float}, is
+     * <em>not</em> equivalent to converting a string directly to
+     * {@code float}.  For example, if first converted to an
+     * intermediate {@code double} and then to
+     * {@code float}, the string<br>
+     * {@code "1.00000017881393421514957253748434595763683319091796875001d"}<br>
+     * results in the {@code float} value
+     * {@code 1.0000002f}; if the string is converted directly to
+     * {@code float}, <code>1.000000<b>1</b>f</code> results.
+     *
+     * <p>To avoid calling this method on an invalid string and having
+     * a {@code NumberFormatException} be thrown, the documentation
+     * for {@link Double#valueOf Double.valueOf} lists a regular
+     * expression which can be used to screen the input.
+     *
+     * @param   s   the string to be parsed.
+     * @return  a {@code Float} object holding the value
+     *          represented by the {@code String} argument.
+     * @throws  NumberFormatException  if the string does not contain a
+     *          parsable number.
+     */
+    public static Float valueOf(String s) throws NumberFormatException {
+        return new Float(FloatingDecimal.readJavaFormatString(s).floatValue());
+    }
+
+    /**
+     * Returns a {@code Float} instance representing the specified
+     * {@code float} value.
+     * If a new {@code Float} instance is not required, this method
+     * should generally be used in preference to the constructor
+     * {@link #Float(float)}, as this method is likely to yield
+     * significantly better space and time performance by caching
+     * frequently requested values.
+     *
+     * @param  f a float value.
+     * @return a {@code Float} instance representing {@code f}.
+     * @since  1.5
+     */
+    public static Float valueOf(float f) {
+        return new Float(f);
+    }
+
+    /**
+     * Returns a new {@code float} initialized to the value
+     * represented by the specified {@code String}, as performed
+     * by the {@code valueOf} method of class {@code Float}.
+     *
+     * @param      s   the string to be parsed.
+     * @return the {@code float} value represented by the string
+     *         argument.
+     * @throws  NumberFormatException  if the string does not contain a
+     *               parsable {@code float}.
+     * @see        java.lang.Float#valueOf(String)
+     * @since 1.2
+     */
+    public static float parseFloat(String s) throws NumberFormatException {
+        return FloatingDecimal.readJavaFormatString(s).floatValue();
+    }
+
+    /**
+     * Returns {@code true} if the specified number is a
+     * Not-a-Number (NaN) value, {@code false} otherwise.
+     *
+     * @param   v   the value to be tested.
+     * @return  {@code true} if the argument is NaN;
+     *          {@code false} otherwise.
+     */
+    static public boolean isNaN(float v) {
+        return (v != v);
+    }
+
+    /**
+     * Returns {@code true} if the specified number is infinitely
+     * large in magnitude, {@code false} otherwise.
+     *
+     * @param   v   the value to be tested.
+     * @return  {@code true} if the argument is positive infinity or
+     *          negative infinity; {@code false} otherwise.
+     */
+    static public boolean isInfinite(float v) {
+        return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
+    }
+
+    /**
+     * The value of the Float.
+     *
+     * @serial
+     */
+    private final float value;
+
+    /**
+     * Constructs a newly allocated {@code Float} object that
+     * represents the primitive {@code float} argument.
+     *
+     * @param   value   the value to be represented by the {@code Float}.
+     */
+    public Float(float value) {
+        this.value = value;
+    }
+
+    /**
+     * Constructs a newly allocated {@code Float} object that
+     * represents the argument converted to type {@code float}.
+     *
+     * @param   value   the value to be represented by the {@code Float}.
+     */
+    public Float(double value) {
+        this.value = (float)value;
+    }
+
+    /**
+     * Constructs a newly allocated {@code Float} object that
+     * represents the floating-point value of type {@code float}
+     * represented by the string. The string is converted to a
+     * {@code float} value as if by the {@code valueOf} method.
+     *
+     * @param      s   a string to be converted to a {@code Float}.
+     * @throws  NumberFormatException  if the string does not contain a
+     *               parsable number.
+     * @see        java.lang.Float#valueOf(java.lang.String)
+     */
+    public Float(String s) throws NumberFormatException {
+        // REMIND: this is inefficient
+        this(valueOf(s).floatValue());
+    }
+
+    /**
+     * Returns {@code true} if this {@code Float} value is a
+     * Not-a-Number (NaN), {@code false} otherwise.
+     *
+     * @return  {@code true} if the value represented by this object is
+     *          NaN; {@code false} otherwise.
+     */
+    public boolean isNaN() {
+        return isNaN(value);
+    }
+
+    /**
+     * Returns {@code true} if this {@code Float} value is
+     * infinitely large in magnitude, {@code false} otherwise.
+     *
+     * @return  {@code true} if the value represented by this object is
+     *          positive infinity or negative infinity;
+     *          {@code false} otherwise.
+     */
+    public boolean isInfinite() {
+        return isInfinite(value);
+    }
+
+    /**
+     * Returns a string representation of this {@code Float} object.
+     * The primitive {@code float} value represented by this object
+     * is converted to a {@code String} exactly as if by the method
+     * {@code toString} of one argument.
+     *
+     * @return  a {@code String} representation of this object.
+     * @see java.lang.Float#toString(float)
+     */
+    public String toString() {
+        return String.valueOf(value);
+    }
+
+    /**
+     * Returns the value of this {@code Float} as a {@code byte} (by
+     * casting to a {@code byte}).
+     *
+     * @return  the {@code float} value represented by this object
+     *          converted to type {@code byte}
+     */
+    public byte byteValue() {
+        return (byte)value;
+    }
+
+    /**
+     * Returns the value of this {@code Float} as a {@code short} (by
+     * casting to a {@code short}).
+     *
+     * @return  the {@code float} value represented by this object
+     *          converted to type {@code short}
+     * @since JDK1.1
+     */
+    public short shortValue() {
+        return (short)value;
+    }
+
+    /**
+     * Returns the value of this {@code Float} as an {@code int} (by
+     * casting to type {@code int}).
+     *
+     * @return  the {@code float} value represented by this object
+     *          converted to type {@code int}
+     */
+    public int intValue() {
+        return (int)value;
+    }
+
+    /**
+     * Returns value of this {@code Float} as a {@code long} (by
+     * casting to type {@code long}).
+     *
+     * @return  the {@code float} value represented by this object
+     *          converted to type {@code long}
+     */
+    public long longValue() {
+        return (long)value;
+    }
+
+    /**
+     * Returns the {@code float} value of this {@code Float} object.
+     *
+     * @return the {@code float} value represented by this object
+     */
+    public float floatValue() {
+        return value;
+    }
+
+    /**
+     * Returns the {@code double} value of this {@code Float} object.
+     *
+     * @return the {@code float} value represented by this
+     *         object is converted to type {@code double} and the
+     *         result of the conversion is returned.
+     */
+    public double doubleValue() {
+        return (double)value;
+    }
+
+    /**
+     * Returns a hash code for this {@code Float} object. The
+     * result is the integer bit representation, exactly as produced
+     * by the method {@link #floatToIntBits(float)}, of the primitive
+     * {@code float} value represented by this {@code Float}
+     * object.
+     *
+     * @return a hash code value for this object.
+     */
+    public int hashCode() {
+        return floatToIntBits(value);
+    }
+
+    /**
+
+     * Compares this object against the specified object.  The result
+     * is {@code true} if and only if the argument is not
+     * {@code null} and is a {@code Float} object that
+     * represents a {@code float} with the same value as the
+     * {@code float} represented by this object. For this
+     * purpose, two {@code float} values are considered to be the
+     * same if and only if the method {@link #floatToIntBits(float)}
+     * returns the identical {@code int} value when applied to
+     * each.
+     *
+     * <p>Note that in most cases, for two instances of class
+     * {@code Float}, {@code f1} and {@code f2}, the value
+     * of {@code f1.equals(f2)} is {@code true} if and only if
+     *
+     * <blockquote><pre>
+     *   f1.floatValue() == f2.floatValue()
+     * </pre></blockquote>
+     *
+     * <p>also has the value {@code true}. However, there are two exceptions:
+     * <ul>
+     * <li>If {@code f1} and {@code f2} both represent
+     *     {@code Float.NaN}, then the {@code equals} method returns
+     *     {@code true}, even though {@code Float.NaN==Float.NaN}
+     *     has the value {@code false}.
+     * <li>If {@code f1} represents {@code +0.0f} while
+     *     {@code f2} represents {@code -0.0f}, or vice
+     *     versa, the {@code equal} test has the value
+     *     {@code false}, even though {@code 0.0f==-0.0f}
+     *     has the value {@code true}.
+     * </ul>
+     *
+     * This definition allows hash tables to operate properly.
+     *
+     * @param obj the object to be compared
+     * @return  {@code true} if the objects are the same;
+     *          {@code false} otherwise.
+     * @see java.lang.Float#floatToIntBits(float)
+     */
+    public boolean equals(Object obj) {
+        return (obj instanceof Float)
+               && (floatToIntBits(((Float)obj).value) == floatToIntBits(value));
+    }
+
+    /**
+     * Returns a representation of the specified floating-point value
+     * according to the IEEE 754 floating-point "single format" bit
+     * layout.
+     *
+     * <p>Bit 31 (the bit that is selected by the mask
+     * {@code 0x80000000}) represents the sign of the floating-point
+     * number.
+     * Bits 30-23 (the bits that are selected by the mask
+     * {@code 0x7f800000}) represent the exponent.
+     * Bits 22-0 (the bits that are selected by the mask
+     * {@code 0x007fffff}) represent the significand (sometimes called
+     * the mantissa) of the floating-point number.
+     *
+     * <p>If the argument is positive infinity, the result is
+     * {@code 0x7f800000}.
+     *
+     * <p>If the argument is negative infinity, the result is
+     * {@code 0xff800000}.
+     *
+     * <p>If the argument is NaN, the result is {@code 0x7fc00000}.
+     *
+     * <p>In all cases, the result is an integer that, when given to the
+     * {@link #intBitsToFloat(int)} method, will produce a floating-point
+     * value the same as the argument to {@code floatToIntBits}
+     * (except all NaN values are collapsed to a single
+     * "canonical" NaN value).
+     *
+     * @param   value   a floating-point number.
+     * @return the bits that represent the floating-point number.
+     */
+    public static int floatToIntBits(float value) {
+        int result = floatToRawIntBits(value);
+        // Check for NaN based on values of bit fields, maximum
+        // exponent and nonzero significand.
+        if ( ((result & FloatConsts.EXP_BIT_MASK) ==
+              FloatConsts.EXP_BIT_MASK) &&
+             (result & FloatConsts.SIGNIF_BIT_MASK) != 0)
+            result = 0x7fc00000;
+        return result;
+    }
+
+    /**
+     * Returns a representation of the specified floating-point value
+     * according to the IEEE 754 floating-point "single format" bit
+     * layout, preserving Not-a-Number (NaN) values.
+     *
+     * <p>Bit 31 (the bit that is selected by the mask
+     * {@code 0x80000000}) represents the sign of the floating-point
+     * number.
+     * Bits 30-23 (the bits that are selected by the mask
+     * {@code 0x7f800000}) represent the exponent.
+     * Bits 22-0 (the bits that are selected by the mask
+     * {@code 0x007fffff}) represent the significand (sometimes called
+     * the mantissa) of the floating-point number.
+     *
+     * <p>If the argument is positive infinity, the result is
+     * {@code 0x7f800000}.
+     *
+     * <p>If the argument is negative infinity, the result is
+     * {@code 0xff800000}.
+     *
+     * <p>If the argument is NaN, the result is the integer representing
+     * the actual NaN value.  Unlike the {@code floatToIntBits}
+     * method, {@code floatToRawIntBits} does not collapse all the
+     * bit patterns encoding a NaN to a single "canonical"
+     * NaN value.
+     *
+     * <p>In all cases, the result is an integer that, when given to the
+     * {@link #intBitsToFloat(int)} method, will produce a
+     * floating-point value the same as the argument to
+     * {@code floatToRawIntBits}.
+     *
+     * @param   value   a floating-point number.
+     * @return the bits that represent the floating-point number.
+     * @since 1.3
+     */
+    public static native int floatToRawIntBits(float value);
+
+    /**
+     * Returns the {@code float} value corresponding to a given
+     * bit representation.
+     * The argument is considered to be a representation of a
+     * floating-point value according to the IEEE 754 floating-point
+     * "single format" bit layout.
+     *
+     * <p>If the argument is {@code 0x7f800000}, the result is positive
+     * infinity.
+     *
+     * <p>If the argument is {@code 0xff800000}, the result is negative
+     * infinity.
+     *
+     * <p>If the argument is any value in the range
+     * {@code 0x7f800001} through {@code 0x7fffffff} or in
+     * the range {@code 0xff800001} through
+     * {@code 0xffffffff}, the result is a NaN.  No IEEE 754
+     * floating-point operation provided by Java can distinguish
+     * between two NaN values of the same type with different bit
+     * patterns.  Distinct values of NaN are only distinguishable by
+     * use of the {@code Float.floatToRawIntBits} method.
+     *
+     * <p>In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
+     * values that can be computed from the argument:
+     *
+     * <blockquote><pre>
+     * int s = ((bits &gt;&gt; 31) == 0) ? 1 : -1;
+     * int e = ((bits &gt;&gt; 23) & 0xff);
+     * int m = (e == 0) ?
+     *                 (bits & 0x7fffff) &lt;&lt; 1 :
+     *                 (bits & 0x7fffff) | 0x800000;
+     * </pre></blockquote>
+     *
+     * Then the floating-point result equals the value of the mathematical
+     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-150</sup>.
+     *
+     * <p>Note that this method may not be able to return a
+     * {@code float} NaN with exactly same bit pattern as the
+     * {@code int} argument.  IEEE 754 distinguishes between two
+     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
+     * differences between the two kinds of NaN are generally not
+     * visible in Java.  Arithmetic operations on signaling NaNs turn
+     * them into quiet NaNs with a different, but often similar, bit
+     * pattern.  However, on some processors merely copying a
+     * signaling NaN also performs that conversion.  In particular,
+     * copying a signaling NaN to return it to the calling method may
+     * perform this conversion.  So {@code intBitsToFloat} may
+     * not be able to return a {@code float} with a signaling NaN
+     * bit pattern.  Consequently, for some {@code int} values,
+     * {@code floatToRawIntBits(intBitsToFloat(start))} may
+     * <i>not</i> equal {@code start}.  Moreover, which
+     * particular bit patterns represent signaling NaNs is platform
+     * dependent; although all NaN bit patterns, quiet or signaling,
+     * must be in the NaN range identified above.
+     *
+     * @param   bits   an integer.
+     * @return  the {@code float} floating-point value with the same bit
+     *          pattern.
+     */
+    public static native float intBitsToFloat(int bits);
+
+    /**
+     * Compares two {@code Float} objects numerically.  There are
+     * two ways in which comparisons performed by this method differ
+     * from those performed by the Java language numerical comparison
+     * operators ({@code <, <=, ==, >=, >}) when
+     * applied to primitive {@code float} values:
+     *
+     * <ul><li>
+     *          {@code Float.NaN} is considered by this method to
+     *          be equal to itself and greater than all other
+     *          {@code float} values
+     *          (including {@code Float.POSITIVE_INFINITY}).
+     * <li>
+     *          {@code 0.0f} is considered by this method to be greater
+     *          than {@code -0.0f}.
+     * </ul>
+     *
+     * This ensures that the <i>natural ordering</i> of {@code Float}
+     * objects imposed by this method is <i>consistent with equals</i>.
+     *
+     * @param   anotherFloat   the {@code Float} to be compared.
+     * @return  the value {@code 0} if {@code anotherFloat} is
+     *          numerically equal to this {@code Float}; a value
+     *          less than {@code 0} if this {@code Float}
+     *          is numerically less than {@code anotherFloat};
+     *          and a value greater than {@code 0} if this
+     *          {@code Float} is numerically greater than
+     *          {@code anotherFloat}.
+     *
+     * @since   1.2
+     * @see Comparable#compareTo(Object)
+     */
+    public int compareTo(Float anotherFloat) {
+        return Float.compare(value, anotherFloat.value);
+    }
+
+    /**
+     * Compares the two specified {@code float} values. The sign
+     * of the integer value returned is the same as that of the
+     * integer that would be returned by the call:
+     * <pre>
+     *    new Float(f1).compareTo(new Float(f2))
+     * </pre>
+     *
+     * @param   f1        the first {@code float} to compare.
+     * @param   f2        the second {@code float} to compare.
+     * @return  the value {@code 0} if {@code f1} is
+     *          numerically equal to {@code f2}; a value less than
+     *          {@code 0} if {@code f1} is numerically less than
+     *          {@code f2}; and a value greater than {@code 0}
+     *          if {@code f1} is numerically greater than
+     *          {@code f2}.
+     * @since 1.4
+     */
+    public static int compare(float f1, float f2) {
+       if (f1 < f2)
+            return -1;           // Neither val is NaN, thisVal is smaller
+        if (f1 > f2)
+            return 1;            // Neither val is NaN, thisVal is larger
+
+        int thisBits = Float.floatToIntBits(f1);
+        int anotherBits = Float.floatToIntBits(f2);
+
+        return (thisBits == anotherBits ?  0 : // Values are equal
+                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
+                 1));                          // (0.0, -0.0) or (NaN, !NaN)
+    }
+
+    /** use serialVersionUID from JDK 1.0.2 for interoperability */
+    private static final long serialVersionUID = -2671257302660747028L;
+}