src/hotspot/share/runtime/orderAccess.hpp
changeset 47216 71c04702a3d5
parent 46523 cbcc0ebaa044
child 47609 a1f68e415b48
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #ifndef SHARE_VM_RUNTIME_ORDERACCESS_HPP
       
    26 #define SHARE_VM_RUNTIME_ORDERACCESS_HPP
       
    27 
       
    28 #include "memory/allocation.hpp"
       
    29 
       
    30 //                Memory Access Ordering Model
       
    31 //
       
    32 // This interface is based on the JSR-133 Cookbook for Compiler Writers.
       
    33 //
       
    34 // In the following, the terms 'previous', 'subsequent', 'before',
       
    35 // 'after', 'preceding' and 'succeeding' refer to program order.  The
       
    36 // terms 'down' and 'below' refer to forward load or store motion
       
    37 // relative to program order, while 'up' and 'above' refer to backward
       
    38 // motion.
       
    39 //
       
    40 // We define four primitive memory barrier operations.
       
    41 //
       
    42 // LoadLoad:   Load1(s); LoadLoad; Load2
       
    43 //
       
    44 // Ensures that Load1 completes (obtains the value it loads from memory)
       
    45 // before Load2 and any subsequent load operations.  Loads before Load1
       
    46 // may *not* float below Load2 and any subsequent load operations.
       
    47 //
       
    48 // StoreStore: Store1(s); StoreStore; Store2
       
    49 //
       
    50 // Ensures that Store1 completes (the effect on memory of Store1 is made
       
    51 // visible to other processors) before Store2 and any subsequent store
       
    52 // operations.  Stores before Store1 may *not* float below Store2 and any
       
    53 // subsequent store operations.
       
    54 //
       
    55 // LoadStore:  Load1(s); LoadStore; Store2
       
    56 //
       
    57 // Ensures that Load1 completes before Store2 and any subsequent store
       
    58 // operations.  Loads before Load1 may *not* float below Store2 and any
       
    59 // subsequent store operations.
       
    60 //
       
    61 // StoreLoad:  Store1(s); StoreLoad; Load2
       
    62 //
       
    63 // Ensures that Store1 completes before Load2 and any subsequent load
       
    64 // operations.  Stores before Store1 may *not* float below Load2 and any
       
    65 // subsequent load operations.
       
    66 //
       
    67 // We define two further barriers: acquire and release.
       
    68 //
       
    69 // Conceptually, acquire/release semantics form unidirectional and
       
    70 // asynchronous barriers w.r.t. a synchronizing load(X) and store(X) pair.
       
    71 // They should always be used in pairs to publish (release store) and
       
    72 // access (load acquire) some implicitly understood shared data between
       
    73 // threads in a relatively cheap fashion not requiring storeload. If not
       
    74 // used in such a pair, it is advised to use a membar instead:
       
    75 // acquire/release only make sense as pairs.
       
    76 //
       
    77 // T1: access_shared_data
       
    78 // T1: ]release
       
    79 // T1: (...)
       
    80 // T1: store(X)
       
    81 //
       
    82 // T2: load(X)
       
    83 // T2: (...)
       
    84 // T2: acquire[
       
    85 // T2: access_shared_data
       
    86 //
       
    87 // It is guaranteed that if T2: load(X) synchronizes with (observes the
       
    88 // value written by) T1: store(X), then the memory accesses before the T1:
       
    89 // ]release happen before the memory accesses after the T2: acquire[.
       
    90 //
       
    91 // Total Store Order (TSO) machines can be seen as machines issuing a
       
    92 // release store for each store and a load acquire for each load. Therefore
       
    93 // there is an inherent resemblence between TSO and acquire/release
       
    94 // semantics. TSO can be seen as an abstract machine where loads are
       
    95 // executed immediately when encountered (hence loadload reordering not
       
    96 // happening) but enqueues stores in a FIFO queue
       
    97 // for asynchronous serialization (neither storestore or loadstore
       
    98 // reordering happening). The only reordering happening is storeload due to
       
    99 // the queue asynchronously serializing stores (yet in order).
       
   100 //
       
   101 // Acquire/release semantics essentially exploits this asynchronicity: when
       
   102 // the load(X) acquire[ observes the store of ]release store(X), the
       
   103 // accesses before the release must have happened before the accesses after
       
   104 // acquire.
       
   105 //
       
   106 // The API offers both stand-alone acquire() and release() as well as bound
       
   107 // load_acquire() and release_store(). It is guaranteed that these are
       
   108 // semantically equivalent w.r.t. the defined model. However, since
       
   109 // stand-alone acquire()/release() does not know which previous
       
   110 // load/subsequent store is considered the synchronizing load/store, they
       
   111 // may be more conservative in implementations. We advise using the bound
       
   112 // variants whenever possible.
       
   113 //
       
   114 // Finally, we define a "fence" operation, as a bidirectional barrier.
       
   115 // It guarantees that any memory access preceding the fence is not
       
   116 // reordered w.r.t. any memory accesses subsequent to the fence in program
       
   117 // order. This may be used to prevent sequences of loads from floating up
       
   118 // above sequences of stores.
       
   119 //
       
   120 // The following table shows the implementations on some architectures:
       
   121 //
       
   122 //                       Constraint     x86          sparc TSO          ppc
       
   123 // ---------------------------------------------------------------------------
       
   124 // fence                 LoadStore  |   lock         membar #StoreLoad  sync
       
   125 //                       StoreStore |   addl 0,(sp)
       
   126 //                       LoadLoad   |
       
   127 //                       StoreLoad
       
   128 //
       
   129 // release               LoadStore  |                                   lwsync
       
   130 //                       StoreStore
       
   131 //
       
   132 // acquire               LoadLoad   |                                   lwsync
       
   133 //                       LoadStore
       
   134 //
       
   135 // release_store                        <store>      <store>            lwsync
       
   136 //                                                                      <store>
       
   137 //
       
   138 // release_store_fence                  xchg         <store>            lwsync
       
   139 //                                                   membar #StoreLoad  <store>
       
   140 //                                                                      sync
       
   141 //
       
   142 //
       
   143 // load_acquire                         <load>       <load>             <load>
       
   144 //                                                                      lwsync
       
   145 //
       
   146 // Ordering a load relative to preceding stores requires a StoreLoad,
       
   147 // which implies a membar #StoreLoad between the store and load under
       
   148 // sparc-TSO. On x86, we use explicitly locked add.
       
   149 //
       
   150 // Conventional usage is to issue a load_acquire for ordered loads.  Use
       
   151 // release_store for ordered stores when you care only that prior stores
       
   152 // are visible before the release_store, but don't care exactly when the
       
   153 // store associated with the release_store becomes visible.  Use
       
   154 // release_store_fence to update values like the thread state, where we
       
   155 // don't want the current thread to continue until all our prior memory
       
   156 // accesses (including the new thread state) are visible to other threads.
       
   157 // This is equivalent to the volatile semantics of the Java Memory Model.
       
   158 //
       
   159 //                    C++ Volatile Semantics
       
   160 //
       
   161 // C++ volatile semantics prevent compiler re-ordering between
       
   162 // volatile memory accesses. However, reordering between non-volatile
       
   163 // and volatile memory accesses is in general undefined. For compiler
       
   164 // reordering constraints taking non-volatile memory accesses into
       
   165 // consideration, a compiler barrier has to be used instead.  Some
       
   166 // compiler implementations may choose to enforce additional
       
   167 // constraints beyond those required by the language. Note also that
       
   168 // both volatile semantics and compiler barrier do not prevent
       
   169 // hardware reordering.
       
   170 //
       
   171 //                os::is_MP Considered Redundant
       
   172 //
       
   173 // Callers of this interface do not need to test os::is_MP() before
       
   174 // issuing an operation. The test is taken care of by the implementation
       
   175 // of the interface (depending on the vm version and platform, the test
       
   176 // may or may not be actually done by the implementation).
       
   177 //
       
   178 //
       
   179 //                A Note on Memory Ordering and Cache Coherency
       
   180 //
       
   181 // Cache coherency and memory ordering are orthogonal concepts, though they
       
   182 // interact.  E.g., all existing itanium machines are cache-coherent, but
       
   183 // the hardware can freely reorder loads wrt other loads unless it sees a
       
   184 // load-acquire instruction.  All existing sparc machines are cache-coherent
       
   185 // and, unlike itanium, TSO guarantees that the hardware orders loads wrt
       
   186 // loads and stores, and stores wrt to each other.
       
   187 //
       
   188 // Consider the implementation of loadload.  *If* your platform *isn't*
       
   189 // cache-coherent, then loadload must not only prevent hardware load
       
   190 // instruction reordering, but it must *also* ensure that subsequent
       
   191 // loads from addresses that could be written by other processors (i.e.,
       
   192 // that are broadcast by other processors) go all the way to the first
       
   193 // level of memory shared by those processors and the one issuing
       
   194 // the loadload.
       
   195 //
       
   196 // So if we have a MP that has, say, a per-processor D$ that doesn't see
       
   197 // writes by other processors, and has a shared E$ that does, the loadload
       
   198 // barrier would have to make sure that either
       
   199 //
       
   200 // 1. cache lines in the issuing processor's D$ that contained data from
       
   201 // addresses that could be written by other processors are invalidated, so
       
   202 // subsequent loads from those addresses go to the E$, (it could do this
       
   203 // by tagging such cache lines as 'shared', though how to tell the hardware
       
   204 // to do the tagging is an interesting problem), or
       
   205 //
       
   206 // 2. there never are such cache lines in the issuing processor's D$, which
       
   207 // means all references to shared data (however identified: see above)
       
   208 // bypass the D$ (i.e., are satisfied from the E$).
       
   209 //
       
   210 // If your machine doesn't have an E$, substitute 'main memory' for 'E$'.
       
   211 //
       
   212 // Either of these alternatives is a pain, so no current machine we know of
       
   213 // has incoherent caches.
       
   214 //
       
   215 // If loadload didn't have these properties, the store-release sequence for
       
   216 // publishing a shared data structure wouldn't work, because a processor
       
   217 // trying to read data newly published by another processor might go to
       
   218 // its own incoherent caches to satisfy the read instead of to the newly
       
   219 // written shared memory.
       
   220 //
       
   221 //
       
   222 //                NOTE WELL!!
       
   223 //
       
   224 //                A Note on MutexLocker and Friends
       
   225 //
       
   226 // See mutexLocker.hpp.  We assume throughout the VM that MutexLocker's
       
   227 // and friends' constructors do a fence, a lock and an acquire *in that
       
   228 // order*.  And that their destructors do a release and unlock, in *that*
       
   229 // order.  If their implementations change such that these assumptions
       
   230 // are violated, a whole lot of code will break.
       
   231 
       
   232 enum ScopedFenceType {
       
   233     X_ACQUIRE
       
   234   , RELEASE_X
       
   235   , RELEASE_X_FENCE
       
   236 };
       
   237 
       
   238 template <ScopedFenceType T>
       
   239 class ScopedFenceGeneral: public StackObj {
       
   240  public:
       
   241   void prefix() {}
       
   242   void postfix() {}
       
   243 };
       
   244 
       
   245 template <ScopedFenceType T>
       
   246 class ScopedFence : public ScopedFenceGeneral<T> {
       
   247   void *const _field;
       
   248  public:
       
   249   ScopedFence(void *const field) : _field(field) { prefix(); }
       
   250   ~ScopedFence() { postfix(); }
       
   251   void prefix() { ScopedFenceGeneral<T>::prefix(); }
       
   252   void postfix() { ScopedFenceGeneral<T>::postfix(); }
       
   253 };
       
   254 
       
   255 class OrderAccess : AllStatic {
       
   256  public:
       
   257   // barriers
       
   258   static void     loadload();
       
   259   static void     storestore();
       
   260   static void     loadstore();
       
   261   static void     storeload();
       
   262 
       
   263   static void     acquire();
       
   264   static void     release();
       
   265   static void     fence();
       
   266 
       
   267   static jbyte    load_acquire(const volatile jbyte*   p);
       
   268   static jshort   load_acquire(const volatile jshort*  p);
       
   269   static jint     load_acquire(const volatile jint*    p);
       
   270   static jlong    load_acquire(const volatile jlong*   p);
       
   271   static jubyte   load_acquire(const volatile jubyte*  p);
       
   272   static jushort  load_acquire(const volatile jushort* p);
       
   273   static juint    load_acquire(const volatile juint*   p);
       
   274   static julong   load_acquire(const volatile julong*  p);
       
   275   static jfloat   load_acquire(const volatile jfloat*  p);
       
   276   static jdouble  load_acquire(const volatile jdouble* p);
       
   277 
       
   278   static intptr_t load_ptr_acquire(const volatile intptr_t* p);
       
   279   static void*    load_ptr_acquire(const volatile void*     p);
       
   280 
       
   281   static void     release_store(volatile jbyte*   p, jbyte   v);
       
   282   static void     release_store(volatile jshort*  p, jshort  v);
       
   283   static void     release_store(volatile jint*    p, jint    v);
       
   284   static void     release_store(volatile jlong*   p, jlong   v);
       
   285   static void     release_store(volatile jubyte*  p, jubyte  v);
       
   286   static void     release_store(volatile jushort* p, jushort v);
       
   287   static void     release_store(volatile juint*   p, juint   v);
       
   288   static void     release_store(volatile julong*  p, julong  v);
       
   289   static void     release_store(volatile jfloat*  p, jfloat  v);
       
   290   static void     release_store(volatile jdouble* p, jdouble v);
       
   291 
       
   292   static void     release_store_ptr(volatile intptr_t* p, intptr_t v);
       
   293   static void     release_store_ptr(volatile void*     p, void*    v);
       
   294 
       
   295   static void     release_store_fence(volatile jbyte*   p, jbyte   v);
       
   296   static void     release_store_fence(volatile jshort*  p, jshort  v);
       
   297   static void     release_store_fence(volatile jint*    p, jint    v);
       
   298   static void     release_store_fence(volatile jlong*   p, jlong   v);
       
   299   static void     release_store_fence(volatile jubyte*  p, jubyte  v);
       
   300   static void     release_store_fence(volatile jushort* p, jushort v);
       
   301   static void     release_store_fence(volatile juint*   p, juint   v);
       
   302   static void     release_store_fence(volatile julong*  p, julong  v);
       
   303   static void     release_store_fence(volatile jfloat*  p, jfloat  v);
       
   304   static void     release_store_fence(volatile jdouble* p, jdouble v);
       
   305 
       
   306   static void     release_store_ptr_fence(volatile intptr_t* p, intptr_t v);
       
   307   static void     release_store_ptr_fence(volatile void*     p, void*    v);
       
   308 
       
   309  private:
       
   310   // This is a helper that invokes the StubRoutines::fence_entry()
       
   311   // routine if it exists, It should only be used by platforms that
       
   312   // don't have another way to do the inline assembly.
       
   313   static void StubRoutines_fence();
       
   314 
       
   315   // Give platforms a variation point to specialize.
       
   316   template<typename T> static T    specialized_load_acquire       (const volatile T* p);
       
   317   template<typename T> static void specialized_release_store      (volatile T* p, T v);
       
   318   template<typename T> static void specialized_release_store_fence(volatile T* p, T v);
       
   319 
       
   320   template<typename FieldType, ScopedFenceType FenceType>
       
   321   static void ordered_store(volatile FieldType* p, FieldType v);
       
   322 
       
   323   template<typename FieldType, ScopedFenceType FenceType>
       
   324   static FieldType ordered_load(const volatile FieldType* p);
       
   325 
       
   326   static void    store(volatile jbyte*   p, jbyte   v);
       
   327   static void    store(volatile jshort*  p, jshort  v);
       
   328   static void    store(volatile jint*    p, jint    v);
       
   329   static void    store(volatile jlong*   p, jlong   v);
       
   330   static void    store(volatile jdouble* p, jdouble v);
       
   331   static void    store(volatile jfloat*  p, jfloat  v);
       
   332 
       
   333   static jbyte   load(const volatile jbyte*   p);
       
   334   static jshort  load(const volatile jshort*  p);
       
   335   static jint    load(const volatile jint*    p);
       
   336   static jlong   load(const volatile jlong*   p);
       
   337   static jdouble load(const volatile jdouble* p);
       
   338   static jfloat  load(const volatile jfloat*  p);
       
   339 
       
   340   // The following store_fence methods are deprecated and will be removed
       
   341   // when all repos conform to the new generalized OrderAccess.
       
   342   static void    store_fence(jbyte*   p, jbyte   v);
       
   343   static void    store_fence(jshort*  p, jshort  v);
       
   344   static void    store_fence(jint*    p, jint    v);
       
   345   static void    store_fence(jlong*   p, jlong   v);
       
   346   static void    store_fence(jubyte*  p, jubyte  v);
       
   347   static void    store_fence(jushort* p, jushort v);
       
   348   static void    store_fence(juint*   p, juint   v);
       
   349   static void    store_fence(julong*  p, julong  v);
       
   350   static void    store_fence(jfloat*  p, jfloat  v);
       
   351   static void    store_fence(jdouble* p, jdouble v);
       
   352 
       
   353   static void    store_ptr_fence(intptr_t* p, intptr_t v);
       
   354   static void    store_ptr_fence(void**    p, void*    v);
       
   355 };
       
   356 
       
   357 #endif // SHARE_VM_RUNTIME_ORDERACCESS_HPP