hotspot/src/share/vm/c1/c1_LinearScan.cpp
changeset 1 489c9b5090e2
child 1066 717c3345024f
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 2005-2006 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "incls/_precompiled.incl"
       
    26 #include "incls/_c1_LinearScan.cpp.incl"
       
    27 
       
    28 
       
    29 #ifndef PRODUCT
       
    30 
       
    31   static LinearScanStatistic _stat_before_alloc;
       
    32   static LinearScanStatistic _stat_after_asign;
       
    33   static LinearScanStatistic _stat_final;
       
    34 
       
    35   static LinearScanTimers _total_timer;
       
    36 
       
    37   // helper macro for short definition of timer
       
    38   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
       
    39 
       
    40   // helper macro for short definition of trace-output inside code
       
    41   #define TRACE_LINEAR_SCAN(level, code)       \
       
    42     if (TraceLinearScanLevel >= level) {       \
       
    43       code;                                    \
       
    44     }
       
    45 
       
    46 #else
       
    47 
       
    48   #define TIME_LINEAR_SCAN(timer_name)
       
    49   #define TRACE_LINEAR_SCAN(level, code)
       
    50 
       
    51 #endif
       
    52 
       
    53 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
       
    54 #ifdef _LP64
       
    55 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 1, -1};
       
    56 #else
       
    57 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1};
       
    58 #endif
       
    59 
       
    60 
       
    61 // Implementation of LinearScan
       
    62 
       
    63 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
       
    64  : _compilation(ir->compilation())
       
    65  , _ir(ir)
       
    66  , _gen(gen)
       
    67  , _frame_map(frame_map)
       
    68  , _num_virtual_regs(gen->max_virtual_register_number())
       
    69  , _has_fpu_registers(false)
       
    70  , _num_calls(-1)
       
    71  , _max_spills(0)
       
    72  , _unused_spill_slot(-1)
       
    73  , _intervals(0)   // initialized later with correct length
       
    74  , _new_intervals_from_allocation(new IntervalList())
       
    75  , _sorted_intervals(NULL)
       
    76  , _lir_ops(0)     // initialized later with correct length
       
    77  , _block_of_op(0) // initialized later with correct length
       
    78  , _has_info(0)
       
    79  , _has_call(0)
       
    80  , _scope_value_cache(0) // initialized later with correct length
       
    81  , _interval_in_loop(0, 0) // initialized later with correct length
       
    82  , _cached_blocks(*ir->linear_scan_order())
       
    83 #ifdef IA32
       
    84  , _fpu_stack_allocator(NULL)
       
    85 #endif
       
    86 {
       
    87   // note: to use more than on instance of LinearScan at a time this function call has to
       
    88   //       be moved somewhere outside of this constructor:
       
    89   Interval::initialize();
       
    90 
       
    91   assert(this->ir() != NULL,          "check if valid");
       
    92   assert(this->compilation() != NULL, "check if valid");
       
    93   assert(this->gen() != NULL,         "check if valid");
       
    94   assert(this->frame_map() != NULL,   "check if valid");
       
    95 }
       
    96 
       
    97 
       
    98 // ********** functions for converting LIR-Operands to register numbers
       
    99 //
       
   100 // Emulate a flat register file comprising physical integer registers,
       
   101 // physical floating-point registers and virtual registers, in that order.
       
   102 // Virtual registers already have appropriate numbers, since V0 is
       
   103 // the number of physical registers.
       
   104 // Returns -1 for hi word if opr is a single word operand.
       
   105 //
       
   106 // Note: the inverse operation (calculating an operand for register numbers)
       
   107 //       is done in calc_operand_for_interval()
       
   108 
       
   109 int LinearScan::reg_num(LIR_Opr opr) {
       
   110   assert(opr->is_register(), "should not call this otherwise");
       
   111 
       
   112   if (opr->is_virtual_register()) {
       
   113     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
       
   114     return opr->vreg_number();
       
   115   } else if (opr->is_single_cpu()) {
       
   116     return opr->cpu_regnr();
       
   117   } else if (opr->is_double_cpu()) {
       
   118     return opr->cpu_regnrLo();
       
   119 #ifdef IA32
       
   120   } else if (opr->is_single_xmm()) {
       
   121     return opr->fpu_regnr() + pd_first_xmm_reg;
       
   122   } else if (opr->is_double_xmm()) {
       
   123     return opr->fpu_regnrLo() + pd_first_xmm_reg;
       
   124 #endif
       
   125   } else if (opr->is_single_fpu()) {
       
   126     return opr->fpu_regnr() + pd_first_fpu_reg;
       
   127   } else if (opr->is_double_fpu()) {
       
   128     return opr->fpu_regnrLo() + pd_first_fpu_reg;
       
   129   } else {
       
   130     ShouldNotReachHere();
       
   131   }
       
   132 }
       
   133 
       
   134 int LinearScan::reg_numHi(LIR_Opr opr) {
       
   135   assert(opr->is_register(), "should not call this otherwise");
       
   136 
       
   137   if (opr->is_virtual_register()) {
       
   138     return -1;
       
   139   } else if (opr->is_single_cpu()) {
       
   140     return -1;
       
   141   } else if (opr->is_double_cpu()) {
       
   142     return opr->cpu_regnrHi();
       
   143 #ifdef IA32
       
   144   } else if (opr->is_single_xmm()) {
       
   145     return -1;
       
   146   } else if (opr->is_double_xmm()) {
       
   147     return -1;
       
   148 #endif
       
   149   } else if (opr->is_single_fpu()) {
       
   150     return -1;
       
   151   } else if (opr->is_double_fpu()) {
       
   152     return opr->fpu_regnrHi() + pd_first_fpu_reg;
       
   153   } else {
       
   154     ShouldNotReachHere();
       
   155   }
       
   156 }
       
   157 
       
   158 
       
   159 // ********** functions for classification of intervals
       
   160 
       
   161 bool LinearScan::is_precolored_interval(const Interval* i) {
       
   162   return i->reg_num() < LinearScan::nof_regs;
       
   163 }
       
   164 
       
   165 bool LinearScan::is_virtual_interval(const Interval* i) {
       
   166   return i->reg_num() >= LIR_OprDesc::vreg_base;
       
   167 }
       
   168 
       
   169 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
       
   170   return i->reg_num() < LinearScan::nof_cpu_regs;
       
   171 }
       
   172 
       
   173 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
       
   174   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
       
   175 }
       
   176 
       
   177 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
       
   178   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
       
   179 }
       
   180 
       
   181 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
       
   182   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
       
   183 }
       
   184 
       
   185 bool LinearScan::is_in_fpu_register(const Interval* i) {
       
   186   // fixed intervals not needed for FPU stack allocation
       
   187   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
       
   188 }
       
   189 
       
   190 bool LinearScan::is_oop_interval(const Interval* i) {
       
   191   // fixed intervals never contain oops
       
   192   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
       
   193 }
       
   194 
       
   195 
       
   196 // ********** General helper functions
       
   197 
       
   198 // compute next unused stack index that can be used for spilling
       
   199 int LinearScan::allocate_spill_slot(bool double_word) {
       
   200   int spill_slot;
       
   201   if (double_word) {
       
   202     if ((_max_spills & 1) == 1) {
       
   203       // alignment of double-word values
       
   204       // the hole because of the alignment is filled with the next single-word value
       
   205       assert(_unused_spill_slot == -1, "wasting a spill slot");
       
   206       _unused_spill_slot = _max_spills;
       
   207       _max_spills++;
       
   208     }
       
   209     spill_slot = _max_spills;
       
   210     _max_spills += 2;
       
   211 
       
   212   } else if (_unused_spill_slot != -1) {
       
   213     // re-use hole that was the result of a previous double-word alignment
       
   214     spill_slot = _unused_spill_slot;
       
   215     _unused_spill_slot = -1;
       
   216 
       
   217   } else {
       
   218     spill_slot = _max_spills;
       
   219     _max_spills++;
       
   220   }
       
   221 
       
   222   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
       
   223 
       
   224   // the class OopMapValue uses only 11 bits for storing the name of the
       
   225   // oop location. So a stack slot bigger than 2^11 leads to an overflow
       
   226   // that is not reported in product builds. Prevent this by checking the
       
   227   // spill slot here (altough this value and the later used location name
       
   228   // are slightly different)
       
   229   if (result > 2000) {
       
   230     bailout("too many stack slots used");
       
   231   }
       
   232 
       
   233   return result;
       
   234 }
       
   235 
       
   236 void LinearScan::assign_spill_slot(Interval* it) {
       
   237   // assign the canonical spill slot of the parent (if a part of the interval
       
   238   // is already spilled) or allocate a new spill slot
       
   239   if (it->canonical_spill_slot() >= 0) {
       
   240     it->assign_reg(it->canonical_spill_slot());
       
   241   } else {
       
   242     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
       
   243     it->set_canonical_spill_slot(spill);
       
   244     it->assign_reg(spill);
       
   245   }
       
   246 }
       
   247 
       
   248 void LinearScan::propagate_spill_slots() {
       
   249   if (!frame_map()->finalize_frame(max_spills())) {
       
   250     bailout("frame too large");
       
   251   }
       
   252 }
       
   253 
       
   254 // create a new interval with a predefined reg_num
       
   255 // (only used for parent intervals that are created during the building phase)
       
   256 Interval* LinearScan::create_interval(int reg_num) {
       
   257   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
       
   258 
       
   259   Interval* interval = new Interval(reg_num);
       
   260   _intervals.at_put(reg_num, interval);
       
   261 
       
   262   // assign register number for precolored intervals
       
   263   if (reg_num < LIR_OprDesc::vreg_base) {
       
   264     interval->assign_reg(reg_num);
       
   265   }
       
   266   return interval;
       
   267 }
       
   268 
       
   269 // assign a new reg_num to the interval and append it to the list of intervals
       
   270 // (only used for child intervals that are created during register allocation)
       
   271 void LinearScan::append_interval(Interval* it) {
       
   272   it->set_reg_num(_intervals.length());
       
   273   _intervals.append(it);
       
   274   _new_intervals_from_allocation->append(it);
       
   275 }
       
   276 
       
   277 // copy the vreg-flags if an interval is split
       
   278 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
       
   279   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
       
   280     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
       
   281   }
       
   282   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
       
   283     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
       
   284   }
       
   285 
       
   286   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
       
   287   //       intervals (only the very beginning of the interval must be in memory)
       
   288 }
       
   289 
       
   290 
       
   291 // ********** spill move optimization
       
   292 // eliminate moves from register to stack if stack slot is known to be correct
       
   293 
       
   294 // called during building of intervals
       
   295 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
       
   296   assert(interval->is_split_parent(), "can only be called for split parents");
       
   297 
       
   298   switch (interval->spill_state()) {
       
   299     case noDefinitionFound:
       
   300       assert(interval->spill_definition_pos() == -1, "must no be set before");
       
   301       interval->set_spill_definition_pos(def_pos);
       
   302       interval->set_spill_state(oneDefinitionFound);
       
   303       break;
       
   304 
       
   305     case oneDefinitionFound:
       
   306       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
       
   307       if (def_pos < interval->spill_definition_pos() - 2) {
       
   308         // second definition found, so no spill optimization possible for this interval
       
   309         interval->set_spill_state(noOptimization);
       
   310       } else {
       
   311         // two consecutive definitions (because of two-operand LIR form)
       
   312         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
       
   313       }
       
   314       break;
       
   315 
       
   316     case noOptimization:
       
   317       // nothing to do
       
   318       break;
       
   319 
       
   320     default:
       
   321       assert(false, "other states not allowed at this time");
       
   322   }
       
   323 }
       
   324 
       
   325 // called during register allocation
       
   326 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
       
   327   switch (interval->spill_state()) {
       
   328     case oneDefinitionFound: {
       
   329       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
       
   330       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
       
   331 
       
   332       if (def_loop_depth < spill_loop_depth) {
       
   333         // the loop depth of the spilling position is higher then the loop depth
       
   334         // at the definition of the interval -> move write to memory out of loop
       
   335         // by storing at definitin of the interval
       
   336         interval->set_spill_state(storeAtDefinition);
       
   337       } else {
       
   338         // the interval is currently spilled only once, so for now there is no
       
   339         // reason to store the interval at the definition
       
   340         interval->set_spill_state(oneMoveInserted);
       
   341       }
       
   342       break;
       
   343     }
       
   344 
       
   345     case oneMoveInserted: {
       
   346       // the interval is spilled more then once, so it is better to store it to
       
   347       // memory at the definition
       
   348       interval->set_spill_state(storeAtDefinition);
       
   349       break;
       
   350     }
       
   351 
       
   352     case storeAtDefinition:
       
   353     case startInMemory:
       
   354     case noOptimization:
       
   355     case noDefinitionFound:
       
   356       // nothing to do
       
   357       break;
       
   358 
       
   359     default:
       
   360       assert(false, "other states not allowed at this time");
       
   361   }
       
   362 }
       
   363 
       
   364 
       
   365 bool LinearScan::must_store_at_definition(const Interval* i) {
       
   366   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
       
   367 }
       
   368 
       
   369 // called once before asignment of register numbers
       
   370 void LinearScan::eliminate_spill_moves() {
       
   371   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
       
   372   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
       
   373 
       
   374   // collect all intervals that must be stored after their definion.
       
   375   // the list is sorted by Interval::spill_definition_pos
       
   376   Interval* interval;
       
   377   Interval* temp_list;
       
   378   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
       
   379 
       
   380 #ifdef ASSERT
       
   381   Interval* prev = NULL;
       
   382   Interval* temp = interval;
       
   383   while (temp != Interval::end()) {
       
   384     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
       
   385     if (prev != NULL) {
       
   386       assert(temp->from() >= prev->from(), "intervals not sorted");
       
   387       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
       
   388     }
       
   389 
       
   390     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
       
   391     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
       
   392     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
       
   393 
       
   394     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
       
   395 
       
   396     temp = temp->next();
       
   397   }
       
   398 #endif
       
   399 
       
   400   LIR_InsertionBuffer insertion_buffer;
       
   401   int num_blocks = block_count();
       
   402   for (int i = 0; i < num_blocks; i++) {
       
   403     BlockBegin* block = block_at(i);
       
   404     LIR_OpList* instructions = block->lir()->instructions_list();
       
   405     int         num_inst = instructions->length();
       
   406     bool        has_new = false;
       
   407 
       
   408     // iterate all instructions of the block. skip the first because it is always a label
       
   409     for (int j = 1; j < num_inst; j++) {
       
   410       LIR_Op* op = instructions->at(j);
       
   411       int op_id = op->id();
       
   412 
       
   413       if (op_id == -1) {
       
   414         // remove move from register to stack if the stack slot is guaranteed to be correct.
       
   415         // only moves that have been inserted by LinearScan can be removed.
       
   416         assert(op->code() == lir_move, "only moves can have a op_id of -1");
       
   417         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
       
   418         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
       
   419 
       
   420         LIR_Op1* op1 = (LIR_Op1*)op;
       
   421         Interval* interval = interval_at(op1->result_opr()->vreg_number());
       
   422 
       
   423         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
       
   424           // move target is a stack slot that is always correct, so eliminate instruction
       
   425           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
       
   426           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
       
   427         }
       
   428 
       
   429       } else {
       
   430         // insert move from register to stack just after the beginning of the interval
       
   431         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
       
   432         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
       
   433 
       
   434         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
       
   435           if (!has_new) {
       
   436             // prepare insertion buffer (appended when all instructions of the block are processed)
       
   437             insertion_buffer.init(block->lir());
       
   438             has_new = true;
       
   439           }
       
   440 
       
   441           LIR_Opr from_opr = operand_for_interval(interval);
       
   442           LIR_Opr to_opr = canonical_spill_opr(interval);
       
   443           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
       
   444           assert(to_opr->is_stack(), "to operand must be a stack slot");
       
   445 
       
   446           insertion_buffer.move(j, from_opr, to_opr);
       
   447           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
       
   448 
       
   449           interval = interval->next();
       
   450         }
       
   451       }
       
   452     } // end of instruction iteration
       
   453 
       
   454     if (has_new) {
       
   455       block->lir()->append(&insertion_buffer);
       
   456     }
       
   457   } // end of block iteration
       
   458 
       
   459   assert(interval == Interval::end(), "missed an interval");
       
   460 }
       
   461 
       
   462 
       
   463 // ********** Phase 1: number all instructions in all blocks
       
   464 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
       
   465 
       
   466 void LinearScan::number_instructions() {
       
   467   {
       
   468     // dummy-timer to measure the cost of the timer itself
       
   469     // (this time is then subtracted from all other timers to get the real value)
       
   470     TIME_LINEAR_SCAN(timer_do_nothing);
       
   471   }
       
   472   TIME_LINEAR_SCAN(timer_number_instructions);
       
   473 
       
   474   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
       
   475   int num_blocks = block_count();
       
   476   int num_instructions = 0;
       
   477   int i;
       
   478   for (i = 0; i < num_blocks; i++) {
       
   479     num_instructions += block_at(i)->lir()->instructions_list()->length();
       
   480   }
       
   481 
       
   482   // initialize with correct length
       
   483   _lir_ops = LIR_OpArray(num_instructions);
       
   484   _block_of_op = BlockBeginArray(num_instructions);
       
   485 
       
   486   int op_id = 0;
       
   487   int idx = 0;
       
   488 
       
   489   for (i = 0; i < num_blocks; i++) {
       
   490     BlockBegin* block = block_at(i);
       
   491     block->set_first_lir_instruction_id(op_id);
       
   492     LIR_OpList* instructions = block->lir()->instructions_list();
       
   493 
       
   494     int num_inst = instructions->length();
       
   495     for (int j = 0; j < num_inst; j++) {
       
   496       LIR_Op* op = instructions->at(j);
       
   497       op->set_id(op_id);
       
   498 
       
   499       _lir_ops.at_put(idx, op);
       
   500       _block_of_op.at_put(idx, block);
       
   501       assert(lir_op_with_id(op_id) == op, "must match");
       
   502 
       
   503       idx++;
       
   504       op_id += 2; // numbering of lir_ops by two
       
   505     }
       
   506     block->set_last_lir_instruction_id(op_id - 2);
       
   507   }
       
   508   assert(idx == num_instructions, "must match");
       
   509   assert(idx * 2 == op_id, "must match");
       
   510 
       
   511   _has_call = BitMap(num_instructions); _has_call.clear();
       
   512   _has_info = BitMap(num_instructions); _has_info.clear();
       
   513 }
       
   514 
       
   515 
       
   516 // ********** Phase 2: compute local live sets separately for each block
       
   517 // (sets live_gen and live_kill for each block)
       
   518 
       
   519 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
       
   520   LIR_Opr opr = value->operand();
       
   521   Constant* con = value->as_Constant();
       
   522 
       
   523   // check some asumptions about debug information
       
   524   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
       
   525   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
       
   526   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
       
   527 
       
   528   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
       
   529     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
       
   530     int reg = opr->vreg_number();
       
   531     if (!live_kill.at(reg)) {
       
   532       live_gen.set_bit(reg);
       
   533       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
       
   534     }
       
   535   }
       
   536 }
       
   537 
       
   538 
       
   539 void LinearScan::compute_local_live_sets() {
       
   540   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
       
   541 
       
   542   int  num_blocks = block_count();
       
   543   int  live_size = live_set_size();
       
   544   bool local_has_fpu_registers = false;
       
   545   int  local_num_calls = 0;
       
   546   LIR_OpVisitState visitor;
       
   547 
       
   548   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
       
   549   local_interval_in_loop.clear();
       
   550 
       
   551   // iterate all blocks
       
   552   for (int i = 0; i < num_blocks; i++) {
       
   553     BlockBegin* block = block_at(i);
       
   554 
       
   555     BitMap live_gen(live_size);  live_gen.clear();
       
   556     BitMap live_kill(live_size); live_kill.clear();
       
   557 
       
   558     if (block->is_set(BlockBegin::exception_entry_flag)) {
       
   559       // Phi functions at the begin of an exception handler are
       
   560       // implicitly defined (= killed) at the beginning of the block.
       
   561       for_each_phi_fun(block, phi,
       
   562         live_kill.set_bit(phi->operand()->vreg_number())
       
   563       );
       
   564     }
       
   565 
       
   566     LIR_OpList* instructions = block->lir()->instructions_list();
       
   567     int num_inst = instructions->length();
       
   568 
       
   569     // iterate all instructions of the block. skip the first because it is always a label
       
   570     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
       
   571     for (int j = 1; j < num_inst; j++) {
       
   572       LIR_Op* op = instructions->at(j);
       
   573 
       
   574       // visit operation to collect all operands
       
   575       visitor.visit(op);
       
   576 
       
   577       if (visitor.has_call()) {
       
   578         _has_call.set_bit(op->id() >> 1);
       
   579         local_num_calls++;
       
   580       }
       
   581       if (visitor.info_count() > 0) {
       
   582         _has_info.set_bit(op->id() >> 1);
       
   583       }
       
   584 
       
   585       // iterate input operands of instruction
       
   586       int k, n, reg;
       
   587       n = visitor.opr_count(LIR_OpVisitState::inputMode);
       
   588       for (k = 0; k < n; k++) {
       
   589         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
       
   590         assert(opr->is_register(), "visitor should only return register operands");
       
   591 
       
   592         if (opr->is_virtual_register()) {
       
   593           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
       
   594           reg = opr->vreg_number();
       
   595           if (!live_kill.at(reg)) {
       
   596             live_gen.set_bit(reg);
       
   597             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
       
   598           }
       
   599           if (block->loop_index() >= 0) {
       
   600             local_interval_in_loop.set_bit(reg, block->loop_index());
       
   601           }
       
   602           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
       
   603         }
       
   604 
       
   605 #ifdef ASSERT
       
   606         // fixed intervals are never live at block boundaries, so
       
   607         // they need not be processed in live sets.
       
   608         // this is checked by these assertions to be sure about it.
       
   609         // the entry block may have incoming values in registers, which is ok.
       
   610         if (!opr->is_virtual_register() && block != ir()->start()) {
       
   611           reg = reg_num(opr);
       
   612           if (is_processed_reg_num(reg)) {
       
   613             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
       
   614           }
       
   615           reg = reg_numHi(opr);
       
   616           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
       
   617             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
       
   618           }
       
   619         }
       
   620 #endif
       
   621       }
       
   622 
       
   623       // Add uses of live locals from interpreter's point of view for proper debug information generation
       
   624       n = visitor.info_count();
       
   625       for (k = 0; k < n; k++) {
       
   626         CodeEmitInfo* info = visitor.info_at(k);
       
   627         ValueStack* stack = info->stack();
       
   628         for_each_state_value(stack, value,
       
   629           set_live_gen_kill(value, op, live_gen, live_kill)
       
   630         );
       
   631       }
       
   632 
       
   633       // iterate temp operands of instruction
       
   634       n = visitor.opr_count(LIR_OpVisitState::tempMode);
       
   635       for (k = 0; k < n; k++) {
       
   636         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
       
   637         assert(opr->is_register(), "visitor should only return register operands");
       
   638 
       
   639         if (opr->is_virtual_register()) {
       
   640           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
       
   641           reg = opr->vreg_number();
       
   642           live_kill.set_bit(reg);
       
   643           if (block->loop_index() >= 0) {
       
   644             local_interval_in_loop.set_bit(reg, block->loop_index());
       
   645           }
       
   646           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
       
   647         }
       
   648 
       
   649 #ifdef ASSERT
       
   650         // fixed intervals are never live at block boundaries, so
       
   651         // they need not be processed in live sets
       
   652         // process them only in debug mode so that this can be checked
       
   653         if (!opr->is_virtual_register()) {
       
   654           reg = reg_num(opr);
       
   655           if (is_processed_reg_num(reg)) {
       
   656             live_kill.set_bit(reg_num(opr));
       
   657           }
       
   658           reg = reg_numHi(opr);
       
   659           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
       
   660             live_kill.set_bit(reg);
       
   661           }
       
   662         }
       
   663 #endif
       
   664       }
       
   665 
       
   666       // iterate output operands of instruction
       
   667       n = visitor.opr_count(LIR_OpVisitState::outputMode);
       
   668       for (k = 0; k < n; k++) {
       
   669         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
       
   670         assert(opr->is_register(), "visitor should only return register operands");
       
   671 
       
   672         if (opr->is_virtual_register()) {
       
   673           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
       
   674           reg = opr->vreg_number();
       
   675           live_kill.set_bit(reg);
       
   676           if (block->loop_index() >= 0) {
       
   677             local_interval_in_loop.set_bit(reg, block->loop_index());
       
   678           }
       
   679           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
       
   680         }
       
   681 
       
   682 #ifdef ASSERT
       
   683         // fixed intervals are never live at block boundaries, so
       
   684         // they need not be processed in live sets
       
   685         // process them only in debug mode so that this can be checked
       
   686         if (!opr->is_virtual_register()) {
       
   687           reg = reg_num(opr);
       
   688           if (is_processed_reg_num(reg)) {
       
   689             live_kill.set_bit(reg_num(opr));
       
   690           }
       
   691           reg = reg_numHi(opr);
       
   692           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
       
   693             live_kill.set_bit(reg);
       
   694           }
       
   695         }
       
   696 #endif
       
   697       }
       
   698     } // end of instruction iteration
       
   699 
       
   700     block->set_live_gen (live_gen);
       
   701     block->set_live_kill(live_kill);
       
   702     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
       
   703     block->set_live_out (BitMap(live_size)); block->live_out().clear();
       
   704 
       
   705     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
       
   706     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
       
   707   } // end of block iteration
       
   708 
       
   709   // propagate local calculated information into LinearScan object
       
   710   _has_fpu_registers = local_has_fpu_registers;
       
   711   compilation()->set_has_fpu_code(local_has_fpu_registers);
       
   712 
       
   713   _num_calls = local_num_calls;
       
   714   _interval_in_loop = local_interval_in_loop;
       
   715 }
       
   716 
       
   717 
       
   718 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
       
   719 // (sets live_in and live_out for each block)
       
   720 
       
   721 void LinearScan::compute_global_live_sets() {
       
   722   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
       
   723 
       
   724   int  num_blocks = block_count();
       
   725   bool change_occurred;
       
   726   bool change_occurred_in_block;
       
   727   int  iteration_count = 0;
       
   728   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
       
   729 
       
   730   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
       
   731   // The loop is executed until a fixpoint is reached (no changes in an iteration)
       
   732   // Exception handlers must be processed because not all live values are
       
   733   // present in the state array, e.g. because of global value numbering
       
   734   do {
       
   735     change_occurred = false;
       
   736 
       
   737     // iterate all blocks in reverse order
       
   738     for (int i = num_blocks - 1; i >= 0; i--) {
       
   739       BlockBegin* block = block_at(i);
       
   740 
       
   741       change_occurred_in_block = false;
       
   742 
       
   743       // live_out(block) is the union of live_in(sux), for successors sux of block
       
   744       int n = block->number_of_sux();
       
   745       int e = block->number_of_exception_handlers();
       
   746       if (n + e > 0) {
       
   747         // block has successors
       
   748         if (n > 0) {
       
   749           live_out.set_from(block->sux_at(0)->live_in());
       
   750           for (int j = 1; j < n; j++) {
       
   751             live_out.set_union(block->sux_at(j)->live_in());
       
   752           }
       
   753         } else {
       
   754           live_out.clear();
       
   755         }
       
   756         for (int j = 0; j < e; j++) {
       
   757           live_out.set_union(block->exception_handler_at(j)->live_in());
       
   758         }
       
   759 
       
   760         if (!block->live_out().is_same(live_out)) {
       
   761           // A change occurred.  Swap the old and new live out sets to avoid copying.
       
   762           BitMap temp = block->live_out();
       
   763           block->set_live_out(live_out);
       
   764           live_out = temp;
       
   765 
       
   766           change_occurred = true;
       
   767           change_occurred_in_block = true;
       
   768         }
       
   769       }
       
   770 
       
   771       if (iteration_count == 0 || change_occurred_in_block) {
       
   772         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
       
   773         // note: live_in has to be computed only in first iteration or if live_out has changed!
       
   774         BitMap live_in = block->live_in();
       
   775         live_in.set_from(block->live_out());
       
   776         live_in.set_difference(block->live_kill());
       
   777         live_in.set_union(block->live_gen());
       
   778       }
       
   779 
       
   780 #ifndef PRODUCT
       
   781       if (TraceLinearScanLevel >= 4) {
       
   782         char c = ' ';
       
   783         if (iteration_count == 0 || change_occurred_in_block) {
       
   784           c = '*';
       
   785         }
       
   786         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
       
   787         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
       
   788       }
       
   789 #endif
       
   790     }
       
   791     iteration_count++;
       
   792 
       
   793     if (change_occurred && iteration_count > 50) {
       
   794       BAILOUT("too many iterations in compute_global_live_sets");
       
   795     }
       
   796   } while (change_occurred);
       
   797 
       
   798 
       
   799 #ifdef ASSERT
       
   800   // check that fixed intervals are not live at block boundaries
       
   801   // (live set must be empty at fixed intervals)
       
   802   for (int i = 0; i < num_blocks; i++) {
       
   803     BlockBegin* block = block_at(i);
       
   804     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
       
   805       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
       
   806       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
       
   807       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
       
   808     }
       
   809   }
       
   810 #endif
       
   811 
       
   812   // check that the live_in set of the first block is empty
       
   813   BitMap live_in_args(ir()->start()->live_in().size());
       
   814   live_in_args.clear();
       
   815   if (!ir()->start()->live_in().is_same(live_in_args)) {
       
   816 #ifdef ASSERT
       
   817     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
       
   818     tty->print_cr("affected registers:");
       
   819     print_bitmap(ir()->start()->live_in());
       
   820 
       
   821     // print some additional information to simplify debugging
       
   822     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
       
   823       if (ir()->start()->live_in().at(i)) {
       
   824         Instruction* instr = gen()->instruction_for_vreg(i);
       
   825         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
       
   826 
       
   827         for (int j = 0; j < num_blocks; j++) {
       
   828           BlockBegin* block = block_at(j);
       
   829           if (block->live_gen().at(i)) {
       
   830             tty->print_cr("  used in block B%d", block->block_id());
       
   831           }
       
   832           if (block->live_kill().at(i)) {
       
   833             tty->print_cr("  defined in block B%d", block->block_id());
       
   834           }
       
   835         }
       
   836       }
       
   837     }
       
   838 
       
   839 #endif
       
   840     // when this fails, virtual registers are used before they are defined.
       
   841     assert(false, "live_in set of first block must be empty");
       
   842     // bailout of if this occurs in product mode.
       
   843     bailout("live_in set of first block not empty");
       
   844   }
       
   845 }
       
   846 
       
   847 
       
   848 // ********** Phase 4: build intervals
       
   849 // (fills the list _intervals)
       
   850 
       
   851 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
       
   852   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
       
   853   LIR_Opr opr = value->operand();
       
   854   Constant* con = value->as_Constant();
       
   855 
       
   856   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
       
   857     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
       
   858     add_use(opr, from, to, use_kind);
       
   859   }
       
   860 }
       
   861 
       
   862 
       
   863 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
       
   864   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
       
   865   assert(opr->is_register(), "should not be called otherwise");
       
   866 
       
   867   if (opr->is_virtual_register()) {
       
   868     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
       
   869     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
       
   870 
       
   871   } else {
       
   872     int reg = reg_num(opr);
       
   873     if (is_processed_reg_num(reg)) {
       
   874       add_def(reg, def_pos, use_kind, opr->type_register());
       
   875     }
       
   876     reg = reg_numHi(opr);
       
   877     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
       
   878       add_def(reg, def_pos, use_kind, opr->type_register());
       
   879     }
       
   880   }
       
   881 }
       
   882 
       
   883 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
       
   884   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
       
   885   assert(opr->is_register(), "should not be called otherwise");
       
   886 
       
   887   if (opr->is_virtual_register()) {
       
   888     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
       
   889     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
       
   890 
       
   891   } else {
       
   892     int reg = reg_num(opr);
       
   893     if (is_processed_reg_num(reg)) {
       
   894       add_use(reg, from, to, use_kind, opr->type_register());
       
   895     }
       
   896     reg = reg_numHi(opr);
       
   897     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
       
   898       add_use(reg, from, to, use_kind, opr->type_register());
       
   899     }
       
   900   }
       
   901 }
       
   902 
       
   903 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
       
   904   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
       
   905   assert(opr->is_register(), "should not be called otherwise");
       
   906 
       
   907   if (opr->is_virtual_register()) {
       
   908     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
       
   909     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
       
   910 
       
   911   } else {
       
   912     int reg = reg_num(opr);
       
   913     if (is_processed_reg_num(reg)) {
       
   914       add_temp(reg, temp_pos, use_kind, opr->type_register());
       
   915     }
       
   916     reg = reg_numHi(opr);
       
   917     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
       
   918       add_temp(reg, temp_pos, use_kind, opr->type_register());
       
   919     }
       
   920   }
       
   921 }
       
   922 
       
   923 
       
   924 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
       
   925   Interval* interval = interval_at(reg_num);
       
   926   if (interval != NULL) {
       
   927     assert(interval->reg_num() == reg_num, "wrong interval");
       
   928 
       
   929     if (type != T_ILLEGAL) {
       
   930       interval->set_type(type);
       
   931     }
       
   932 
       
   933     Range* r = interval->first();
       
   934     if (r->from() <= def_pos) {
       
   935       // Update the starting point (when a range is first created for a use, its
       
   936       // start is the beginning of the current block until a def is encountered.)
       
   937       r->set_from(def_pos);
       
   938       interval->add_use_pos(def_pos, use_kind);
       
   939 
       
   940     } else {
       
   941       // Dead value - make vacuous interval
       
   942       // also add use_kind for dead intervals
       
   943       interval->add_range(def_pos, def_pos + 1);
       
   944       interval->add_use_pos(def_pos, use_kind);
       
   945       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
       
   946     }
       
   947 
       
   948   } else {
       
   949     // Dead value - make vacuous interval
       
   950     // also add use_kind for dead intervals
       
   951     interval = create_interval(reg_num);
       
   952     if (type != T_ILLEGAL) {
       
   953       interval->set_type(type);
       
   954     }
       
   955 
       
   956     interval->add_range(def_pos, def_pos + 1);
       
   957     interval->add_use_pos(def_pos, use_kind);
       
   958     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
       
   959   }
       
   960 
       
   961   change_spill_definition_pos(interval, def_pos);
       
   962   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
       
   963         // detection of method-parameters and roundfp-results
       
   964         // TODO: move this directly to position where use-kind is computed
       
   965     interval->set_spill_state(startInMemory);
       
   966   }
       
   967 }
       
   968 
       
   969 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
       
   970   Interval* interval = interval_at(reg_num);
       
   971   if (interval == NULL) {
       
   972     interval = create_interval(reg_num);
       
   973   }
       
   974   assert(interval->reg_num() == reg_num, "wrong interval");
       
   975 
       
   976   if (type != T_ILLEGAL) {
       
   977     interval->set_type(type);
       
   978   }
       
   979 
       
   980   interval->add_range(from, to);
       
   981   interval->add_use_pos(to, use_kind);
       
   982 }
       
   983 
       
   984 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
       
   985   Interval* interval = interval_at(reg_num);
       
   986   if (interval == NULL) {
       
   987     interval = create_interval(reg_num);
       
   988   }
       
   989   assert(interval->reg_num() == reg_num, "wrong interval");
       
   990 
       
   991   if (type != T_ILLEGAL) {
       
   992     interval->set_type(type);
       
   993   }
       
   994 
       
   995   interval->add_range(temp_pos, temp_pos + 1);
       
   996   interval->add_use_pos(temp_pos, use_kind);
       
   997 }
       
   998 
       
   999 
       
  1000 // the results of this functions are used for optimizing spilling and reloading
       
  1001 // if the functions return shouldHaveRegister and the interval is spilled,
       
  1002 // it is not reloaded to a register.
       
  1003 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
       
  1004   if (op->code() == lir_move) {
       
  1005     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
       
  1006     LIR_Op1* move = (LIR_Op1*)op;
       
  1007     LIR_Opr res = move->result_opr();
       
  1008     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
       
  1009 
       
  1010     if (result_in_memory) {
       
  1011       // Begin of an interval with must_start_in_memory set.
       
  1012       // This interval will always get a stack slot first, so return noUse.
       
  1013       return noUse;
       
  1014 
       
  1015     } else if (move->in_opr()->is_stack()) {
       
  1016       // method argument (condition must be equal to handle_method_arguments)
       
  1017       return noUse;
       
  1018 
       
  1019     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
       
  1020       // Move from register to register
       
  1021       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
       
  1022         // special handling of phi-function moves inside osr-entry blocks
       
  1023         // input operand must have a register instead of output operand (leads to better register allocation)
       
  1024         return shouldHaveRegister;
       
  1025       }
       
  1026     }
       
  1027   }
       
  1028 
       
  1029   if (opr->is_virtual() &&
       
  1030       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
       
  1031     // result is a stack-slot, so prevent immediate reloading
       
  1032     return noUse;
       
  1033   }
       
  1034 
       
  1035   // all other operands require a register
       
  1036   return mustHaveRegister;
       
  1037 }
       
  1038 
       
  1039 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
       
  1040   if (op->code() == lir_move) {
       
  1041     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
       
  1042     LIR_Op1* move = (LIR_Op1*)op;
       
  1043     LIR_Opr res = move->result_opr();
       
  1044     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
       
  1045 
       
  1046     if (result_in_memory) {
       
  1047       // Move to an interval with must_start_in_memory set.
       
  1048       // To avoid moves from stack to stack (not allowed) force the input operand to a register
       
  1049       return mustHaveRegister;
       
  1050 
       
  1051     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
       
  1052       // Move from register to register
       
  1053       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
       
  1054         // special handling of phi-function moves inside osr-entry blocks
       
  1055         // input operand must have a register instead of output operand (leads to better register allocation)
       
  1056         return mustHaveRegister;
       
  1057       }
       
  1058 
       
  1059       // The input operand is not forced to a register (moves from stack to register are allowed),
       
  1060       // but it is faster if the input operand is in a register
       
  1061       return shouldHaveRegister;
       
  1062     }
       
  1063   }
       
  1064 
       
  1065 
       
  1066 #ifdef IA32
       
  1067   if (op->code() == lir_cmove) {
       
  1068     // conditional moves can handle stack operands
       
  1069     assert(op->result_opr()->is_register(), "result must always be in a register");
       
  1070     return shouldHaveRegister;
       
  1071   }
       
  1072 
       
  1073   // optimizations for second input operand of arithmehtic operations on Intel
       
  1074   // this operand is allowed to be on the stack in some cases
       
  1075   BasicType opr_type = opr->type_register();
       
  1076   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
       
  1077     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
       
  1078       // SSE float instruction (T_DOUBLE only supported with SSE2)
       
  1079       switch (op->code()) {
       
  1080         case lir_cmp:
       
  1081         case lir_add:
       
  1082         case lir_sub:
       
  1083         case lir_mul:
       
  1084         case lir_div:
       
  1085         {
       
  1086           assert(op->as_Op2() != NULL, "must be LIR_Op2");
       
  1087           LIR_Op2* op2 = (LIR_Op2*)op;
       
  1088           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
       
  1089             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
       
  1090             return shouldHaveRegister;
       
  1091           }
       
  1092         }
       
  1093       }
       
  1094     } else {
       
  1095       // FPU stack float instruction
       
  1096       switch (op->code()) {
       
  1097         case lir_add:
       
  1098         case lir_sub:
       
  1099         case lir_mul:
       
  1100         case lir_div:
       
  1101         {
       
  1102           assert(op->as_Op2() != NULL, "must be LIR_Op2");
       
  1103           LIR_Op2* op2 = (LIR_Op2*)op;
       
  1104           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
       
  1105             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
       
  1106             return shouldHaveRegister;
       
  1107           }
       
  1108         }
       
  1109       }
       
  1110     }
       
  1111 
       
  1112   } else if (opr_type != T_LONG) {
       
  1113     // integer instruction (note: long operands must always be in register)
       
  1114     switch (op->code()) {
       
  1115       case lir_cmp:
       
  1116       case lir_add:
       
  1117       case lir_sub:
       
  1118       case lir_logic_and:
       
  1119       case lir_logic_or:
       
  1120       case lir_logic_xor:
       
  1121       {
       
  1122         assert(op->as_Op2() != NULL, "must be LIR_Op2");
       
  1123         LIR_Op2* op2 = (LIR_Op2*)op;
       
  1124         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
       
  1125           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
       
  1126           return shouldHaveRegister;
       
  1127         }
       
  1128       }
       
  1129     }
       
  1130   }
       
  1131 #endif // IA32
       
  1132 
       
  1133   // all other operands require a register
       
  1134   return mustHaveRegister;
       
  1135 }
       
  1136 
       
  1137 
       
  1138 void LinearScan::handle_method_arguments(LIR_Op* op) {
       
  1139   // special handling for method arguments (moves from stack to virtual register):
       
  1140   // the interval gets no register assigned, but the stack slot.
       
  1141   // it is split before the first use by the register allocator.
       
  1142 
       
  1143   if (op->code() == lir_move) {
       
  1144     assert(op->as_Op1() != NULL, "must be LIR_Op1");
       
  1145     LIR_Op1* move = (LIR_Op1*)op;
       
  1146 
       
  1147     if (move->in_opr()->is_stack()) {
       
  1148 #ifdef ASSERT
       
  1149       int arg_size = compilation()->method()->arg_size();
       
  1150       LIR_Opr o = move->in_opr();
       
  1151       if (o->is_single_stack()) {
       
  1152         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
       
  1153       } else if (o->is_double_stack()) {
       
  1154         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
       
  1155       } else {
       
  1156         ShouldNotReachHere();
       
  1157       }
       
  1158 
       
  1159       assert(move->id() > 0, "invalid id");
       
  1160       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
       
  1161       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
       
  1162 
       
  1163       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
       
  1164 #endif
       
  1165 
       
  1166       Interval* interval = interval_at(reg_num(move->result_opr()));
       
  1167 
       
  1168       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
       
  1169       interval->set_canonical_spill_slot(stack_slot);
       
  1170       interval->assign_reg(stack_slot);
       
  1171     }
       
  1172   }
       
  1173 }
       
  1174 
       
  1175 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
       
  1176   // special handling for doubleword move from memory to register:
       
  1177   // in this case the registers of the input address and the result
       
  1178   // registers must not overlap -> add a temp range for the input registers
       
  1179   if (op->code() == lir_move) {
       
  1180     assert(op->as_Op1() != NULL, "must be LIR_Op1");
       
  1181     LIR_Op1* move = (LIR_Op1*)op;
       
  1182 
       
  1183     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
       
  1184       LIR_Address* address = move->in_opr()->as_address_ptr();
       
  1185       if (address != NULL) {
       
  1186         if (address->base()->is_valid()) {
       
  1187           add_temp(address->base(), op->id(), noUse);
       
  1188         }
       
  1189         if (address->index()->is_valid()) {
       
  1190           add_temp(address->index(), op->id(), noUse);
       
  1191         }
       
  1192       }
       
  1193     }
       
  1194   }
       
  1195 }
       
  1196 
       
  1197 void LinearScan::add_register_hints(LIR_Op* op) {
       
  1198   switch (op->code()) {
       
  1199     case lir_move:      // fall through
       
  1200     case lir_convert: {
       
  1201       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
       
  1202       LIR_Op1* move = (LIR_Op1*)op;
       
  1203 
       
  1204       LIR_Opr move_from = move->in_opr();
       
  1205       LIR_Opr move_to = move->result_opr();
       
  1206 
       
  1207       if (move_to->is_register() && move_from->is_register()) {
       
  1208         Interval* from = interval_at(reg_num(move_from));
       
  1209         Interval* to = interval_at(reg_num(move_to));
       
  1210         if (from != NULL && to != NULL) {
       
  1211           to->set_register_hint(from);
       
  1212           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
       
  1213         }
       
  1214       }
       
  1215       break;
       
  1216     }
       
  1217     case lir_cmove: {
       
  1218       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
       
  1219       LIR_Op2* cmove = (LIR_Op2*)op;
       
  1220 
       
  1221       LIR_Opr move_from = cmove->in_opr1();
       
  1222       LIR_Opr move_to = cmove->result_opr();
       
  1223 
       
  1224       if (move_to->is_register() && move_from->is_register()) {
       
  1225         Interval* from = interval_at(reg_num(move_from));
       
  1226         Interval* to = interval_at(reg_num(move_to));
       
  1227         if (from != NULL && to != NULL) {
       
  1228           to->set_register_hint(from);
       
  1229           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
       
  1230         }
       
  1231       }
       
  1232       break;
       
  1233     }
       
  1234   }
       
  1235 }
       
  1236 
       
  1237 
       
  1238 void LinearScan::build_intervals() {
       
  1239   TIME_LINEAR_SCAN(timer_build_intervals);
       
  1240 
       
  1241   // initialize interval list with expected number of intervals
       
  1242   // (32 is added to have some space for split children without having to resize the list)
       
  1243   _intervals = IntervalList(num_virtual_regs() + 32);
       
  1244   // initialize all slots that are used by build_intervals
       
  1245   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
       
  1246 
       
  1247   // create a list with all caller-save registers (cpu, fpu, xmm)
       
  1248   // when an instruction is a call, a temp range is created for all these registers
       
  1249   int num_caller_save_registers = 0;
       
  1250   int caller_save_registers[LinearScan::nof_regs];
       
  1251 
       
  1252   int i;
       
  1253   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs; i++) {
       
  1254     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
       
  1255     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
       
  1256     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
       
  1257     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
       
  1258   }
       
  1259 
       
  1260   // temp ranges for fpu registers are only created when the method has
       
  1261   // virtual fpu operands. Otherwise no allocation for fpu registers is
       
  1262   // perfomed and so the temp ranges would be useless
       
  1263   if (has_fpu_registers()) {
       
  1264 #ifdef IA32
       
  1265     if (UseSSE < 2) {
       
  1266 #endif
       
  1267       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
       
  1268         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
       
  1269         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
       
  1270         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
       
  1271         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
       
  1272       }
       
  1273 #ifdef IA32
       
  1274     }
       
  1275     if (UseSSE > 0) {
       
  1276       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
       
  1277         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
       
  1278         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
       
  1279         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
       
  1280         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
       
  1281       }
       
  1282     }
       
  1283 #endif
       
  1284   }
       
  1285   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
       
  1286 
       
  1287 
       
  1288   LIR_OpVisitState visitor;
       
  1289 
       
  1290   // iterate all blocks in reverse order
       
  1291   for (i = block_count() - 1; i >= 0; i--) {
       
  1292     BlockBegin* block = block_at(i);
       
  1293     LIR_OpList* instructions = block->lir()->instructions_list();
       
  1294     int         block_from =   block->first_lir_instruction_id();
       
  1295     int         block_to =     block->last_lir_instruction_id();
       
  1296 
       
  1297     assert(block_from == instructions->at(0)->id(), "must be");
       
  1298     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
       
  1299 
       
  1300     // Update intervals for registers live at the end of this block;
       
  1301     BitMap live = block->live_out();
       
  1302     int size = live.size();
       
  1303     for (int number = live.get_next_one_offset(0, size); number < size; number = live.get_next_one_offset(number + 1, size)) {
       
  1304       assert(live.at(number), "should not stop here otherwise");
       
  1305       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
       
  1306       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
       
  1307 
       
  1308       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
       
  1309 
       
  1310       // add special use positions for loop-end blocks when the
       
  1311       // interval is used anywhere inside this loop.  It's possible
       
  1312       // that the block was part of a non-natural loop, so it might
       
  1313       // have an invalid loop index.
       
  1314       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
       
  1315           block->loop_index() != -1 &&
       
  1316           is_interval_in_loop(number, block->loop_index())) {
       
  1317         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
       
  1318       }
       
  1319     }
       
  1320 
       
  1321     // iterate all instructions of the block in reverse order.
       
  1322     // skip the first instruction because it is always a label
       
  1323     // definitions of intervals are processed before uses
       
  1324     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
       
  1325     for (int j = instructions->length() - 1; j >= 1; j--) {
       
  1326       LIR_Op* op = instructions->at(j);
       
  1327       int op_id = op->id();
       
  1328 
       
  1329       // visit operation to collect all operands
       
  1330       visitor.visit(op);
       
  1331 
       
  1332       // add a temp range for each register if operation destroys caller-save registers
       
  1333       if (visitor.has_call()) {
       
  1334         for (int k = 0; k < num_caller_save_registers; k++) {
       
  1335           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
       
  1336         }
       
  1337         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
       
  1338       }
       
  1339 
       
  1340       // Add any platform dependent temps
       
  1341       pd_add_temps(op);
       
  1342 
       
  1343       // visit definitions (output and temp operands)
       
  1344       int k, n;
       
  1345       n = visitor.opr_count(LIR_OpVisitState::outputMode);
       
  1346       for (k = 0; k < n; k++) {
       
  1347         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
       
  1348         assert(opr->is_register(), "visitor should only return register operands");
       
  1349         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
       
  1350       }
       
  1351 
       
  1352       n = visitor.opr_count(LIR_OpVisitState::tempMode);
       
  1353       for (k = 0; k < n; k++) {
       
  1354         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
       
  1355         assert(opr->is_register(), "visitor should only return register operands");
       
  1356         add_temp(opr, op_id, mustHaveRegister);
       
  1357       }
       
  1358 
       
  1359       // visit uses (input operands)
       
  1360       n = visitor.opr_count(LIR_OpVisitState::inputMode);
       
  1361       for (k = 0; k < n; k++) {
       
  1362         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
       
  1363         assert(opr->is_register(), "visitor should only return register operands");
       
  1364         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
       
  1365       }
       
  1366 
       
  1367       // Add uses of live locals from interpreter's point of view for proper
       
  1368       // debug information generation
       
  1369       // Treat these operands as temp values (if the life range is extended
       
  1370       // to a call site, the value would be in a register at the call otherwise)
       
  1371       n = visitor.info_count();
       
  1372       for (k = 0; k < n; k++) {
       
  1373         CodeEmitInfo* info = visitor.info_at(k);
       
  1374         ValueStack* stack = info->stack();
       
  1375         for_each_state_value(stack, value,
       
  1376           add_use(value, block_from, op_id + 1, noUse);
       
  1377         );
       
  1378       }
       
  1379 
       
  1380       // special steps for some instructions (especially moves)
       
  1381       handle_method_arguments(op);
       
  1382       handle_doubleword_moves(op);
       
  1383       add_register_hints(op);
       
  1384 
       
  1385     } // end of instruction iteration
       
  1386   } // end of block iteration
       
  1387 
       
  1388 
       
  1389   // add the range [0, 1[ to all fixed intervals
       
  1390   // -> the register allocator need not handle unhandled fixed intervals
       
  1391   for (int n = 0; n < LinearScan::nof_regs; n++) {
       
  1392     Interval* interval = interval_at(n);
       
  1393     if (interval != NULL) {
       
  1394       interval->add_range(0, 1);
       
  1395     }
       
  1396   }
       
  1397 }
       
  1398 
       
  1399 
       
  1400 // ********** Phase 5: actual register allocation
       
  1401 
       
  1402 int LinearScan::interval_cmp(Interval** a, Interval** b) {
       
  1403   if (*a != NULL) {
       
  1404     if (*b != NULL) {
       
  1405       return (*a)->from() - (*b)->from();
       
  1406     } else {
       
  1407       return -1;
       
  1408     }
       
  1409   } else {
       
  1410     if (*b != NULL) {
       
  1411       return 1;
       
  1412     } else {
       
  1413       return 0;
       
  1414     }
       
  1415   }
       
  1416 }
       
  1417 
       
  1418 #ifndef PRODUCT
       
  1419 bool LinearScan::is_sorted(IntervalArray* intervals) {
       
  1420   int from = -1;
       
  1421   int i, j;
       
  1422   for (i = 0; i < intervals->length(); i ++) {
       
  1423     Interval* it = intervals->at(i);
       
  1424     if (it != NULL) {
       
  1425       if (from > it->from()) {
       
  1426         assert(false, "");
       
  1427         return false;
       
  1428       }
       
  1429       from = it->from();
       
  1430     }
       
  1431   }
       
  1432 
       
  1433   // check in both directions if sorted list and unsorted list contain same intervals
       
  1434   for (i = 0; i < interval_count(); i++) {
       
  1435     if (interval_at(i) != NULL) {
       
  1436       int num_found = 0;
       
  1437       for (j = 0; j < intervals->length(); j++) {
       
  1438         if (interval_at(i) == intervals->at(j)) {
       
  1439           num_found++;
       
  1440         }
       
  1441       }
       
  1442       assert(num_found == 1, "lists do not contain same intervals");
       
  1443     }
       
  1444   }
       
  1445   for (j = 0; j < intervals->length(); j++) {
       
  1446     int num_found = 0;
       
  1447     for (i = 0; i < interval_count(); i++) {
       
  1448       if (interval_at(i) == intervals->at(j)) {
       
  1449         num_found++;
       
  1450       }
       
  1451     }
       
  1452     assert(num_found == 1, "lists do not contain same intervals");
       
  1453   }
       
  1454 
       
  1455   return true;
       
  1456 }
       
  1457 #endif
       
  1458 
       
  1459 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
       
  1460   if (*prev != NULL) {
       
  1461     (*prev)->set_next(interval);
       
  1462   } else {
       
  1463     *first = interval;
       
  1464   }
       
  1465   *prev = interval;
       
  1466 }
       
  1467 
       
  1468 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
       
  1469   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
       
  1470 
       
  1471   *list1 = *list2 = Interval::end();
       
  1472 
       
  1473   Interval* list1_prev = NULL;
       
  1474   Interval* list2_prev = NULL;
       
  1475   Interval* v;
       
  1476 
       
  1477   const int n = _sorted_intervals->length();
       
  1478   for (int i = 0; i < n; i++) {
       
  1479     v = _sorted_intervals->at(i);
       
  1480     if (v == NULL) continue;
       
  1481 
       
  1482     if (is_list1(v)) {
       
  1483       add_to_list(list1, &list1_prev, v);
       
  1484     } else if (is_list2 == NULL || is_list2(v)) {
       
  1485       add_to_list(list2, &list2_prev, v);
       
  1486     }
       
  1487   }
       
  1488 
       
  1489   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
       
  1490   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
       
  1491 
       
  1492   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
       
  1493   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
       
  1494 }
       
  1495 
       
  1496 
       
  1497 void LinearScan::sort_intervals_before_allocation() {
       
  1498   TIME_LINEAR_SCAN(timer_sort_intervals_before);
       
  1499 
       
  1500   IntervalList* unsorted_list = &_intervals;
       
  1501   int unsorted_len = unsorted_list->length();
       
  1502   int sorted_len = 0;
       
  1503   int unsorted_idx;
       
  1504   int sorted_idx = 0;
       
  1505   int sorted_from_max = -1;
       
  1506 
       
  1507   // calc number of items for sorted list (sorted list must not contain NULL values)
       
  1508   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
       
  1509     if (unsorted_list->at(unsorted_idx) != NULL) {
       
  1510       sorted_len++;
       
  1511     }
       
  1512   }
       
  1513   IntervalArray* sorted_list = new IntervalArray(sorted_len);
       
  1514 
       
  1515   // special sorting algorithm: the original interval-list is almost sorted,
       
  1516   // only some intervals are swapped. So this is much faster than a complete QuickSort
       
  1517   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
       
  1518     Interval* cur_interval = unsorted_list->at(unsorted_idx);
       
  1519 
       
  1520     if (cur_interval != NULL) {
       
  1521       int cur_from = cur_interval->from();
       
  1522 
       
  1523       if (sorted_from_max <= cur_from) {
       
  1524         sorted_list->at_put(sorted_idx++, cur_interval);
       
  1525         sorted_from_max = cur_interval->from();
       
  1526       } else {
       
  1527         // the asumption that the intervals are already sorted failed,
       
  1528         // so this interval must be sorted in manually
       
  1529         int j;
       
  1530         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
       
  1531           sorted_list->at_put(j + 1, sorted_list->at(j));
       
  1532         }
       
  1533         sorted_list->at_put(j + 1, cur_interval);
       
  1534         sorted_idx++;
       
  1535       }
       
  1536     }
       
  1537   }
       
  1538   _sorted_intervals = sorted_list;
       
  1539 }
       
  1540 
       
  1541 void LinearScan::sort_intervals_after_allocation() {
       
  1542   TIME_LINEAR_SCAN(timer_sort_intervals_after);
       
  1543 
       
  1544   IntervalArray* old_list      = _sorted_intervals;
       
  1545   IntervalList*  new_list      = _new_intervals_from_allocation;
       
  1546   int old_len = old_list->length();
       
  1547   int new_len = new_list->length();
       
  1548 
       
  1549   if (new_len == 0) {
       
  1550     // no intervals have been added during allocation, so sorted list is already up to date
       
  1551     return;
       
  1552   }
       
  1553 
       
  1554   // conventional sort-algorithm for new intervals
       
  1555   new_list->sort(interval_cmp);
       
  1556 
       
  1557   // merge old and new list (both already sorted) into one combined list
       
  1558   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
       
  1559   int old_idx = 0;
       
  1560   int new_idx = 0;
       
  1561 
       
  1562   while (old_idx + new_idx < old_len + new_len) {
       
  1563     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
       
  1564       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
       
  1565       old_idx++;
       
  1566     } else {
       
  1567       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
       
  1568       new_idx++;
       
  1569     }
       
  1570   }
       
  1571 
       
  1572   _sorted_intervals = combined_list;
       
  1573 }
       
  1574 
       
  1575 
       
  1576 void LinearScan::allocate_registers() {
       
  1577   TIME_LINEAR_SCAN(timer_allocate_registers);
       
  1578 
       
  1579   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
       
  1580   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
       
  1581 
       
  1582   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals, is_precolored_cpu_interval, is_virtual_cpu_interval);
       
  1583   if (has_fpu_registers()) {
       
  1584     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
       
  1585 #ifdef ASSERT
       
  1586   } else {
       
  1587     // fpu register allocation is omitted because no virtual fpu registers are present
       
  1588     // just check this again...
       
  1589     create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals, is_precolored_fpu_interval, is_virtual_fpu_interval);
       
  1590     assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
       
  1591 #endif
       
  1592   }
       
  1593 
       
  1594   // allocate cpu registers
       
  1595   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
       
  1596   cpu_lsw.walk();
       
  1597   cpu_lsw.finish_allocation();
       
  1598 
       
  1599   if (has_fpu_registers()) {
       
  1600     // allocate fpu registers
       
  1601     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
       
  1602     fpu_lsw.walk();
       
  1603     fpu_lsw.finish_allocation();
       
  1604   }
       
  1605 }
       
  1606 
       
  1607 
       
  1608 // ********** Phase 6: resolve data flow
       
  1609 // (insert moves at edges between blocks if intervals have been split)
       
  1610 
       
  1611 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
       
  1612 // instead of returning NULL
       
  1613 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
       
  1614   Interval* result = interval->split_child_at_op_id(op_id, mode);
       
  1615   if (result != NULL) {
       
  1616     return result;
       
  1617   }
       
  1618 
       
  1619   assert(false, "must find an interval, but do a clean bailout in product mode");
       
  1620   result = new Interval(LIR_OprDesc::vreg_base);
       
  1621   result->assign_reg(0);
       
  1622   result->set_type(T_INT);
       
  1623   BAILOUT_("LinearScan: interval is NULL", result);
       
  1624 }
       
  1625 
       
  1626 
       
  1627 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
       
  1628   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
       
  1629   assert(interval_at(reg_num) != NULL, "no interval found");
       
  1630 
       
  1631   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
       
  1632 }
       
  1633 
       
  1634 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
       
  1635   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
       
  1636   assert(interval_at(reg_num) != NULL, "no interval found");
       
  1637 
       
  1638   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
       
  1639 }
       
  1640 
       
  1641 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
       
  1642   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
       
  1643   assert(interval_at(reg_num) != NULL, "no interval found");
       
  1644 
       
  1645   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
       
  1646 }
       
  1647 
       
  1648 
       
  1649 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
       
  1650   DEBUG_ONLY(move_resolver.check_empty());
       
  1651 
       
  1652   const int num_regs = num_virtual_regs();
       
  1653   const int size = live_set_size();
       
  1654   const BitMap live_at_edge = to_block->live_in();
       
  1655 
       
  1656   // visit all registers where the live_at_edge bit is set
       
  1657   for (int r = live_at_edge.get_next_one_offset(0, size); r < size; r = live_at_edge.get_next_one_offset(r + 1, size)) {
       
  1658     assert(r < num_regs, "live information set for not exisiting interval");
       
  1659     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
       
  1660 
       
  1661     Interval* from_interval = interval_at_block_end(from_block, r);
       
  1662     Interval* to_interval = interval_at_block_begin(to_block, r);
       
  1663 
       
  1664     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
       
  1665       // need to insert move instruction
       
  1666       move_resolver.add_mapping(from_interval, to_interval);
       
  1667     }
       
  1668   }
       
  1669 }
       
  1670 
       
  1671 
       
  1672 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
       
  1673   if (from_block->number_of_sux() <= 1) {
       
  1674     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
       
  1675 
       
  1676     LIR_OpList* instructions = from_block->lir()->instructions_list();
       
  1677     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
       
  1678     if (branch != NULL) {
       
  1679       // insert moves before branch
       
  1680       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
       
  1681       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
       
  1682     } else {
       
  1683       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
       
  1684     }
       
  1685 
       
  1686   } else {
       
  1687     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
       
  1688 #ifdef ASSERT
       
  1689     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
       
  1690 
       
  1691     // because the number of predecessor edges matches the number of
       
  1692     // successor edges, blocks which are reached by switch statements
       
  1693     // may have be more than one predecessor but it will be guaranteed
       
  1694     // that all predecessors will be the same.
       
  1695     for (int i = 0; i < to_block->number_of_preds(); i++) {
       
  1696       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
       
  1697     }
       
  1698 #endif
       
  1699 
       
  1700     move_resolver.set_insert_position(to_block->lir(), 0);
       
  1701   }
       
  1702 }
       
  1703 
       
  1704 
       
  1705 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
       
  1706 void LinearScan::resolve_data_flow() {
       
  1707   TIME_LINEAR_SCAN(timer_resolve_data_flow);
       
  1708 
       
  1709   int num_blocks = block_count();
       
  1710   MoveResolver move_resolver(this);
       
  1711   BitMap block_completed(num_blocks);  block_completed.clear();
       
  1712   BitMap already_resolved(num_blocks); already_resolved.clear();
       
  1713 
       
  1714   int i;
       
  1715   for (i = 0; i < num_blocks; i++) {
       
  1716     BlockBegin* block = block_at(i);
       
  1717 
       
  1718     // check if block has only one predecessor and only one successor
       
  1719     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
       
  1720       LIR_OpList* instructions = block->lir()->instructions_list();
       
  1721       assert(instructions->at(0)->code() == lir_label, "block must start with label");
       
  1722       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
       
  1723       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
       
  1724 
       
  1725       // check if block is empty (only label and branch)
       
  1726       if (instructions->length() == 2) {
       
  1727         BlockBegin* pred = block->pred_at(0);
       
  1728         BlockBegin* sux = block->sux_at(0);
       
  1729 
       
  1730         // prevent optimization of two consecutive blocks
       
  1731         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
       
  1732           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
       
  1733           block_completed.set_bit(block->linear_scan_number());
       
  1734 
       
  1735           // directly resolve between pred and sux (without looking at the empty block between)
       
  1736           resolve_collect_mappings(pred, sux, move_resolver);
       
  1737           if (move_resolver.has_mappings()) {
       
  1738             move_resolver.set_insert_position(block->lir(), 0);
       
  1739             move_resolver.resolve_and_append_moves();
       
  1740           }
       
  1741         }
       
  1742       }
       
  1743     }
       
  1744   }
       
  1745 
       
  1746 
       
  1747   for (i = 0; i < num_blocks; i++) {
       
  1748     if (!block_completed.at(i)) {
       
  1749       BlockBegin* from_block = block_at(i);
       
  1750       already_resolved.set_from(block_completed);
       
  1751 
       
  1752       int num_sux = from_block->number_of_sux();
       
  1753       for (int s = 0; s < num_sux; s++) {
       
  1754         BlockBegin* to_block = from_block->sux_at(s);
       
  1755 
       
  1756         // check for duplicate edges between the same blocks (can happen with switch blocks)
       
  1757         if (!already_resolved.at(to_block->linear_scan_number())) {
       
  1758           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
       
  1759           already_resolved.set_bit(to_block->linear_scan_number());
       
  1760 
       
  1761           // collect all intervals that have been split between from_block and to_block
       
  1762           resolve_collect_mappings(from_block, to_block, move_resolver);
       
  1763           if (move_resolver.has_mappings()) {
       
  1764             resolve_find_insert_pos(from_block, to_block, move_resolver);
       
  1765             move_resolver.resolve_and_append_moves();
       
  1766           }
       
  1767         }
       
  1768       }
       
  1769     }
       
  1770   }
       
  1771 }
       
  1772 
       
  1773 
       
  1774 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
       
  1775   if (interval_at(reg_num) == NULL) {
       
  1776     // if a phi function is never used, no interval is created -> ignore this
       
  1777     return;
       
  1778   }
       
  1779 
       
  1780   Interval* interval = interval_at_block_begin(block, reg_num);
       
  1781   int reg = interval->assigned_reg();
       
  1782   int regHi = interval->assigned_regHi();
       
  1783 
       
  1784   if ((reg < nof_regs && interval->always_in_memory()) ||
       
  1785       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
       
  1786     // the interval is split to get a short range that is located on the stack
       
  1787     // in the following two cases:
       
  1788     // * the interval started in memory (e.g. method parameter), but is currently in a register
       
  1789     //   this is an optimization for exception handling that reduces the number of moves that
       
  1790     //   are necessary for resolving the states when an exception uses this exception handler
       
  1791     // * the interval would be on the fpu stack at the begin of the exception handler
       
  1792     //   this is not allowed because of the complicated fpu stack handling on Intel
       
  1793 
       
  1794     // range that will be spilled to memory
       
  1795     int from_op_id = block->first_lir_instruction_id();
       
  1796     int to_op_id = from_op_id + 1;  // short live range of length 1
       
  1797     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
       
  1798            "no split allowed between exception entry and first instruction");
       
  1799 
       
  1800     if (interval->from() != from_op_id) {
       
  1801       // the part before from_op_id is unchanged
       
  1802       interval = interval->split(from_op_id);
       
  1803       interval->assign_reg(reg, regHi);
       
  1804       append_interval(interval);
       
  1805     }
       
  1806     assert(interval->from() == from_op_id, "must be true now");
       
  1807 
       
  1808     Interval* spilled_part = interval;
       
  1809     if (interval->to() != to_op_id) {
       
  1810       // the part after to_op_id is unchanged
       
  1811       spilled_part = interval->split_from_start(to_op_id);
       
  1812       append_interval(spilled_part);
       
  1813       move_resolver.add_mapping(spilled_part, interval);
       
  1814     }
       
  1815     assign_spill_slot(spilled_part);
       
  1816 
       
  1817     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
       
  1818   }
       
  1819 }
       
  1820 
       
  1821 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
       
  1822   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
       
  1823   DEBUG_ONLY(move_resolver.check_empty());
       
  1824 
       
  1825   // visit all registers where the live_in bit is set
       
  1826   int size = live_set_size();
       
  1827   for (int r = block->live_in().get_next_one_offset(0, size); r < size; r = block->live_in().get_next_one_offset(r + 1, size)) {
       
  1828     resolve_exception_entry(block, r, move_resolver);
       
  1829   }
       
  1830 
       
  1831   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
       
  1832   for_each_phi_fun(block, phi,
       
  1833     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
       
  1834   );
       
  1835 
       
  1836   if (move_resolver.has_mappings()) {
       
  1837     // insert moves after first instruction
       
  1838     move_resolver.set_insert_position(block->lir(), 1);
       
  1839     move_resolver.resolve_and_append_moves();
       
  1840   }
       
  1841 }
       
  1842 
       
  1843 
       
  1844 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
       
  1845   if (interval_at(reg_num) == NULL) {
       
  1846     // if a phi function is never used, no interval is created -> ignore this
       
  1847     return;
       
  1848   }
       
  1849 
       
  1850   // the computation of to_interval is equal to resolve_collect_mappings,
       
  1851   // but from_interval is more complicated because of phi functions
       
  1852   BlockBegin* to_block = handler->entry_block();
       
  1853   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
       
  1854 
       
  1855   if (phi != NULL) {
       
  1856     // phi function of the exception entry block
       
  1857     // no moves are created for this phi function in the LIR_Generator, so the
       
  1858     // interval at the throwing instruction must be searched using the operands
       
  1859     // of the phi function
       
  1860     Value from_value = phi->operand_at(handler->phi_operand());
       
  1861 
       
  1862     // with phi functions it can happen that the same from_value is used in
       
  1863     // multiple mappings, so notify move-resolver that this is allowed
       
  1864     move_resolver.set_multiple_reads_allowed();
       
  1865 
       
  1866     Constant* con = from_value->as_Constant();
       
  1867     if (con != NULL && !con->is_pinned()) {
       
  1868       // unpinned constants may have no register, so add mapping from constant to interval
       
  1869       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
       
  1870     } else {
       
  1871       // search split child at the throwing op_id
       
  1872       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
       
  1873       move_resolver.add_mapping(from_interval, to_interval);
       
  1874     }
       
  1875 
       
  1876   } else {
       
  1877     // no phi function, so use reg_num also for from_interval
       
  1878     // search split child at the throwing op_id
       
  1879     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
       
  1880     if (from_interval != to_interval) {
       
  1881       // optimization to reduce number of moves: when to_interval is on stack and
       
  1882       // the stack slot is known to be always correct, then no move is necessary
       
  1883       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
       
  1884         move_resolver.add_mapping(from_interval, to_interval);
       
  1885       }
       
  1886     }
       
  1887   }
       
  1888 }
       
  1889 
       
  1890 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
       
  1891   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
       
  1892 
       
  1893   DEBUG_ONLY(move_resolver.check_empty());
       
  1894   assert(handler->lir_op_id() == -1, "already processed this xhandler");
       
  1895   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
       
  1896   assert(handler->entry_code() == NULL, "code already present");
       
  1897 
       
  1898   // visit all registers where the live_in bit is set
       
  1899   BlockBegin* block = handler->entry_block();
       
  1900   int size = live_set_size();
       
  1901   for (int r = block->live_in().get_next_one_offset(0, size); r < size; r = block->live_in().get_next_one_offset(r + 1, size)) {
       
  1902     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
       
  1903   }
       
  1904 
       
  1905   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
       
  1906   for_each_phi_fun(block, phi,
       
  1907     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
       
  1908   );
       
  1909 
       
  1910   if (move_resolver.has_mappings()) {
       
  1911     LIR_List* entry_code = new LIR_List(compilation());
       
  1912     move_resolver.set_insert_position(entry_code, 0);
       
  1913     move_resolver.resolve_and_append_moves();
       
  1914 
       
  1915     entry_code->jump(handler->entry_block());
       
  1916     handler->set_entry_code(entry_code);
       
  1917   }
       
  1918 }
       
  1919 
       
  1920 
       
  1921 void LinearScan::resolve_exception_handlers() {
       
  1922   MoveResolver move_resolver(this);
       
  1923   LIR_OpVisitState visitor;
       
  1924   int num_blocks = block_count();
       
  1925 
       
  1926   int i;
       
  1927   for (i = 0; i < num_blocks; i++) {
       
  1928     BlockBegin* block = block_at(i);
       
  1929     if (block->is_set(BlockBegin::exception_entry_flag)) {
       
  1930       resolve_exception_entry(block, move_resolver);
       
  1931     }
       
  1932   }
       
  1933 
       
  1934   for (i = 0; i < num_blocks; i++) {
       
  1935     BlockBegin* block = block_at(i);
       
  1936     LIR_List* ops = block->lir();
       
  1937     int num_ops = ops->length();
       
  1938 
       
  1939     // iterate all instructions of the block. skip the first because it is always a label
       
  1940     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
       
  1941     for (int j = 1; j < num_ops; j++) {
       
  1942       LIR_Op* op = ops->at(j);
       
  1943       int op_id = op->id();
       
  1944 
       
  1945       if (op_id != -1 && has_info(op_id)) {
       
  1946         // visit operation to collect all operands
       
  1947         visitor.visit(op);
       
  1948         assert(visitor.info_count() > 0, "should not visit otherwise");
       
  1949 
       
  1950         XHandlers* xhandlers = visitor.all_xhandler();
       
  1951         int n = xhandlers->length();
       
  1952         for (int k = 0; k < n; k++) {
       
  1953           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
       
  1954         }
       
  1955 
       
  1956 #ifdef ASSERT
       
  1957       } else {
       
  1958         visitor.visit(op);
       
  1959         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
       
  1960 #endif
       
  1961       }
       
  1962     }
       
  1963   }
       
  1964 }
       
  1965 
       
  1966 
       
  1967 // ********** Phase 7: assign register numbers back to LIR
       
  1968 // (includes computation of debug information and oop maps)
       
  1969 
       
  1970 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
       
  1971   VMReg reg = interval->cached_vm_reg();
       
  1972   if (!reg->is_valid() ) {
       
  1973     reg = vm_reg_for_operand(operand_for_interval(interval));
       
  1974     interval->set_cached_vm_reg(reg);
       
  1975   }
       
  1976   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
       
  1977   return reg;
       
  1978 }
       
  1979 
       
  1980 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
       
  1981   assert(opr->is_oop(), "currently only implemented for oop operands");
       
  1982   return frame_map()->regname(opr);
       
  1983 }
       
  1984 
       
  1985 
       
  1986 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
       
  1987   LIR_Opr opr = interval->cached_opr();
       
  1988   if (opr->is_illegal()) {
       
  1989     opr = calc_operand_for_interval(interval);
       
  1990     interval->set_cached_opr(opr);
       
  1991   }
       
  1992 
       
  1993   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
       
  1994   return opr;
       
  1995 }
       
  1996 
       
  1997 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
       
  1998   int assigned_reg = interval->assigned_reg();
       
  1999   BasicType type = interval->type();
       
  2000 
       
  2001   if (assigned_reg >= nof_regs) {
       
  2002     // stack slot
       
  2003     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
       
  2004     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
       
  2005 
       
  2006   } else {
       
  2007     // register
       
  2008     switch (type) {
       
  2009       case T_OBJECT: {
       
  2010         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
       
  2011         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
       
  2012         return LIR_OprFact::single_cpu_oop(assigned_reg);
       
  2013       }
       
  2014 
       
  2015       case T_INT: {
       
  2016         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
       
  2017         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
       
  2018         return LIR_OprFact::single_cpu(assigned_reg);
       
  2019       }
       
  2020 
       
  2021       case T_LONG: {
       
  2022         int assigned_regHi = interval->assigned_regHi();
       
  2023         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
       
  2024         assert(num_physical_regs(T_LONG) == 1 ||
       
  2025                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
       
  2026 
       
  2027         assert(assigned_reg != assigned_regHi, "invalid allocation");
       
  2028         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
       
  2029                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
       
  2030         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
       
  2031         if (requires_adjacent_regs(T_LONG)) {
       
  2032           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
       
  2033         }
       
  2034 
       
  2035 #ifdef SPARC
       
  2036 #ifdef _LP64
       
  2037         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
       
  2038 #else
       
  2039         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
       
  2040 #endif
       
  2041 #else
       
  2042         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
       
  2043 #endif
       
  2044       }
       
  2045 
       
  2046       case T_FLOAT: {
       
  2047 #ifdef IA32
       
  2048         if (UseSSE >= 1) {
       
  2049           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
       
  2050           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
       
  2051           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
       
  2052         }
       
  2053 #endif
       
  2054 
       
  2055         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
       
  2056         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
       
  2057         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
       
  2058       }
       
  2059 
       
  2060       case T_DOUBLE: {
       
  2061 #ifdef IA32
       
  2062         if (UseSSE >= 2) {
       
  2063           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
       
  2064           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
       
  2065           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
       
  2066         }
       
  2067 #endif
       
  2068 
       
  2069 #ifdef SPARC
       
  2070         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
       
  2071         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
       
  2072         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
       
  2073         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
       
  2074 #else
       
  2075         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
       
  2076         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
       
  2077         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
       
  2078 #endif
       
  2079         return result;
       
  2080       }
       
  2081 
       
  2082       default: {
       
  2083         ShouldNotReachHere();
       
  2084         return LIR_OprFact::illegalOpr;
       
  2085       }
       
  2086     }
       
  2087   }
       
  2088 }
       
  2089 
       
  2090 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
       
  2091   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
       
  2092   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
       
  2093 }
       
  2094 
       
  2095 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
       
  2096   assert(opr->is_virtual(), "should not call this otherwise");
       
  2097 
       
  2098   Interval* interval = interval_at(opr->vreg_number());
       
  2099   assert(interval != NULL, "interval must exist");
       
  2100 
       
  2101   if (op_id != -1) {
       
  2102 #ifdef ASSERT
       
  2103     BlockBegin* block = block_of_op_with_id(op_id);
       
  2104     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
       
  2105       // check if spill moves could have been appended at the end of this block, but
       
  2106       // before the branch instruction. So the split child information for this branch would
       
  2107       // be incorrect.
       
  2108       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
       
  2109       if (branch != NULL) {
       
  2110         if (block->live_out().at(opr->vreg_number())) {
       
  2111           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
       
  2112           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
       
  2113         }
       
  2114       }
       
  2115     }
       
  2116 #endif
       
  2117 
       
  2118     // operands are not changed when an interval is split during allocation,
       
  2119     // so search the right interval here
       
  2120     interval = split_child_at_op_id(interval, op_id, mode);
       
  2121   }
       
  2122 
       
  2123   LIR_Opr res = operand_for_interval(interval);
       
  2124 
       
  2125 #ifdef IA32
       
  2126   // new semantic for is_last_use: not only set on definite end of interval,
       
  2127   // but also before hole
       
  2128   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
       
  2129   // last use information is completely correct
       
  2130   // information is only needed for fpu stack allocation
       
  2131   if (res->is_fpu_register()) {
       
  2132     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
       
  2133       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
       
  2134       res = res->make_last_use();
       
  2135     }
       
  2136   }
       
  2137 #endif
       
  2138 
       
  2139   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
       
  2140 
       
  2141   return res;
       
  2142 }
       
  2143 
       
  2144 
       
  2145 #ifdef ASSERT
       
  2146 // some methods used to check correctness of debug information
       
  2147 
       
  2148 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
       
  2149   if (values == NULL) {
       
  2150     return;
       
  2151   }
       
  2152 
       
  2153   for (int i = 0; i < values->length(); i++) {
       
  2154     ScopeValue* value = values->at(i);
       
  2155 
       
  2156     if (value->is_location()) {
       
  2157       Location location = ((LocationValue*)value)->location();
       
  2158       assert(location.where() == Location::on_stack, "value is in register");
       
  2159     }
       
  2160   }
       
  2161 }
       
  2162 
       
  2163 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
       
  2164   if (values == NULL) {
       
  2165     return;
       
  2166   }
       
  2167 
       
  2168   for (int i = 0; i < values->length(); i++) {
       
  2169     MonitorValue* value = values->at(i);
       
  2170 
       
  2171     if (value->owner()->is_location()) {
       
  2172       Location location = ((LocationValue*)value->owner())->location();
       
  2173       assert(location.where() == Location::on_stack, "owner is in register");
       
  2174     }
       
  2175     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
       
  2176   }
       
  2177 }
       
  2178 
       
  2179 void assert_equal(Location l1, Location l2) {
       
  2180   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
       
  2181 }
       
  2182 
       
  2183 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
       
  2184   if (v1->is_location()) {
       
  2185     assert(v2->is_location(), "");
       
  2186     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
       
  2187   } else if (v1->is_constant_int()) {
       
  2188     assert(v2->is_constant_int(), "");
       
  2189     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
       
  2190   } else if (v1->is_constant_double()) {
       
  2191     assert(v2->is_constant_double(), "");
       
  2192     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
       
  2193   } else if (v1->is_constant_long()) {
       
  2194     assert(v2->is_constant_long(), "");
       
  2195     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
       
  2196   } else if (v1->is_constant_oop()) {
       
  2197     assert(v2->is_constant_oop(), "");
       
  2198     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
       
  2199   } else {
       
  2200     ShouldNotReachHere();
       
  2201   }
       
  2202 }
       
  2203 
       
  2204 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
       
  2205   assert_equal(m1->owner(), m2->owner());
       
  2206   assert_equal(m1->basic_lock(), m2->basic_lock());
       
  2207 }
       
  2208 
       
  2209 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
       
  2210   assert(d1->scope() == d2->scope(), "not equal");
       
  2211   assert(d1->bci() == d2->bci(), "not equal");
       
  2212 
       
  2213   if (d1->locals() != NULL) {
       
  2214     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
       
  2215     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
       
  2216     for (int i = 0; i < d1->locals()->length(); i++) {
       
  2217       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
       
  2218     }
       
  2219   } else {
       
  2220     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
       
  2221   }
       
  2222 
       
  2223   if (d1->expressions() != NULL) {
       
  2224     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
       
  2225     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
       
  2226     for (int i = 0; i < d1->expressions()->length(); i++) {
       
  2227       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
       
  2228     }
       
  2229   } else {
       
  2230     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
       
  2231   }
       
  2232 
       
  2233   if (d1->monitors() != NULL) {
       
  2234     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
       
  2235     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
       
  2236     for (int i = 0; i < d1->monitors()->length(); i++) {
       
  2237       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
       
  2238     }
       
  2239   } else {
       
  2240     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
       
  2241   }
       
  2242 
       
  2243   if (d1->caller() != NULL) {
       
  2244     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
       
  2245     assert_equal(d1->caller(), d2->caller());
       
  2246   } else {
       
  2247     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
       
  2248   }
       
  2249 }
       
  2250 
       
  2251 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
       
  2252   if (info->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
       
  2253     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->bci());
       
  2254     switch (code) {
       
  2255       case Bytecodes::_ifnull    : // fall through
       
  2256       case Bytecodes::_ifnonnull : // fall through
       
  2257       case Bytecodes::_ifeq      : // fall through
       
  2258       case Bytecodes::_ifne      : // fall through
       
  2259       case Bytecodes::_iflt      : // fall through
       
  2260       case Bytecodes::_ifge      : // fall through
       
  2261       case Bytecodes::_ifgt      : // fall through
       
  2262       case Bytecodes::_ifle      : // fall through
       
  2263       case Bytecodes::_if_icmpeq : // fall through
       
  2264       case Bytecodes::_if_icmpne : // fall through
       
  2265       case Bytecodes::_if_icmplt : // fall through
       
  2266       case Bytecodes::_if_icmpge : // fall through
       
  2267       case Bytecodes::_if_icmpgt : // fall through
       
  2268       case Bytecodes::_if_icmple : // fall through
       
  2269       case Bytecodes::_if_acmpeq : // fall through
       
  2270       case Bytecodes::_if_acmpne :
       
  2271         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
       
  2272         break;
       
  2273     }
       
  2274   }
       
  2275 }
       
  2276 
       
  2277 #endif // ASSERT
       
  2278 
       
  2279 
       
  2280 IntervalWalker* LinearScan::init_compute_oop_maps() {
       
  2281   // setup lists of potential oops for walking
       
  2282   Interval* oop_intervals;
       
  2283   Interval* non_oop_intervals;
       
  2284 
       
  2285   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
       
  2286 
       
  2287   // intervals that have no oops inside need not to be processed
       
  2288   // to ensure a walking until the last instruction id, add a dummy interval
       
  2289   // with a high operation id
       
  2290   non_oop_intervals = new Interval(any_reg);
       
  2291   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
       
  2292 
       
  2293   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
       
  2294 }
       
  2295 
       
  2296 
       
  2297 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
       
  2298   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
       
  2299 
       
  2300   // walk before the current operation -> intervals that start at
       
  2301   // the operation (= output operands of the operation) are not
       
  2302   // included in the oop map
       
  2303   iw->walk_before(op->id());
       
  2304 
       
  2305   int frame_size = frame_map()->framesize();
       
  2306   int arg_count = frame_map()->oop_map_arg_count();
       
  2307   OopMap* map = new OopMap(frame_size, arg_count);
       
  2308 
       
  2309   // Check if this is a patch site.
       
  2310   bool is_patch_info = false;
       
  2311   if (op->code() == lir_move) {
       
  2312     assert(!is_call_site, "move must not be a call site");
       
  2313     assert(op->as_Op1() != NULL, "move must be LIR_Op1");
       
  2314     LIR_Op1* move = (LIR_Op1*)op;
       
  2315 
       
  2316     is_patch_info = move->patch_code() != lir_patch_none;
       
  2317   }
       
  2318 
       
  2319   // Iterate through active intervals
       
  2320   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
       
  2321     int assigned_reg = interval->assigned_reg();
       
  2322 
       
  2323     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
       
  2324     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
       
  2325     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
       
  2326 
       
  2327     // Check if this range covers the instruction. Intervals that
       
  2328     // start or end at the current operation are not included in the
       
  2329     // oop map, except in the case of patching moves.  For patching
       
  2330     // moves, any intervals which end at this instruction are included
       
  2331     // in the oop map since we may safepoint while doing the patch
       
  2332     // before we've consumed the inputs.
       
  2333     if (is_patch_info || op->id() < interval->current_to()) {
       
  2334 
       
  2335       // caller-save registers must not be included into oop-maps at calls
       
  2336       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
       
  2337 
       
  2338       VMReg name = vm_reg_for_interval(interval);
       
  2339       map->set_oop(name);
       
  2340 
       
  2341       // Spill optimization: when the stack value is guaranteed to be always correct,
       
  2342       // then it must be added to the oop map even if the interval is currently in a register
       
  2343       if (interval->always_in_memory() &&
       
  2344           op->id() > interval->spill_definition_pos() &&
       
  2345           interval->assigned_reg() != interval->canonical_spill_slot()) {
       
  2346         assert(interval->spill_definition_pos() > 0, "position not set correctly");
       
  2347         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
       
  2348         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
       
  2349 
       
  2350         map->set_oop(frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
       
  2351       }
       
  2352     }
       
  2353   }
       
  2354 
       
  2355   // add oops from lock stack
       
  2356   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
       
  2357   int locks_count = info->stack()->locks_size();
       
  2358   for (int i = 0; i < locks_count; i++) {
       
  2359     map->set_oop(frame_map()->monitor_object_regname(i));
       
  2360   }
       
  2361 
       
  2362   return map;
       
  2363 }
       
  2364 
       
  2365 
       
  2366 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
       
  2367   assert(visitor.info_count() > 0, "no oop map needed");
       
  2368 
       
  2369   // compute oop_map only for first CodeEmitInfo
       
  2370   // because it is (in most cases) equal for all other infos of the same operation
       
  2371   CodeEmitInfo* first_info = visitor.info_at(0);
       
  2372   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
       
  2373 
       
  2374   for (int i = 0; i < visitor.info_count(); i++) {
       
  2375     CodeEmitInfo* info = visitor.info_at(i);
       
  2376     OopMap* oop_map = first_oop_map;
       
  2377 
       
  2378     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
       
  2379       // this info has a different number of locks then the precomputed oop map
       
  2380       // (possible for lock and unlock instructions) -> compute oop map with
       
  2381       // correct lock information
       
  2382       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
       
  2383     }
       
  2384 
       
  2385     if (info->_oop_map == NULL) {
       
  2386       info->_oop_map = oop_map;
       
  2387     } else {
       
  2388       // a CodeEmitInfo can not be shared between different LIR-instructions
       
  2389       // because interval splitting can occur anywhere between two instructions
       
  2390       // and so the oop maps must be different
       
  2391       // -> check if the already set oop_map is exactly the one calculated for this operation
       
  2392       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
       
  2393     }
       
  2394   }
       
  2395 }
       
  2396 
       
  2397 
       
  2398 // frequently used constants
       
  2399 ConstantOopWriteValue LinearScan::_oop_null_scope_value = ConstantOopWriteValue(NULL);
       
  2400 ConstantIntValue      LinearScan::_int_m1_scope_value = ConstantIntValue(-1);
       
  2401 ConstantIntValue      LinearScan::_int_0_scope_value =  ConstantIntValue(0);
       
  2402 ConstantIntValue      LinearScan::_int_1_scope_value =  ConstantIntValue(1);
       
  2403 ConstantIntValue      LinearScan::_int_2_scope_value =  ConstantIntValue(2);
       
  2404 LocationValue         _illegal_value = LocationValue(Location());
       
  2405 
       
  2406 void LinearScan::init_compute_debug_info() {
       
  2407   // cache for frequently used scope values
       
  2408   // (cpu registers and stack slots)
       
  2409   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
       
  2410 }
       
  2411 
       
  2412 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
       
  2413   Location loc;
       
  2414   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
       
  2415     bailout("too large frame");
       
  2416   }
       
  2417   ScopeValue* object_scope_value = new LocationValue(loc);
       
  2418 
       
  2419   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
       
  2420     bailout("too large frame");
       
  2421   }
       
  2422   return new MonitorValue(object_scope_value, loc);
       
  2423 }
       
  2424 
       
  2425 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
       
  2426   Location loc;
       
  2427   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
       
  2428     bailout("too large frame");
       
  2429   }
       
  2430   return new LocationValue(loc);
       
  2431 }
       
  2432 
       
  2433 
       
  2434 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
       
  2435   assert(opr->is_constant(), "should not be called otherwise");
       
  2436 
       
  2437   LIR_Const* c = opr->as_constant_ptr();
       
  2438   BasicType t = c->type();
       
  2439   switch (t) {
       
  2440     case T_OBJECT: {
       
  2441       jobject value = c->as_jobject();
       
  2442       if (value == NULL) {
       
  2443         scope_values->append(&_oop_null_scope_value);
       
  2444       } else {
       
  2445         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
       
  2446       }
       
  2447       return 1;
       
  2448     }
       
  2449 
       
  2450     case T_INT: // fall through
       
  2451     case T_FLOAT: {
       
  2452       int value = c->as_jint_bits();
       
  2453       switch (value) {
       
  2454         case -1: scope_values->append(&_int_m1_scope_value); break;
       
  2455         case 0:  scope_values->append(&_int_0_scope_value); break;
       
  2456         case 1:  scope_values->append(&_int_1_scope_value); break;
       
  2457         case 2:  scope_values->append(&_int_2_scope_value); break;
       
  2458         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
       
  2459       }
       
  2460       return 1;
       
  2461     }
       
  2462 
       
  2463     case T_LONG: // fall through
       
  2464     case T_DOUBLE: {
       
  2465       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
       
  2466         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
       
  2467         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
       
  2468       } else {
       
  2469         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
       
  2470         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
       
  2471       }
       
  2472 
       
  2473       return 2;
       
  2474     }
       
  2475 
       
  2476     default:
       
  2477       ShouldNotReachHere();
       
  2478   }
       
  2479 }
       
  2480 
       
  2481 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
       
  2482   if (opr->is_single_stack()) {
       
  2483     int stack_idx = opr->single_stack_ix();
       
  2484     bool is_oop = opr->is_oop_register();
       
  2485     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
       
  2486 
       
  2487     ScopeValue* sv = _scope_value_cache.at(cache_idx);
       
  2488     if (sv == NULL) {
       
  2489       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
       
  2490       sv = location_for_name(stack_idx, loc_type);
       
  2491       _scope_value_cache.at_put(cache_idx, sv);
       
  2492     }
       
  2493 
       
  2494     // check if cached value is correct
       
  2495     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
       
  2496 
       
  2497     scope_values->append(sv);
       
  2498     return 1;
       
  2499 
       
  2500   } else if (opr->is_single_cpu()) {
       
  2501     bool is_oop = opr->is_oop_register();
       
  2502     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
       
  2503 
       
  2504     ScopeValue* sv = _scope_value_cache.at(cache_idx);
       
  2505     if (sv == NULL) {
       
  2506       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
       
  2507       VMReg rname = frame_map()->regname(opr);
       
  2508       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
       
  2509       _scope_value_cache.at_put(cache_idx, sv);
       
  2510     }
       
  2511 
       
  2512     // check if cached value is correct
       
  2513     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : Location::normal, frame_map()->regname(opr)))));
       
  2514 
       
  2515     scope_values->append(sv);
       
  2516     return 1;
       
  2517 
       
  2518 #ifdef IA32
       
  2519   } else if (opr->is_single_xmm()) {
       
  2520     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
       
  2521     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
       
  2522 
       
  2523     scope_values->append(sv);
       
  2524     return 1;
       
  2525 #endif
       
  2526 
       
  2527   } else if (opr->is_single_fpu()) {
       
  2528 #ifdef IA32
       
  2529     // the exact location of fpu stack values is only known
       
  2530     // during fpu stack allocation, so the stack allocator object
       
  2531     // must be present
       
  2532     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
       
  2533     assert(_fpu_stack_allocator != NULL, "must be present");
       
  2534     opr = _fpu_stack_allocator->to_fpu_stack(opr);
       
  2535 #endif
       
  2536 
       
  2537     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
       
  2538     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
       
  2539     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
       
  2540 
       
  2541     scope_values->append(sv);
       
  2542     return 1;
       
  2543 
       
  2544   } else {
       
  2545     // double-size operands
       
  2546 
       
  2547     ScopeValue* first;
       
  2548     ScopeValue* second;
       
  2549 
       
  2550     if (opr->is_double_stack()) {
       
  2551       Location loc1, loc2;
       
  2552       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
       
  2553         bailout("too large frame");
       
  2554       }
       
  2555       first =  new LocationValue(loc1);
       
  2556       second = new LocationValue(loc2);
       
  2557 
       
  2558     } else if (opr->is_double_cpu()) {
       
  2559 #ifdef _LP64
       
  2560       VMReg rname_first = opr->as_register_lo()->as_VMReg();
       
  2561       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
       
  2562       second = &_int_0_scope_value;
       
  2563 #else
       
  2564       VMReg rname_first = opr->as_register_lo()->as_VMReg();
       
  2565       VMReg rname_second = opr->as_register_hi()->as_VMReg();
       
  2566 
       
  2567       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
       
  2568         // lo/hi and swapped relative to first and second, so swap them
       
  2569         VMReg tmp = rname_first;
       
  2570         rname_first = rname_second;
       
  2571         rname_second = tmp;
       
  2572       }
       
  2573 
       
  2574       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
       
  2575       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
       
  2576 #endif
       
  2577 
       
  2578 #ifdef IA32
       
  2579     } else if (opr->is_double_xmm()) {
       
  2580       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
       
  2581       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
       
  2582       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
       
  2583       // %%% This is probably a waste but we'll keep things as they were for now
       
  2584       if (true) {
       
  2585         VMReg rname_second = rname_first->next();
       
  2586         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
       
  2587       }
       
  2588 #endif
       
  2589 
       
  2590     } else if (opr->is_double_fpu()) {
       
  2591       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
       
  2592       // the double as float registers in the native ordering. On IA32,
       
  2593       // fpu_regnrLo is a FPU stack slot whose VMReg represents
       
  2594       // the low-order word of the double and fpu_regnrLo + 1 is the
       
  2595       // name for the other half.  *first and *second must represent the
       
  2596       // least and most significant words, respectively.
       
  2597 
       
  2598 #ifdef IA32
       
  2599       // the exact location of fpu stack values is only known
       
  2600       // during fpu stack allocation, so the stack allocator object
       
  2601       // must be present
       
  2602       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
       
  2603       assert(_fpu_stack_allocator != NULL, "must be present");
       
  2604       opr = _fpu_stack_allocator->to_fpu_stack(opr);
       
  2605 
       
  2606       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
       
  2607 #endif
       
  2608 #ifdef SPARC
       
  2609       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
       
  2610 #endif
       
  2611 
       
  2612       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
       
  2613 
       
  2614       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
       
  2615       // %%% This is probably a waste but we'll keep things as they were for now
       
  2616       if (true) {
       
  2617         VMReg rname_second = rname_first->next();
       
  2618         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
       
  2619       }
       
  2620 
       
  2621     } else {
       
  2622       ShouldNotReachHere();
       
  2623       first = NULL;
       
  2624       second = NULL;
       
  2625     }
       
  2626 
       
  2627     assert(first != NULL && second != NULL, "must be set");
       
  2628     // The convention the interpreter uses is that the second local
       
  2629     // holds the first raw word of the native double representation.
       
  2630     // This is actually reasonable, since locals and stack arrays
       
  2631     // grow downwards in all implementations.
       
  2632     // (If, on some machine, the interpreter's Java locals or stack
       
  2633     // were to grow upwards, the embedded doubles would be word-swapped.)
       
  2634     scope_values->append(second);
       
  2635     scope_values->append(first);
       
  2636     return 2;
       
  2637   }
       
  2638 }
       
  2639 
       
  2640 
       
  2641 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
       
  2642   if (value != NULL) {
       
  2643     LIR_Opr opr = value->operand();
       
  2644     Constant* con = value->as_Constant();
       
  2645 
       
  2646     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
       
  2647     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
       
  2648 
       
  2649     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
       
  2650       // Unpinned constants may have a virtual operand for a part of the lifetime
       
  2651       // or may be illegal when it was optimized away,
       
  2652       // so always use a constant operand
       
  2653       opr = LIR_OprFact::value_type(con->type());
       
  2654     }
       
  2655     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
       
  2656 
       
  2657     if (opr->is_virtual()) {
       
  2658       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
       
  2659 
       
  2660       BlockBegin* block = block_of_op_with_id(op_id);
       
  2661       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
       
  2662         // generating debug information for the last instruction of a block.
       
  2663         // if this instruction is a branch, spill moves are inserted before this branch
       
  2664         // and so the wrong operand would be returned (spill moves at block boundaries are not
       
  2665         // considered in the live ranges of intervals)
       
  2666         // Solution: use the first op_id of the branch target block instead.
       
  2667         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
       
  2668           if (block->live_out().at(opr->vreg_number())) {
       
  2669             op_id = block->sux_at(0)->first_lir_instruction_id();
       
  2670             mode = LIR_OpVisitState::outputMode;
       
  2671           }
       
  2672         }
       
  2673       }
       
  2674 
       
  2675       // Get current location of operand
       
  2676       // The operand must be live because debug information is considered when building the intervals
       
  2677       // if the interval is not live, color_lir_opr will cause an assertion failure
       
  2678       opr = color_lir_opr(opr, op_id, mode);
       
  2679       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
       
  2680 
       
  2681       // Append to ScopeValue array
       
  2682       return append_scope_value_for_operand(opr, scope_values);
       
  2683 
       
  2684     } else {
       
  2685       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
       
  2686       assert(opr->is_constant(), "operand must be constant");
       
  2687 
       
  2688       return append_scope_value_for_constant(opr, scope_values);
       
  2689     }
       
  2690   } else {
       
  2691     // append a dummy value because real value not needed
       
  2692     scope_values->append(&_illegal_value);
       
  2693     return 1;
       
  2694   }
       
  2695 }
       
  2696 
       
  2697 
       
  2698 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end) {
       
  2699   IRScopeDebugInfo* caller_debug_info = NULL;
       
  2700   int stack_begin, locks_begin;
       
  2701 
       
  2702   ValueStack* caller_state = cur_scope->caller_state();
       
  2703   if (caller_state != NULL) {
       
  2704     // process recursively to compute outermost scope first
       
  2705     stack_begin = caller_state->stack_size();
       
  2706     locks_begin = caller_state->locks_size();
       
  2707     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state, cur_scope->caller_bci(), stack_begin, locks_begin);
       
  2708   } else {
       
  2709     stack_begin = 0;
       
  2710     locks_begin = 0;
       
  2711   }
       
  2712 
       
  2713   // initialize these to null.
       
  2714   // If we don't need deopt info or there are no locals, expressions or monitors,
       
  2715   // then these get recorded as no information and avoids the allocation of 0 length arrays.
       
  2716   GrowableArray<ScopeValue*>*   locals      = NULL;
       
  2717   GrowableArray<ScopeValue*>*   expressions = NULL;
       
  2718   GrowableArray<MonitorValue*>* monitors    = NULL;
       
  2719 
       
  2720   // describe local variable values
       
  2721   int nof_locals = cur_scope->method()->max_locals();
       
  2722   if (nof_locals > 0) {
       
  2723     locals = new GrowableArray<ScopeValue*>(nof_locals);
       
  2724 
       
  2725     int pos = 0;
       
  2726     while (pos < nof_locals) {
       
  2727       assert(pos < cur_state->locals_size(), "why not?");
       
  2728 
       
  2729       Value local = cur_state->local_at(pos);
       
  2730       pos += append_scope_value(op_id, local, locals);
       
  2731 
       
  2732       assert(locals->length() == pos, "must match");
       
  2733     }
       
  2734     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
       
  2735     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
       
  2736   }
       
  2737 
       
  2738 
       
  2739   // describe expression stack
       
  2740   //
       
  2741   // When we inline methods containing exception handlers, the
       
  2742   // "lock_stacks" are changed to preserve expression stack values
       
  2743   // in caller scopes when exception handlers are present. This
       
  2744   // can cause callee stacks to be smaller than caller stacks.
       
  2745   if (stack_end > innermost_state->stack_size()) {
       
  2746     stack_end = innermost_state->stack_size();
       
  2747   }
       
  2748 
       
  2749 
       
  2750 
       
  2751   int nof_stack = stack_end - stack_begin;
       
  2752   if (nof_stack > 0) {
       
  2753     expressions = new GrowableArray<ScopeValue*>(nof_stack);
       
  2754 
       
  2755     int pos = stack_begin;
       
  2756     while (pos < stack_end) {
       
  2757       Value expression = innermost_state->stack_at_inc(pos);
       
  2758       append_scope_value(op_id, expression, expressions);
       
  2759 
       
  2760       assert(expressions->length() + stack_begin == pos, "must match");
       
  2761     }
       
  2762   }
       
  2763 
       
  2764   // describe monitors
       
  2765   assert(locks_begin <= locks_end, "error in scope iteration");
       
  2766   int nof_locks = locks_end - locks_begin;
       
  2767   if (nof_locks > 0) {
       
  2768     monitors = new GrowableArray<MonitorValue*>(nof_locks);
       
  2769     for (int i = locks_begin; i < locks_end; i++) {
       
  2770       monitors->append(location_for_monitor_index(i));
       
  2771     }
       
  2772   }
       
  2773 
       
  2774   return new IRScopeDebugInfo(cur_scope, cur_bci, locals, expressions, monitors, caller_debug_info);
       
  2775 }
       
  2776 
       
  2777 
       
  2778 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
       
  2779   if (!compilation()->needs_debug_information()) {
       
  2780     return;
       
  2781   }
       
  2782   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
       
  2783 
       
  2784   IRScope* innermost_scope = info->scope();
       
  2785   ValueStack* innermost_state = info->stack();
       
  2786 
       
  2787   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
       
  2788 
       
  2789   int stack_end = innermost_state->stack_size();
       
  2790   int locks_end = innermost_state->locks_size();
       
  2791 
       
  2792   DEBUG_ONLY(check_stack_depth(info, stack_end));
       
  2793 
       
  2794   if (info->_scope_debug_info == NULL) {
       
  2795     // compute debug information
       
  2796     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end);
       
  2797   } else {
       
  2798     // debug information already set. Check that it is correct from the current point of view
       
  2799     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state, info->bci(), stack_end, locks_end)));
       
  2800   }
       
  2801 }
       
  2802 
       
  2803 
       
  2804 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
       
  2805   LIR_OpVisitState visitor;
       
  2806   int num_inst = instructions->length();
       
  2807   bool has_dead = false;
       
  2808 
       
  2809   for (int j = 0; j < num_inst; j++) {
       
  2810     LIR_Op* op = instructions->at(j);
       
  2811     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
       
  2812       has_dead = true;
       
  2813       continue;
       
  2814     }
       
  2815     int op_id = op->id();
       
  2816 
       
  2817     // visit instruction to get list of operands
       
  2818     visitor.visit(op);
       
  2819 
       
  2820     // iterate all modes of the visitor and process all virtual operands
       
  2821     for_each_visitor_mode(mode) {
       
  2822       int n = visitor.opr_count(mode);
       
  2823       for (int k = 0; k < n; k++) {
       
  2824         LIR_Opr opr = visitor.opr_at(mode, k);
       
  2825         if (opr->is_virtual_register()) {
       
  2826           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
       
  2827         }
       
  2828       }
       
  2829     }
       
  2830 
       
  2831     if (visitor.info_count() > 0) {
       
  2832       // exception handling
       
  2833       if (compilation()->has_exception_handlers()) {
       
  2834         XHandlers* xhandlers = visitor.all_xhandler();
       
  2835         int n = xhandlers->length();
       
  2836         for (int k = 0; k < n; k++) {
       
  2837           XHandler* handler = xhandlers->handler_at(k);
       
  2838           if (handler->entry_code() != NULL) {
       
  2839             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
       
  2840           }
       
  2841         }
       
  2842       } else {
       
  2843         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
       
  2844       }
       
  2845 
       
  2846       // compute oop map
       
  2847       assert(iw != NULL, "needed for compute_oop_map");
       
  2848       compute_oop_map(iw, visitor, op);
       
  2849 
       
  2850       // compute debug information
       
  2851       if (!use_fpu_stack_allocation()) {
       
  2852         // compute debug information if fpu stack allocation is not needed.
       
  2853         // when fpu stack allocation is needed, the debug information can not
       
  2854         // be computed here because the exact location of fpu operands is not known
       
  2855         // -> debug information is created inside the fpu stack allocator
       
  2856         int n = visitor.info_count();
       
  2857         for (int k = 0; k < n; k++) {
       
  2858           compute_debug_info(visitor.info_at(k), op_id);
       
  2859         }
       
  2860       }
       
  2861     }
       
  2862 
       
  2863 #ifdef ASSERT
       
  2864     // make sure we haven't made the op invalid.
       
  2865     op->verify();
       
  2866 #endif
       
  2867 
       
  2868 #ifndef _LP64
       
  2869     // remove useless moves
       
  2870     if (op->code() == lir_move) {
       
  2871       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
       
  2872       LIR_Op1* move = (LIR_Op1*)op;
       
  2873       LIR_Opr src = move->in_opr();
       
  2874       LIR_Opr dst = move->result_opr();
       
  2875       if (dst == src ||
       
  2876           !dst->is_pointer() && !src->is_pointer() &&
       
  2877           src->is_same_register(dst)) {
       
  2878         instructions->at_put(j, NULL);
       
  2879         has_dead = true;
       
  2880       }
       
  2881     }
       
  2882 #endif
       
  2883   }
       
  2884 
       
  2885   if (has_dead) {
       
  2886     // iterate all instructions of the block and remove all null-values.
       
  2887     int insert_point = 0;
       
  2888     for (int j = 0; j < num_inst; j++) {
       
  2889       LIR_Op* op = instructions->at(j);
       
  2890       if (op != NULL) {
       
  2891         if (insert_point != j) {
       
  2892           instructions->at_put(insert_point, op);
       
  2893         }
       
  2894         insert_point++;
       
  2895       }
       
  2896     }
       
  2897     instructions->truncate(insert_point);
       
  2898   }
       
  2899 }
       
  2900 
       
  2901 void LinearScan::assign_reg_num() {
       
  2902   TIME_LINEAR_SCAN(timer_assign_reg_num);
       
  2903 
       
  2904   init_compute_debug_info();
       
  2905   IntervalWalker* iw = init_compute_oop_maps();
       
  2906 
       
  2907   int num_blocks = block_count();
       
  2908   for (int i = 0; i < num_blocks; i++) {
       
  2909     BlockBegin* block = block_at(i);
       
  2910     assign_reg_num(block->lir()->instructions_list(), iw);
       
  2911   }
       
  2912 }
       
  2913 
       
  2914 
       
  2915 void LinearScan::do_linear_scan() {
       
  2916   NOT_PRODUCT(_total_timer.begin_method());
       
  2917 
       
  2918   number_instructions();
       
  2919 
       
  2920   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
       
  2921 
       
  2922   compute_local_live_sets();
       
  2923   compute_global_live_sets();
       
  2924   CHECK_BAILOUT();
       
  2925 
       
  2926   build_intervals();
       
  2927   CHECK_BAILOUT();
       
  2928   sort_intervals_before_allocation();
       
  2929 
       
  2930   NOT_PRODUCT(print_intervals("Before Register Allocation"));
       
  2931   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
       
  2932 
       
  2933   allocate_registers();
       
  2934   CHECK_BAILOUT();
       
  2935 
       
  2936   resolve_data_flow();
       
  2937   if (compilation()->has_exception_handlers()) {
       
  2938     resolve_exception_handlers();
       
  2939   }
       
  2940   // fill in number of spill slots into frame_map
       
  2941   propagate_spill_slots();
       
  2942   CHECK_BAILOUT();
       
  2943 
       
  2944   NOT_PRODUCT(print_intervals("After Register Allocation"));
       
  2945   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
       
  2946   DEBUG_ONLY(verify());
       
  2947 
       
  2948   sort_intervals_after_allocation();
       
  2949   eliminate_spill_moves();
       
  2950   assign_reg_num();
       
  2951   CHECK_BAILOUT();
       
  2952 
       
  2953   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
       
  2954   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
       
  2955 
       
  2956   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
       
  2957 
       
  2958     if (use_fpu_stack_allocation()) {
       
  2959       allocate_fpu_stack(); // Only has effect on Intel
       
  2960       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
       
  2961     }
       
  2962   }
       
  2963 
       
  2964   { TIME_LINEAR_SCAN(timer_optimize_lir);
       
  2965 
       
  2966     EdgeMoveOptimizer::optimize(ir()->code());
       
  2967     ControlFlowOptimizer::optimize(ir()->code());
       
  2968     // check that cfg is still correct after optimizations
       
  2969     ir()->verify();
       
  2970   }
       
  2971 
       
  2972   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
       
  2973   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
       
  2974   NOT_PRODUCT(_total_timer.end_method(this));
       
  2975 }
       
  2976 
       
  2977 
       
  2978 // ********** Printing functions
       
  2979 
       
  2980 #ifndef PRODUCT
       
  2981 
       
  2982 void LinearScan::print_timers(double total) {
       
  2983   _total_timer.print(total);
       
  2984 }
       
  2985 
       
  2986 void LinearScan::print_statistics() {
       
  2987   _stat_before_alloc.print("before allocation");
       
  2988   _stat_after_asign.print("after assignment of register");
       
  2989   _stat_final.print("after optimization");
       
  2990 }
       
  2991 
       
  2992 void LinearScan::print_bitmap(BitMap& b) {
       
  2993   for (unsigned int i = 0; i < b.size(); i++) {
       
  2994     if (b.at(i)) tty->print("%d ", i);
       
  2995   }
       
  2996   tty->cr();
       
  2997 }
       
  2998 
       
  2999 void LinearScan::print_intervals(const char* label) {
       
  3000   if (TraceLinearScanLevel >= 1) {
       
  3001     int i;
       
  3002     tty->cr();
       
  3003     tty->print_cr("%s", label);
       
  3004 
       
  3005     for (i = 0; i < interval_count(); i++) {
       
  3006       Interval* interval = interval_at(i);
       
  3007       if (interval != NULL) {
       
  3008         interval->print();
       
  3009       }
       
  3010     }
       
  3011 
       
  3012     tty->cr();
       
  3013     tty->print_cr("--- Basic Blocks ---");
       
  3014     for (i = 0; i < block_count(); i++) {
       
  3015       BlockBegin* block = block_at(i);
       
  3016       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
       
  3017     }
       
  3018     tty->cr();
       
  3019     tty->cr();
       
  3020   }
       
  3021 
       
  3022   if (PrintCFGToFile) {
       
  3023     CFGPrinter::print_intervals(&_intervals, label);
       
  3024   }
       
  3025 }
       
  3026 
       
  3027 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
       
  3028   if (TraceLinearScanLevel >= level) {
       
  3029     tty->cr();
       
  3030     tty->print_cr("%s", label);
       
  3031     print_LIR(ir()->linear_scan_order());
       
  3032     tty->cr();
       
  3033   }
       
  3034 
       
  3035   if (level == 1 && PrintCFGToFile) {
       
  3036     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
       
  3037   }
       
  3038 }
       
  3039 
       
  3040 #endif //PRODUCT
       
  3041 
       
  3042 
       
  3043 // ********** verification functions for allocation
       
  3044 // (check that all intervals have a correct register and that no registers are overwritten)
       
  3045 #ifdef ASSERT
       
  3046 
       
  3047 void LinearScan::verify() {
       
  3048   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
       
  3049   verify_intervals();
       
  3050 
       
  3051   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
       
  3052   verify_no_oops_in_fixed_intervals();
       
  3053 
       
  3054   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
       
  3055   verify_constants();
       
  3056 
       
  3057   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
       
  3058   verify_registers();
       
  3059 
       
  3060   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
       
  3061 }
       
  3062 
       
  3063 void LinearScan::verify_intervals() {
       
  3064   int len = interval_count();
       
  3065   bool has_error = false;
       
  3066 
       
  3067   for (int i = 0; i < len; i++) {
       
  3068     Interval* i1 = interval_at(i);
       
  3069     if (i1 == NULL) continue;
       
  3070 
       
  3071     i1->check_split_children();
       
  3072 
       
  3073     if (i1->reg_num() != i) {
       
  3074       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
       
  3075       has_error = true;
       
  3076     }
       
  3077 
       
  3078     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
       
  3079       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
       
  3080       has_error = true;
       
  3081     }
       
  3082 
       
  3083     if (i1->assigned_reg() == any_reg) {
       
  3084       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
       
  3085       has_error = true;
       
  3086     }
       
  3087 
       
  3088     if (i1->assigned_reg() == i1->assigned_regHi()) {
       
  3089       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
       
  3090       has_error = true;
       
  3091     }
       
  3092 
       
  3093     if (!is_processed_reg_num(i1->assigned_reg())) {
       
  3094       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
       
  3095       has_error = true;
       
  3096     }
       
  3097 
       
  3098     if (i1->first() == Range::end()) {
       
  3099       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
       
  3100       has_error = true;
       
  3101     }
       
  3102 
       
  3103     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
       
  3104       if (r->from() >= r->to()) {
       
  3105         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
       
  3106         has_error = true;
       
  3107       }
       
  3108     }
       
  3109 
       
  3110     for (int j = i + 1; j < len; j++) {
       
  3111       Interval* i2 = interval_at(j);
       
  3112       if (i2 == NULL) continue;
       
  3113 
       
  3114       // special intervals that are created in MoveResolver
       
  3115       // -> ignore them because the range information has no meaning there
       
  3116       if (i1->from() == 1 && i1->to() == 2) continue;
       
  3117       if (i2->from() == 1 && i2->to() == 2) continue;
       
  3118 
       
  3119       int r1 = i1->assigned_reg();
       
  3120       int r1Hi = i1->assigned_regHi();
       
  3121       int r2 = i2->assigned_reg();
       
  3122       int r2Hi = i2->assigned_regHi();
       
  3123       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
       
  3124         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
       
  3125         i1->print(); tty->cr();
       
  3126         i2->print(); tty->cr();
       
  3127         has_error = true;
       
  3128       }
       
  3129     }
       
  3130   }
       
  3131 
       
  3132   assert(has_error == false, "register allocation invalid");
       
  3133 }
       
  3134 
       
  3135 
       
  3136 void LinearScan::verify_no_oops_in_fixed_intervals() {
       
  3137   LIR_OpVisitState visitor;
       
  3138   for (int i = 0; i < block_count(); i++) {
       
  3139     BlockBegin* block = block_at(i);
       
  3140 
       
  3141     LIR_OpList* instructions = block->lir()->instructions_list();
       
  3142 
       
  3143     for (int j = 0; j < instructions->length(); j++) {
       
  3144       LIR_Op* op = instructions->at(j);
       
  3145       int op_id = op->id();
       
  3146 
       
  3147       visitor.visit(op);
       
  3148 
       
  3149       // oop-maps at calls do not contain registers, so check is not needed
       
  3150       if (!visitor.has_call()) {
       
  3151 
       
  3152         for_each_visitor_mode(mode) {
       
  3153           int n = visitor.opr_count(mode);
       
  3154           for (int k = 0; k < n; k++) {
       
  3155             LIR_Opr opr = visitor.opr_at(mode, k);
       
  3156 
       
  3157             if (opr->is_fixed_cpu() && opr->is_oop()) {
       
  3158               // operand is a non-virtual cpu register and contains an oop
       
  3159               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
       
  3160 
       
  3161               Interval* interval = interval_at(reg_num(opr));
       
  3162               assert(interval != NULL, "no interval");
       
  3163 
       
  3164               if (mode == LIR_OpVisitState::inputMode) {
       
  3165                 if (interval->to() >= op_id + 1) {
       
  3166                   assert(interval->to() < op_id + 2 ||
       
  3167                          interval->has_hole_between(op_id, op_id + 2),
       
  3168                          "oop input operand live after instruction");
       
  3169                 }
       
  3170               } else if (mode == LIR_OpVisitState::outputMode) {
       
  3171                 if (interval->from() <= op_id - 1) {
       
  3172                   assert(interval->has_hole_between(op_id - 1, op_id),
       
  3173                          "oop input operand live after instruction");
       
  3174                 }
       
  3175               }
       
  3176             }
       
  3177           }
       
  3178         }
       
  3179       }
       
  3180     }
       
  3181   }
       
  3182 }
       
  3183 
       
  3184 
       
  3185 void LinearScan::verify_constants() {
       
  3186   int num_regs = num_virtual_regs();
       
  3187   int size = live_set_size();
       
  3188   int num_blocks = block_count();
       
  3189 
       
  3190   for (int i = 0; i < num_blocks; i++) {
       
  3191     BlockBegin* block = block_at(i);
       
  3192     BitMap live_at_edge = block->live_in();
       
  3193 
       
  3194     // visit all registers where the live_at_edge bit is set
       
  3195     for (int r = live_at_edge.get_next_one_offset(0, size); r < size; r = live_at_edge.get_next_one_offset(r + 1, size)) {
       
  3196       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
       
  3197 
       
  3198       Value value = gen()->instruction_for_vreg(r);
       
  3199 
       
  3200       assert(value != NULL, "all intervals live across block boundaries must have Value");
       
  3201       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
       
  3202       assert(value->operand()->vreg_number() == r, "register number must match");
       
  3203       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
       
  3204     }
       
  3205   }
       
  3206 }
       
  3207 
       
  3208 
       
  3209 class RegisterVerifier: public StackObj {
       
  3210  private:
       
  3211   LinearScan*   _allocator;
       
  3212   BlockList     _work_list;      // all blocks that must be processed
       
  3213   IntervalsList _saved_states;   // saved information of previous check
       
  3214 
       
  3215   // simplified access to methods of LinearScan
       
  3216   Compilation*  compilation() const              { return _allocator->compilation(); }
       
  3217   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
       
  3218   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
       
  3219 
       
  3220   // currently, only registers are processed
       
  3221   int           state_size()                     { return LinearScan::nof_regs; }
       
  3222 
       
  3223   // accessors
       
  3224   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
       
  3225   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
       
  3226   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
       
  3227 
       
  3228   // helper functions
       
  3229   IntervalList* copy(IntervalList* input_state);
       
  3230   void          state_put(IntervalList* input_state, int reg, Interval* interval);
       
  3231   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
       
  3232 
       
  3233   void process_block(BlockBegin* block);
       
  3234   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
       
  3235   void process_successor(BlockBegin* block, IntervalList* input_state);
       
  3236   void process_operations(LIR_List* ops, IntervalList* input_state);
       
  3237 
       
  3238  public:
       
  3239   RegisterVerifier(LinearScan* allocator)
       
  3240     : _allocator(allocator)
       
  3241     , _work_list(16)
       
  3242     , _saved_states(BlockBegin::number_of_blocks(), NULL)
       
  3243   { }
       
  3244 
       
  3245   void verify(BlockBegin* start);
       
  3246 };
       
  3247 
       
  3248 
       
  3249 // entry function from LinearScan that starts the verification
       
  3250 void LinearScan::verify_registers() {
       
  3251   RegisterVerifier verifier(this);
       
  3252   verifier.verify(block_at(0));
       
  3253 }
       
  3254 
       
  3255 
       
  3256 void RegisterVerifier::verify(BlockBegin* start) {
       
  3257   // setup input registers (method arguments) for first block
       
  3258   IntervalList* input_state = new IntervalList(state_size(), NULL);
       
  3259   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
       
  3260   for (int n = 0; n < args->length(); n++) {
       
  3261     LIR_Opr opr = args->at(n);
       
  3262     if (opr->is_register()) {
       
  3263       Interval* interval = interval_at(reg_num(opr));
       
  3264 
       
  3265       if (interval->assigned_reg() < state_size()) {
       
  3266         input_state->at_put(interval->assigned_reg(), interval);
       
  3267       }
       
  3268       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
       
  3269         input_state->at_put(interval->assigned_regHi(), interval);
       
  3270       }
       
  3271     }
       
  3272   }
       
  3273 
       
  3274   set_state_for_block(start, input_state);
       
  3275   add_to_work_list(start);
       
  3276 
       
  3277   // main loop for verification
       
  3278   do {
       
  3279     BlockBegin* block = _work_list.at(0);
       
  3280     _work_list.remove_at(0);
       
  3281 
       
  3282     process_block(block);
       
  3283   } while (!_work_list.is_empty());
       
  3284 }
       
  3285 
       
  3286 void RegisterVerifier::process_block(BlockBegin* block) {
       
  3287   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
       
  3288 
       
  3289   // must copy state because it is modified
       
  3290   IntervalList* input_state = copy(state_for_block(block));
       
  3291 
       
  3292   if (TraceLinearScanLevel >= 4) {
       
  3293     tty->print_cr("Input-State of intervals:");
       
  3294     tty->print("    ");
       
  3295     for (int i = 0; i < state_size(); i++) {
       
  3296       if (input_state->at(i) != NULL) {
       
  3297         tty->print(" %4d", input_state->at(i)->reg_num());
       
  3298       } else {
       
  3299         tty->print("   __");
       
  3300       }
       
  3301     }
       
  3302     tty->cr();
       
  3303     tty->cr();
       
  3304   }
       
  3305 
       
  3306   // process all operations of the block
       
  3307   process_operations(block->lir(), input_state);
       
  3308 
       
  3309   // iterate all successors
       
  3310   for (int i = 0; i < block->number_of_sux(); i++) {
       
  3311     process_successor(block->sux_at(i), input_state);
       
  3312   }
       
  3313 }
       
  3314 
       
  3315 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
       
  3316   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
       
  3317 
       
  3318   // must copy state because it is modified
       
  3319   input_state = copy(input_state);
       
  3320 
       
  3321   if (xhandler->entry_code() != NULL) {
       
  3322     process_operations(xhandler->entry_code(), input_state);
       
  3323   }
       
  3324   process_successor(xhandler->entry_block(), input_state);
       
  3325 }
       
  3326 
       
  3327 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
       
  3328   IntervalList* saved_state = state_for_block(block);
       
  3329 
       
  3330   if (saved_state != NULL) {
       
  3331     // this block was already processed before.
       
  3332     // check if new input_state is consistent with saved_state
       
  3333 
       
  3334     bool saved_state_correct = true;
       
  3335     for (int i = 0; i < state_size(); i++) {
       
  3336       if (input_state->at(i) != saved_state->at(i)) {
       
  3337         // current input_state and previous saved_state assume a different
       
  3338         // interval in this register -> assume that this register is invalid
       
  3339         if (saved_state->at(i) != NULL) {
       
  3340           // invalidate old calculation only if it assumed that
       
  3341           // register was valid. when the register was already invalid,
       
  3342           // then the old calculation was correct.
       
  3343           saved_state_correct = false;
       
  3344           saved_state->at_put(i, NULL);
       
  3345 
       
  3346           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
       
  3347         }
       
  3348       }
       
  3349     }
       
  3350 
       
  3351     if (saved_state_correct) {
       
  3352       // already processed block with correct input_state
       
  3353       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
       
  3354     } else {
       
  3355       // must re-visit this block
       
  3356       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
       
  3357       add_to_work_list(block);
       
  3358     }
       
  3359 
       
  3360   } else {
       
  3361     // block was not processed before, so set initial input_state
       
  3362     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
       
  3363 
       
  3364     set_state_for_block(block, copy(input_state));
       
  3365     add_to_work_list(block);
       
  3366   }
       
  3367 }
       
  3368 
       
  3369 
       
  3370 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
       
  3371   IntervalList* copy_state = new IntervalList(input_state->length());
       
  3372   copy_state->push_all(input_state);
       
  3373   return copy_state;
       
  3374 }
       
  3375 
       
  3376 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
       
  3377   if (reg != LinearScan::any_reg && reg < state_size()) {
       
  3378     if (interval != NULL) {
       
  3379       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
       
  3380     } else if (input_state->at(reg) != NULL) {
       
  3381       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
       
  3382     }
       
  3383 
       
  3384     input_state->at_put(reg, interval);
       
  3385   }
       
  3386 }
       
  3387 
       
  3388 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
       
  3389   if (reg != LinearScan::any_reg && reg < state_size()) {
       
  3390     if (input_state->at(reg) != interval) {
       
  3391       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
       
  3392       return true;
       
  3393     }
       
  3394   }
       
  3395   return false;
       
  3396 }
       
  3397 
       
  3398 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
       
  3399   // visit all instructions of the block
       
  3400   LIR_OpVisitState visitor;
       
  3401   bool has_error = false;
       
  3402 
       
  3403   for (int i = 0; i < ops->length(); i++) {
       
  3404     LIR_Op* op = ops->at(i);
       
  3405     visitor.visit(op);
       
  3406 
       
  3407     TRACE_LINEAR_SCAN(4, op->print_on(tty));
       
  3408 
       
  3409     // check if input operands are correct
       
  3410     int j;
       
  3411     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
       
  3412     for (j = 0; j < n; j++) {
       
  3413       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
       
  3414       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
       
  3415         Interval* interval = interval_at(reg_num(opr));
       
  3416         if (op->id() != -1) {
       
  3417           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
       
  3418         }
       
  3419 
       
  3420         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
       
  3421         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
       
  3422 
       
  3423         // When an operand is marked with is_last_use, then the fpu stack allocator
       
  3424         // removes the register from the fpu stack -> the register contains no value
       
  3425         if (opr->is_last_use()) {
       
  3426           state_put(input_state, interval->assigned_reg(),   NULL);
       
  3427           state_put(input_state, interval->assigned_regHi(), NULL);
       
  3428         }
       
  3429       }
       
  3430     }
       
  3431 
       
  3432     // invalidate all caller save registers at calls
       
  3433     if (visitor.has_call()) {
       
  3434       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs; j++) {
       
  3435         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
       
  3436       }
       
  3437       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
       
  3438         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
       
  3439       }
       
  3440 
       
  3441 #ifdef IA32
       
  3442       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
       
  3443         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
       
  3444       }
       
  3445 #endif
       
  3446     }
       
  3447 
       
  3448     // process xhandler before output and temp operands
       
  3449     XHandlers* xhandlers = visitor.all_xhandler();
       
  3450     n = xhandlers->length();
       
  3451     for (int k = 0; k < n; k++) {
       
  3452       process_xhandler(xhandlers->handler_at(k), input_state);
       
  3453     }
       
  3454 
       
  3455     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
       
  3456     n = visitor.opr_count(LIR_OpVisitState::tempMode);
       
  3457     for (j = 0; j < n; j++) {
       
  3458       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
       
  3459       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
       
  3460         Interval* interval = interval_at(reg_num(opr));
       
  3461         if (op->id() != -1) {
       
  3462           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
       
  3463         }
       
  3464 
       
  3465         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
       
  3466         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
       
  3467       }
       
  3468     }
       
  3469 
       
  3470     // set output operands
       
  3471     n = visitor.opr_count(LIR_OpVisitState::outputMode);
       
  3472     for (j = 0; j < n; j++) {
       
  3473       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
       
  3474       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
       
  3475         Interval* interval = interval_at(reg_num(opr));
       
  3476         if (op->id() != -1) {
       
  3477           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
       
  3478         }
       
  3479 
       
  3480         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
       
  3481         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
       
  3482       }
       
  3483     }
       
  3484   }
       
  3485   assert(has_error == false, "Error in register allocation");
       
  3486 }
       
  3487 
       
  3488 #endif // ASSERT
       
  3489 
       
  3490 
       
  3491 
       
  3492 // **** Implementation of MoveResolver ******************************
       
  3493 
       
  3494 MoveResolver::MoveResolver(LinearScan* allocator) :
       
  3495   _allocator(allocator),
       
  3496   _multiple_reads_allowed(false),
       
  3497   _mapping_from(8),
       
  3498   _mapping_from_opr(8),
       
  3499   _mapping_to(8),
       
  3500   _insert_list(NULL),
       
  3501   _insert_idx(-1),
       
  3502   _insertion_buffer()
       
  3503 {
       
  3504   for (int i = 0; i < LinearScan::nof_regs; i++) {
       
  3505     _register_blocked[i] = 0;
       
  3506   }
       
  3507   DEBUG_ONLY(check_empty());
       
  3508 }
       
  3509 
       
  3510 
       
  3511 #ifdef ASSERT
       
  3512 
       
  3513 void MoveResolver::check_empty() {
       
  3514   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
       
  3515   for (int i = 0; i < LinearScan::nof_regs; i++) {
       
  3516     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
       
  3517   }
       
  3518   assert(_multiple_reads_allowed == false, "must have default value");
       
  3519 }
       
  3520 
       
  3521 void MoveResolver::verify_before_resolve() {
       
  3522   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
       
  3523   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
       
  3524   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
       
  3525 
       
  3526   int i, j;
       
  3527   if (!_multiple_reads_allowed) {
       
  3528     for (i = 0; i < _mapping_from.length(); i++) {
       
  3529       for (j = i + 1; j < _mapping_from.length(); j++) {
       
  3530         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
       
  3531       }
       
  3532     }
       
  3533   }
       
  3534 
       
  3535   for (i = 0; i < _mapping_to.length(); i++) {
       
  3536     for (j = i + 1; j < _mapping_to.length(); j++) {
       
  3537       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
       
  3538     }
       
  3539   }
       
  3540 
       
  3541 
       
  3542   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
       
  3543   used_regs.clear();
       
  3544   if (!_multiple_reads_allowed) {
       
  3545     for (i = 0; i < _mapping_from.length(); i++) {
       
  3546       Interval* it = _mapping_from.at(i);
       
  3547       if (it != NULL) {
       
  3548         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
       
  3549         used_regs.set_bit(it->assigned_reg());
       
  3550 
       
  3551         if (it->assigned_regHi() != LinearScan::any_reg) {
       
  3552           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
       
  3553           used_regs.set_bit(it->assigned_regHi());
       
  3554         }
       
  3555       }
       
  3556     }
       
  3557   }
       
  3558 
       
  3559   used_regs.clear();
       
  3560   for (i = 0; i < _mapping_to.length(); i++) {
       
  3561     Interval* it = _mapping_to.at(i);
       
  3562     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
       
  3563     used_regs.set_bit(it->assigned_reg());
       
  3564 
       
  3565     if (it->assigned_regHi() != LinearScan::any_reg) {
       
  3566       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
       
  3567       used_regs.set_bit(it->assigned_regHi());
       
  3568     }
       
  3569   }
       
  3570 
       
  3571   used_regs.clear();
       
  3572   for (i = 0; i < _mapping_from.length(); i++) {
       
  3573     Interval* it = _mapping_from.at(i);
       
  3574     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
       
  3575       used_regs.set_bit(it->assigned_reg());
       
  3576     }
       
  3577   }
       
  3578   for (i = 0; i < _mapping_to.length(); i++) {
       
  3579     Interval* it = _mapping_to.at(i);
       
  3580     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
       
  3581   }
       
  3582 }
       
  3583 
       
  3584 #endif // ASSERT
       
  3585 
       
  3586 
       
  3587 // mark assigned_reg and assigned_regHi of the interval as blocked
       
  3588 void MoveResolver::block_registers(Interval* it) {
       
  3589   int reg = it->assigned_reg();
       
  3590   if (reg < LinearScan::nof_regs) {
       
  3591     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
       
  3592     set_register_blocked(reg, 1);
       
  3593   }
       
  3594   reg = it->assigned_regHi();
       
  3595   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
       
  3596     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
       
  3597     set_register_blocked(reg, 1);
       
  3598   }
       
  3599 }
       
  3600 
       
  3601 // mark assigned_reg and assigned_regHi of the interval as unblocked
       
  3602 void MoveResolver::unblock_registers(Interval* it) {
       
  3603   int reg = it->assigned_reg();
       
  3604   if (reg < LinearScan::nof_regs) {
       
  3605     assert(register_blocked(reg) > 0, "register already marked as unused");
       
  3606     set_register_blocked(reg, -1);
       
  3607   }
       
  3608   reg = it->assigned_regHi();
       
  3609   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
       
  3610     assert(register_blocked(reg) > 0, "register already marked as unused");
       
  3611     set_register_blocked(reg, -1);
       
  3612   }
       
  3613 }
       
  3614 
       
  3615 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
       
  3616 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
       
  3617   int from_reg = -1;
       
  3618   int from_regHi = -1;
       
  3619   if (from != NULL) {
       
  3620     from_reg = from->assigned_reg();
       
  3621     from_regHi = from->assigned_regHi();
       
  3622   }
       
  3623 
       
  3624   int reg = to->assigned_reg();
       
  3625   if (reg < LinearScan::nof_regs) {
       
  3626     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
       
  3627       return false;
       
  3628     }
       
  3629   }
       
  3630   reg = to->assigned_regHi();
       
  3631   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
       
  3632     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
       
  3633       return false;
       
  3634     }
       
  3635   }
       
  3636 
       
  3637   return true;
       
  3638 }
       
  3639 
       
  3640 
       
  3641 void MoveResolver::create_insertion_buffer(LIR_List* list) {
       
  3642   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
       
  3643   _insertion_buffer.init(list);
       
  3644 }
       
  3645 
       
  3646 void MoveResolver::append_insertion_buffer() {
       
  3647   if (_insertion_buffer.initialized()) {
       
  3648     _insertion_buffer.lir_list()->append(&_insertion_buffer);
       
  3649   }
       
  3650   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
       
  3651 
       
  3652   _insert_list = NULL;
       
  3653   _insert_idx = -1;
       
  3654 }
       
  3655 
       
  3656 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
       
  3657   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
       
  3658   assert(from_interval->type() == to_interval->type(), "move between different types");
       
  3659   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
       
  3660   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
       
  3661 
       
  3662   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
       
  3663   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
       
  3664 
       
  3665   if (!_multiple_reads_allowed) {
       
  3666     // the last_use flag is an optimization for FPU stack allocation. When the same
       
  3667     // input interval is used in more than one move, then it is too difficult to determine
       
  3668     // if this move is really the last use.
       
  3669     from_opr = from_opr->make_last_use();
       
  3670   }
       
  3671   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
       
  3672 
       
  3673   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
       
  3674 }
       
  3675 
       
  3676 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
       
  3677   assert(from_opr->type() == to_interval->type(), "move between different types");
       
  3678   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
       
  3679   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
       
  3680 
       
  3681   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
       
  3682   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
       
  3683 
       
  3684   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
       
  3685 }
       
  3686 
       
  3687 
       
  3688 void MoveResolver::resolve_mappings() {
       
  3689   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
       
  3690   DEBUG_ONLY(verify_before_resolve());
       
  3691 
       
  3692   // Block all registers that are used as input operands of a move.
       
  3693   // When a register is blocked, no move to this register is emitted.
       
  3694   // This is necessary for detecting cycles in moves.
       
  3695   int i;
       
  3696   for (i = _mapping_from.length() - 1; i >= 0; i--) {
       
  3697     Interval* from_interval = _mapping_from.at(i);
       
  3698     if (from_interval != NULL) {
       
  3699       block_registers(from_interval);
       
  3700     }
       
  3701   }
       
  3702 
       
  3703   int spill_candidate = -1;
       
  3704   while (_mapping_from.length() > 0) {
       
  3705     bool processed_interval = false;
       
  3706 
       
  3707     for (i = _mapping_from.length() - 1; i >= 0; i--) {
       
  3708       Interval* from_interval = _mapping_from.at(i);
       
  3709       Interval* to_interval = _mapping_to.at(i);
       
  3710 
       
  3711       if (save_to_process_move(from_interval, to_interval)) {
       
  3712         // this inverval can be processed because target is free
       
  3713         if (from_interval != NULL) {
       
  3714           insert_move(from_interval, to_interval);
       
  3715           unblock_registers(from_interval);
       
  3716         } else {
       
  3717           insert_move(_mapping_from_opr.at(i), to_interval);
       
  3718         }
       
  3719         _mapping_from.remove_at(i);
       
  3720         _mapping_from_opr.remove_at(i);
       
  3721         _mapping_to.remove_at(i);
       
  3722 
       
  3723         processed_interval = true;
       
  3724       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
       
  3725         // this interval cannot be processed now because target is not free
       
  3726         // it starts in a register, so it is a possible candidate for spilling
       
  3727         spill_candidate = i;
       
  3728       }
       
  3729     }
       
  3730 
       
  3731     if (!processed_interval) {
       
  3732       // no move could be processed because there is a cycle in the move list
       
  3733       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
       
  3734       assert(spill_candidate != -1, "no interval in register for spilling found");
       
  3735 
       
  3736       // create a new spill interval and assign a stack slot to it
       
  3737       Interval* from_interval = _mapping_from.at(spill_candidate);
       
  3738       Interval* spill_interval = new Interval(-1);
       
  3739       spill_interval->set_type(from_interval->type());
       
  3740 
       
  3741       // add a dummy range because real position is difficult to calculate
       
  3742       // Note: this range is a special case when the integrity of the allocation is checked
       
  3743       spill_interval->add_range(1, 2);
       
  3744 
       
  3745       //       do not allocate a new spill slot for temporary interval, but
       
  3746       //       use spill slot assigned to from_interval. Otherwise moves from
       
  3747       //       one stack slot to another can happen (not allowed by LIR_Assembler
       
  3748       int spill_slot = from_interval->canonical_spill_slot();
       
  3749       if (spill_slot < 0) {
       
  3750         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
       
  3751         from_interval->set_canonical_spill_slot(spill_slot);
       
  3752       }
       
  3753       spill_interval->assign_reg(spill_slot);
       
  3754       allocator()->append_interval(spill_interval);
       
  3755 
       
  3756       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
       
  3757 
       
  3758       // insert a move from register to stack and update the mapping
       
  3759       insert_move(from_interval, spill_interval);
       
  3760       _mapping_from.at_put(spill_candidate, spill_interval);
       
  3761       unblock_registers(from_interval);
       
  3762     }
       
  3763   }
       
  3764 
       
  3765   // reset to default value
       
  3766   _multiple_reads_allowed = false;
       
  3767 
       
  3768   // check that all intervals have been processed
       
  3769   DEBUG_ONLY(check_empty());
       
  3770 }
       
  3771 
       
  3772 
       
  3773 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
       
  3774   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
       
  3775   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
       
  3776 
       
  3777   create_insertion_buffer(insert_list);
       
  3778   _insert_list = insert_list;
       
  3779   _insert_idx = insert_idx;
       
  3780 }
       
  3781 
       
  3782 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
       
  3783   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
       
  3784 
       
  3785   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
       
  3786     // insert position changed -> resolve current mappings
       
  3787     resolve_mappings();
       
  3788   }
       
  3789 
       
  3790   if (insert_list != _insert_list) {
       
  3791     // block changed -> append insertion_buffer because it is
       
  3792     // bound to a specific block and create a new insertion_buffer
       
  3793     append_insertion_buffer();
       
  3794     create_insertion_buffer(insert_list);
       
  3795   }
       
  3796 
       
  3797   _insert_list = insert_list;
       
  3798   _insert_idx = insert_idx;
       
  3799 }
       
  3800 
       
  3801 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
       
  3802   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
       
  3803 
       
  3804   _mapping_from.append(from_interval);
       
  3805   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
       
  3806   _mapping_to.append(to_interval);
       
  3807 }
       
  3808 
       
  3809 
       
  3810 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
       
  3811   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
       
  3812   assert(from_opr->is_constant(), "only for constants");
       
  3813 
       
  3814   _mapping_from.append(NULL);
       
  3815   _mapping_from_opr.append(from_opr);
       
  3816   _mapping_to.append(to_interval);
       
  3817 }
       
  3818 
       
  3819 void MoveResolver::resolve_and_append_moves() {
       
  3820   if (has_mappings()) {
       
  3821     resolve_mappings();
       
  3822   }
       
  3823   append_insertion_buffer();
       
  3824 }
       
  3825 
       
  3826 
       
  3827 
       
  3828 // **** Implementation of Range *************************************
       
  3829 
       
  3830 Range::Range(int from, int to, Range* next) :
       
  3831   _from(from),
       
  3832   _to(to),
       
  3833   _next(next)
       
  3834 {
       
  3835 }
       
  3836 
       
  3837 // initialize sentinel
       
  3838 Range* Range::_end = NULL;
       
  3839 void Range::initialize() {
       
  3840   _end = new Range(max_jint, max_jint, NULL);
       
  3841 }
       
  3842 
       
  3843 int Range::intersects_at(Range* r2) const {
       
  3844   const Range* r1 = this;
       
  3845 
       
  3846   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
       
  3847   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
       
  3848 
       
  3849   do {
       
  3850     if (r1->from() < r2->from()) {
       
  3851       if (r1->to() <= r2->from()) {
       
  3852         r1 = r1->next(); if (r1 == _end) return -1;
       
  3853       } else {
       
  3854         return r2->from();
       
  3855       }
       
  3856     } else if (r2->from() < r1->from()) {
       
  3857       if (r2->to() <= r1->from()) {
       
  3858         r2 = r2->next(); if (r2 == _end) return -1;
       
  3859       } else {
       
  3860         return r1->from();
       
  3861       }
       
  3862     } else { // r1->from() == r2->from()
       
  3863       if (r1->from() == r1->to()) {
       
  3864         r1 = r1->next(); if (r1 == _end) return -1;
       
  3865       } else if (r2->from() == r2->to()) {
       
  3866         r2 = r2->next(); if (r2 == _end) return -1;
       
  3867       } else {
       
  3868         return r1->from();
       
  3869       }
       
  3870     }
       
  3871   } while (true);
       
  3872 }
       
  3873 
       
  3874 #ifndef PRODUCT
       
  3875 void Range::print(outputStream* out) const {
       
  3876   out->print("[%d, %d[ ", _from, _to);
       
  3877 }
       
  3878 #endif
       
  3879 
       
  3880 
       
  3881 
       
  3882 // **** Implementation of Interval **********************************
       
  3883 
       
  3884 // initialize sentinel
       
  3885 Interval* Interval::_end = NULL;
       
  3886 void Interval::initialize() {
       
  3887   Range::initialize();
       
  3888   _end = new Interval(-1);
       
  3889 }
       
  3890 
       
  3891 Interval::Interval(int reg_num) :
       
  3892   _reg_num(reg_num),
       
  3893   _type(T_ILLEGAL),
       
  3894   _first(Range::end()),
       
  3895   _use_pos_and_kinds(12),
       
  3896   _current(Range::end()),
       
  3897   _next(_end),
       
  3898   _state(invalidState),
       
  3899   _assigned_reg(LinearScan::any_reg),
       
  3900   _assigned_regHi(LinearScan::any_reg),
       
  3901   _cached_to(-1),
       
  3902   _cached_opr(LIR_OprFact::illegalOpr),
       
  3903   _cached_vm_reg(VMRegImpl::Bad()),
       
  3904   _split_children(0),
       
  3905   _canonical_spill_slot(-1),
       
  3906   _insert_move_when_activated(false),
       
  3907   _register_hint(NULL),
       
  3908   _spill_state(noDefinitionFound),
       
  3909   _spill_definition_pos(-1)
       
  3910 {
       
  3911   _split_parent = this;
       
  3912   _current_split_child = this;
       
  3913 }
       
  3914 
       
  3915 int Interval::calc_to() {
       
  3916   assert(_first != Range::end(), "interval has no range");
       
  3917 
       
  3918   Range* r = _first;
       
  3919   while (r->next() != Range::end()) {
       
  3920     r = r->next();
       
  3921   }
       
  3922   return r->to();
       
  3923 }
       
  3924 
       
  3925 
       
  3926 #ifdef ASSERT
       
  3927 // consistency check of split-children
       
  3928 void Interval::check_split_children() {
       
  3929   if (_split_children.length() > 0) {
       
  3930     assert(is_split_parent(), "only split parents can have children");
       
  3931 
       
  3932     for (int i = 0; i < _split_children.length(); i++) {
       
  3933       Interval* i1 = _split_children.at(i);
       
  3934 
       
  3935       assert(i1->split_parent() == this, "not a split child of this interval");
       
  3936       assert(i1->type() == type(), "must be equal for all split children");
       
  3937       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
       
  3938 
       
  3939       for (int j = i + 1; j < _split_children.length(); j++) {
       
  3940         Interval* i2 = _split_children.at(j);
       
  3941 
       
  3942         assert(i1->reg_num() != i2->reg_num(), "same register number");
       
  3943 
       
  3944         if (i1->from() < i2->from()) {
       
  3945           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
       
  3946         } else {
       
  3947           assert(i2->from() < i1->from(), "intervals start at same op_id");
       
  3948           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
       
  3949         }
       
  3950       }
       
  3951     }
       
  3952   }
       
  3953 }
       
  3954 #endif // ASSERT
       
  3955 
       
  3956 Interval* Interval::register_hint(bool search_split_child) const {
       
  3957   if (!search_split_child) {
       
  3958     return _register_hint;
       
  3959   }
       
  3960 
       
  3961   if (_register_hint != NULL) {
       
  3962     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
       
  3963 
       
  3964     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
       
  3965       return _register_hint;
       
  3966 
       
  3967     } else if (_register_hint->_split_children.length() > 0) {
       
  3968       // search the first split child that has a register assigned
       
  3969       int len = _register_hint->_split_children.length();
       
  3970       for (int i = 0; i < len; i++) {
       
  3971         Interval* cur = _register_hint->_split_children.at(i);
       
  3972 
       
  3973         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
       
  3974           return cur;
       
  3975         }
       
  3976       }
       
  3977     }
       
  3978   }
       
  3979 
       
  3980   // no hint interval found that has a register assigned
       
  3981   return NULL;
       
  3982 }
       
  3983 
       
  3984 
       
  3985 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
       
  3986   assert(is_split_parent(), "can only be called for split parents");
       
  3987   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
       
  3988 
       
  3989   Interval* result;
       
  3990   if (_split_children.length() == 0) {
       
  3991     result = this;
       
  3992   } else {
       
  3993     result = NULL;
       
  3994     int len = _split_children.length();
       
  3995 
       
  3996     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
       
  3997     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
       
  3998 
       
  3999     int i;
       
  4000     for (i = 0; i < len; i++) {
       
  4001       Interval* cur = _split_children.at(i);
       
  4002       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
       
  4003         if (i > 0) {
       
  4004           // exchange current split child to start of list (faster access for next call)
       
  4005           _split_children.at_put(i, _split_children.at(0));
       
  4006           _split_children.at_put(0, cur);
       
  4007         }
       
  4008 
       
  4009         // interval found
       
  4010         result = cur;
       
  4011         break;
       
  4012       }
       
  4013     }
       
  4014 
       
  4015 #ifdef ASSERT
       
  4016     for (i = 0; i < len; i++) {
       
  4017       Interval* tmp = _split_children.at(i);
       
  4018       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
       
  4019         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
       
  4020         result->print();
       
  4021         tmp->print();
       
  4022         assert(false, "two valid result intervals found");
       
  4023       }
       
  4024     }
       
  4025 #endif
       
  4026   }
       
  4027 
       
  4028   assert(result != NULL, "no matching interval found");
       
  4029   assert(result->covers(op_id, mode), "op_id not covered by interval");
       
  4030 
       
  4031   return result;
       
  4032 }
       
  4033 
       
  4034 
       
  4035 // returns the last split child that ends before the given op_id
       
  4036 Interval* Interval::split_child_before_op_id(int op_id) {
       
  4037   assert(op_id >= 0, "invalid op_id");
       
  4038 
       
  4039   Interval* parent = split_parent();
       
  4040   Interval* result = NULL;
       
  4041 
       
  4042   int len = parent->_split_children.length();
       
  4043   assert(len > 0, "no split children available");
       
  4044 
       
  4045   for (int i = len - 1; i >= 0; i--) {
       
  4046     Interval* cur = parent->_split_children.at(i);
       
  4047     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
       
  4048       result = cur;
       
  4049     }
       
  4050   }
       
  4051 
       
  4052   assert(result != NULL, "no split child found");
       
  4053   return result;
       
  4054 }
       
  4055 
       
  4056 
       
  4057 // checks if op_id is covered by any split child
       
  4058 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
       
  4059   assert(is_split_parent(), "can only be called for split parents");
       
  4060   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
       
  4061 
       
  4062   if (_split_children.length() == 0) {
       
  4063     // simple case if interval was not split
       
  4064     return covers(op_id, mode);
       
  4065 
       
  4066   } else {
       
  4067     // extended case: check all split children
       
  4068     int len = _split_children.length();
       
  4069     for (int i = 0; i < len; i++) {
       
  4070       Interval* cur = _split_children.at(i);
       
  4071       if (cur->covers(op_id, mode)) {
       
  4072         return true;
       
  4073       }
       
  4074     }
       
  4075     return false;
       
  4076   }
       
  4077 }
       
  4078 
       
  4079 
       
  4080 // Note: use positions are sorted descending -> first use has highest index
       
  4081 int Interval::first_usage(IntervalUseKind min_use_kind) const {
       
  4082   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
       
  4083 
       
  4084   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
       
  4085     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
       
  4086       return _use_pos_and_kinds.at(i);
       
  4087     }
       
  4088   }
       
  4089   return max_jint;
       
  4090 }
       
  4091 
       
  4092 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
       
  4093   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
       
  4094 
       
  4095   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
       
  4096     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
       
  4097       return _use_pos_and_kinds.at(i);
       
  4098     }
       
  4099   }
       
  4100   return max_jint;
       
  4101 }
       
  4102 
       
  4103 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
       
  4104   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
       
  4105 
       
  4106   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
       
  4107     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
       
  4108       return _use_pos_and_kinds.at(i);
       
  4109     }
       
  4110   }
       
  4111   return max_jint;
       
  4112 }
       
  4113 
       
  4114 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
       
  4115   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
       
  4116 
       
  4117   int prev = 0;
       
  4118   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
       
  4119     if (_use_pos_and_kinds.at(i) > from) {
       
  4120       return prev;
       
  4121     }
       
  4122     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
       
  4123       prev = _use_pos_and_kinds.at(i);
       
  4124     }
       
  4125   }
       
  4126   return prev;
       
  4127 }
       
  4128 
       
  4129 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
       
  4130   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
       
  4131 
       
  4132   // do not add use positions for precolored intervals because
       
  4133   // they are never used
       
  4134   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
       
  4135 #ifdef ASSERT
       
  4136     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
       
  4137     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
       
  4138       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
       
  4139       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
       
  4140       if (i > 0) {
       
  4141         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
       
  4142       }
       
  4143     }
       
  4144 #endif
       
  4145 
       
  4146     // Note: add_use is called in descending order, so list gets sorted
       
  4147     //       automatically by just appending new use positions
       
  4148     int len = _use_pos_and_kinds.length();
       
  4149     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
       
  4150       _use_pos_and_kinds.append(pos);
       
  4151       _use_pos_and_kinds.append(use_kind);
       
  4152     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
       
  4153       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
       
  4154       _use_pos_and_kinds.at_put(len - 1, use_kind);
       
  4155     }
       
  4156   }
       
  4157 }
       
  4158 
       
  4159 void Interval::add_range(int from, int to) {
       
  4160   assert(from < to, "invalid range");
       
  4161   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
       
  4162   assert(from <= first()->to(), "not inserting at begin of interval");
       
  4163 
       
  4164   if (first()->from() <= to) {
       
  4165     // join intersecting ranges
       
  4166     first()->set_from(MIN2(from, first()->from()));
       
  4167     first()->set_to  (MAX2(to,   first()->to()));
       
  4168   } else {
       
  4169     // insert new range
       
  4170     _first = new Range(from, to, first());
       
  4171   }
       
  4172 }
       
  4173 
       
  4174 Interval* Interval::new_split_child() {
       
  4175   // allocate new interval
       
  4176   Interval* result = new Interval(-1);
       
  4177   result->set_type(type());
       
  4178 
       
  4179   Interval* parent = split_parent();
       
  4180   result->_split_parent = parent;
       
  4181   result->set_register_hint(parent);
       
  4182 
       
  4183   // insert new interval in children-list of parent
       
  4184   if (parent->_split_children.length() == 0) {
       
  4185     assert(is_split_parent(), "list must be initialized at first split");
       
  4186 
       
  4187     parent->_split_children = IntervalList(4);
       
  4188     parent->_split_children.append(this);
       
  4189   }
       
  4190   parent->_split_children.append(result);
       
  4191 
       
  4192   return result;
       
  4193 }
       
  4194 
       
  4195 // split this interval at the specified position and return
       
  4196 // the remainder as a new interval.
       
  4197 //
       
  4198 // when an interval is split, a bi-directional link is established between the original interval
       
  4199 // (the split parent) and the intervals that are split off this interval (the split children)
       
  4200 // When a split child is split again, the new created interval is also a direct child
       
  4201 // of the original parent (there is no tree of split children stored, but a flat list)
       
  4202 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
       
  4203 //
       
  4204 // Note: The new interval has no valid reg_num
       
  4205 Interval* Interval::split(int split_pos) {
       
  4206   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
       
  4207 
       
  4208   // allocate new interval
       
  4209   Interval* result = new_split_child();
       
  4210 
       
  4211   // split the ranges
       
  4212   Range* prev = NULL;
       
  4213   Range* cur = _first;
       
  4214   while (cur != Range::end() && cur->to() <= split_pos) {
       
  4215     prev = cur;
       
  4216     cur = cur->next();
       
  4217   }
       
  4218   assert(cur != Range::end(), "split interval after end of last range");
       
  4219 
       
  4220   if (cur->from() < split_pos) {
       
  4221     result->_first = new Range(split_pos, cur->to(), cur->next());
       
  4222     cur->set_to(split_pos);
       
  4223     cur->set_next(Range::end());
       
  4224 
       
  4225   } else {
       
  4226     assert(prev != NULL, "split before start of first range");
       
  4227     result->_first = cur;
       
  4228     prev->set_next(Range::end());
       
  4229   }
       
  4230   result->_current = result->_first;
       
  4231   _cached_to = -1; // clear cached value
       
  4232 
       
  4233   // split list of use positions
       
  4234   int total_len = _use_pos_and_kinds.length();
       
  4235   int start_idx = total_len - 2;
       
  4236   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
       
  4237     start_idx -= 2;
       
  4238   }
       
  4239 
       
  4240   intStack new_use_pos_and_kinds(total_len - start_idx);
       
  4241   int i;
       
  4242   for (i = start_idx + 2; i < total_len; i++) {
       
  4243     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
       
  4244   }
       
  4245 
       
  4246   _use_pos_and_kinds.truncate(start_idx + 2);
       
  4247   result->_use_pos_and_kinds = _use_pos_and_kinds;
       
  4248   _use_pos_and_kinds = new_use_pos_and_kinds;
       
  4249 
       
  4250 #ifdef ASSERT
       
  4251   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
       
  4252   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
       
  4253   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
       
  4254 
       
  4255   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
       
  4256     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
       
  4257     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
       
  4258   }
       
  4259   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
       
  4260     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
       
  4261     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
       
  4262   }
       
  4263 #endif
       
  4264 
       
  4265   return result;
       
  4266 }
       
  4267 
       
  4268 // split this interval at the specified position and return
       
  4269 // the head as a new interval (the original interval is the tail)
       
  4270 //
       
  4271 // Currently, only the first range can be split, and the new interval
       
  4272 // must not have split positions
       
  4273 Interval* Interval::split_from_start(int split_pos) {
       
  4274   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
       
  4275   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
       
  4276   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
       
  4277   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
       
  4278 
       
  4279   // allocate new interval
       
  4280   Interval* result = new_split_child();
       
  4281 
       
  4282   // the new created interval has only one range (checked by assertion above),
       
  4283   // so the splitting of the ranges is very simple
       
  4284   result->add_range(_first->from(), split_pos);
       
  4285 
       
  4286   if (split_pos == _first->to()) {
       
  4287     assert(_first->next() != Range::end(), "must not be at end");
       
  4288     _first = _first->next();
       
  4289   } else {
       
  4290     _first->set_from(split_pos);
       
  4291   }
       
  4292 
       
  4293   return result;
       
  4294 }
       
  4295 
       
  4296 
       
  4297 // returns true if the op_id is inside the interval
       
  4298 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
       
  4299   Range* cur  = _first;
       
  4300 
       
  4301   while (cur != Range::end() && cur->to() < op_id) {
       
  4302     cur = cur->next();
       
  4303   }
       
  4304   if (cur != Range::end()) {
       
  4305     assert(cur->to() != cur->next()->from(), "ranges not separated");
       
  4306 
       
  4307     if (mode == LIR_OpVisitState::outputMode) {
       
  4308       return cur->from() <= op_id && op_id < cur->to();
       
  4309     } else {
       
  4310       return cur->from() <= op_id && op_id <= cur->to();
       
  4311     }
       
  4312   }
       
  4313   return false;
       
  4314 }
       
  4315 
       
  4316 // returns true if the interval has any hole between hole_from and hole_to
       
  4317 // (even if the hole has only the length 1)
       
  4318 bool Interval::has_hole_between(int hole_from, int hole_to) {
       
  4319   assert(hole_from < hole_to, "check");
       
  4320   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
       
  4321 
       
  4322   Range* cur  = _first;
       
  4323   while (cur != Range::end()) {
       
  4324     assert(cur->to() < cur->next()->from(), "no space between ranges");
       
  4325 
       
  4326     // hole-range starts before this range -> hole
       
  4327     if (hole_from < cur->from()) {
       
  4328       return true;
       
  4329 
       
  4330     // hole-range completely inside this range -> no hole
       
  4331     } else if (hole_to <= cur->to()) {
       
  4332       return false;
       
  4333 
       
  4334     // overlapping of hole-range with this range -> hole
       
  4335     } else if (hole_from <= cur->to()) {
       
  4336       return true;
       
  4337     }
       
  4338 
       
  4339     cur = cur->next();
       
  4340   }
       
  4341 
       
  4342   return false;
       
  4343 }
       
  4344 
       
  4345 
       
  4346 #ifndef PRODUCT
       
  4347 void Interval::print(outputStream* out) const {
       
  4348   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
       
  4349   const char* UseKind2Name[] = { "N", "L", "S", "M" };
       
  4350 
       
  4351   const char* type_name;
       
  4352   LIR_Opr opr = LIR_OprFact::illegal();
       
  4353   if (reg_num() < LIR_OprDesc::vreg_base) {
       
  4354     type_name = "fixed";
       
  4355     // need a temporary operand for fixed intervals because type() cannot be called
       
  4356     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
       
  4357       opr = LIR_OprFact::single_cpu(assigned_reg());
       
  4358     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
       
  4359       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
       
  4360 #ifdef IA32
       
  4361     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
       
  4362       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
       
  4363 #endif
       
  4364     } else {
       
  4365       ShouldNotReachHere();
       
  4366     }
       
  4367   } else {
       
  4368     type_name = type2name(type());
       
  4369     if (assigned_reg() != -1) {
       
  4370       opr = LinearScan::calc_operand_for_interval(this);
       
  4371     }
       
  4372   }
       
  4373 
       
  4374   out->print("%d %s ", reg_num(), type_name);
       
  4375   if (opr->is_valid()) {
       
  4376     out->print("\"");
       
  4377     opr->print(out);
       
  4378     out->print("\" ");
       
  4379   }
       
  4380   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
       
  4381 
       
  4382   // print ranges
       
  4383   Range* cur = _first;
       
  4384   while (cur != Range::end()) {
       
  4385     cur->print(out);
       
  4386     cur = cur->next();
       
  4387     assert(cur != NULL, "range list not closed with range sentinel");
       
  4388   }
       
  4389 
       
  4390   // print use positions
       
  4391   int prev = 0;
       
  4392   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
       
  4393   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
       
  4394     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
       
  4395     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
       
  4396 
       
  4397     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
       
  4398     prev = _use_pos_and_kinds.at(i);
       
  4399   }
       
  4400 
       
  4401   out->print(" \"%s\"", SpillState2Name[spill_state()]);
       
  4402   out->cr();
       
  4403 }
       
  4404 #endif
       
  4405 
       
  4406 
       
  4407 
       
  4408 // **** Implementation of IntervalWalker ****************************
       
  4409 
       
  4410 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
       
  4411  : _compilation(allocator->compilation())
       
  4412  , _allocator(allocator)
       
  4413 {
       
  4414   _unhandled_first[fixedKind] = unhandled_fixed_first;
       
  4415   _unhandled_first[anyKind]   = unhandled_any_first;
       
  4416   _active_first[fixedKind]    = Interval::end();
       
  4417   _inactive_first[fixedKind]  = Interval::end();
       
  4418   _active_first[anyKind]      = Interval::end();
       
  4419   _inactive_first[anyKind]    = Interval::end();
       
  4420   _current_position = -1;
       
  4421   _current = NULL;
       
  4422   next_interval();
       
  4423 }
       
  4424 
       
  4425 
       
  4426 // append interval at top of list
       
  4427 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
       
  4428   interval->set_next(*list); *list = interval;
       
  4429 }
       
  4430 
       
  4431 
       
  4432 // append interval in order of current range from()
       
  4433 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
       
  4434   Interval* prev = NULL;
       
  4435   Interval* cur  = *list;
       
  4436   while (cur->current_from() < interval->current_from()) {
       
  4437     prev = cur; cur = cur->next();
       
  4438   }
       
  4439   if (prev == NULL) {
       
  4440     *list = interval;
       
  4441   } else {
       
  4442     prev->set_next(interval);
       
  4443   }
       
  4444   interval->set_next(cur);
       
  4445 }
       
  4446 
       
  4447 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
       
  4448   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
       
  4449 
       
  4450   Interval* prev = NULL;
       
  4451   Interval* cur  = *list;
       
  4452   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
       
  4453     prev = cur; cur = cur->next();
       
  4454   }
       
  4455   if (prev == NULL) {
       
  4456     *list = interval;
       
  4457   } else {
       
  4458     prev->set_next(interval);
       
  4459   }
       
  4460   interval->set_next(cur);
       
  4461 }
       
  4462 
       
  4463 
       
  4464 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
       
  4465   while (*list != Interval::end() && *list != i) {
       
  4466     list = (*list)->next_addr();
       
  4467   }
       
  4468   if (*list != Interval::end()) {
       
  4469     assert(*list == i, "check");
       
  4470     *list = (*list)->next();
       
  4471     return true;
       
  4472   } else {
       
  4473     return false;
       
  4474   }
       
  4475 }
       
  4476 
       
  4477 void IntervalWalker::remove_from_list(Interval* i) {
       
  4478   bool deleted;
       
  4479 
       
  4480   if (i->state() == activeState) {
       
  4481     deleted = remove_from_list(active_first_addr(anyKind), i);
       
  4482   } else {
       
  4483     assert(i->state() == inactiveState, "invalid state");
       
  4484     deleted = remove_from_list(inactive_first_addr(anyKind), i);
       
  4485   }
       
  4486 
       
  4487   assert(deleted, "interval has not been found in list");
       
  4488 }
       
  4489 
       
  4490 
       
  4491 void IntervalWalker::walk_to(IntervalState state, int from) {
       
  4492   assert (state == activeState || state == inactiveState, "wrong state");
       
  4493   for_each_interval_kind(kind) {
       
  4494     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
       
  4495     Interval* next   = *prev;
       
  4496     while (next->current_from() <= from) {
       
  4497       Interval* cur = next;
       
  4498       next = cur->next();
       
  4499 
       
  4500       bool range_has_changed = false;
       
  4501       while (cur->current_to() <= from) {
       
  4502         cur->next_range();
       
  4503         range_has_changed = true;
       
  4504       }
       
  4505 
       
  4506       // also handle move from inactive list to active list
       
  4507       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
       
  4508 
       
  4509       if (range_has_changed) {
       
  4510         // remove cur from list
       
  4511         *prev = next;
       
  4512         if (cur->current_at_end()) {
       
  4513           // move to handled state (not maintained as a list)
       
  4514           cur->set_state(handledState);
       
  4515           interval_moved(cur, kind, state, handledState);
       
  4516         } else if (cur->current_from() <= from){
       
  4517           // sort into active list
       
  4518           append_sorted(active_first_addr(kind), cur);
       
  4519           cur->set_state(activeState);
       
  4520           if (*prev == cur) {
       
  4521             assert(state == activeState, "check");
       
  4522             prev = cur->next_addr();
       
  4523           }
       
  4524           interval_moved(cur, kind, state, activeState);
       
  4525         } else {
       
  4526           // sort into inactive list
       
  4527           append_sorted(inactive_first_addr(kind), cur);
       
  4528           cur->set_state(inactiveState);
       
  4529           if (*prev == cur) {
       
  4530             assert(state == inactiveState, "check");
       
  4531             prev = cur->next_addr();
       
  4532           }
       
  4533           interval_moved(cur, kind, state, inactiveState);
       
  4534         }
       
  4535       } else {
       
  4536         prev = cur->next_addr();
       
  4537         continue;
       
  4538       }
       
  4539     }
       
  4540   }
       
  4541 }
       
  4542 
       
  4543 
       
  4544 void IntervalWalker::next_interval() {
       
  4545   IntervalKind kind;
       
  4546   Interval* any   = _unhandled_first[anyKind];
       
  4547   Interval* fixed = _unhandled_first[fixedKind];
       
  4548 
       
  4549   if (any != Interval::end()) {
       
  4550     // intervals may start at same position -> prefer fixed interval
       
  4551     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
       
  4552 
       
  4553     assert (kind == fixedKind && fixed->from() <= any->from() ||
       
  4554             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
       
  4555     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
       
  4556 
       
  4557   } else if (fixed != Interval::end()) {
       
  4558     kind = fixedKind;
       
  4559   } else {
       
  4560     _current = NULL; return;
       
  4561   }
       
  4562   _current_kind = kind;
       
  4563   _current = _unhandled_first[kind];
       
  4564   _unhandled_first[kind] = _current->next();
       
  4565   _current->set_next(Interval::end());
       
  4566   _current->rewind_range();
       
  4567 }
       
  4568 
       
  4569 
       
  4570 void IntervalWalker::walk_to(int lir_op_id) {
       
  4571   assert(_current_position <= lir_op_id, "can not walk backwards");
       
  4572   while (current() != NULL) {
       
  4573     bool is_active = current()->from() <= lir_op_id;
       
  4574     int id = is_active ? current()->from() : lir_op_id;
       
  4575 
       
  4576     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
       
  4577 
       
  4578     // set _current_position prior to call of walk_to
       
  4579     _current_position = id;
       
  4580 
       
  4581     // call walk_to even if _current_position == id
       
  4582     walk_to(activeState, id);
       
  4583     walk_to(inactiveState, id);
       
  4584 
       
  4585     if (is_active) {
       
  4586       current()->set_state(activeState);
       
  4587       if (activate_current()) {
       
  4588         append_sorted(active_first_addr(current_kind()), current());
       
  4589         interval_moved(current(), current_kind(), unhandledState, activeState);
       
  4590       }
       
  4591 
       
  4592       next_interval();
       
  4593     } else {
       
  4594       return;
       
  4595     }
       
  4596   }
       
  4597 }
       
  4598 
       
  4599 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
       
  4600 #ifndef PRODUCT
       
  4601   if (TraceLinearScanLevel >= 4) {
       
  4602     #define print_state(state) \
       
  4603     switch(state) {\
       
  4604       case unhandledState: tty->print("unhandled"); break;\
       
  4605       case activeState: tty->print("active"); break;\
       
  4606       case inactiveState: tty->print("inactive"); break;\
       
  4607       case handledState: tty->print("handled"); break;\
       
  4608       default: ShouldNotReachHere(); \
       
  4609     }
       
  4610 
       
  4611     print_state(from); tty->print(" to "); print_state(to);
       
  4612     tty->fill_to(23);
       
  4613     interval->print();
       
  4614 
       
  4615     #undef print_state
       
  4616   }
       
  4617 #endif
       
  4618 }
       
  4619 
       
  4620 
       
  4621 
       
  4622 // **** Implementation of LinearScanWalker **************************
       
  4623 
       
  4624 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
       
  4625   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
       
  4626   , _move_resolver(allocator)
       
  4627 {
       
  4628   for (int i = 0; i < LinearScan::nof_regs; i++) {
       
  4629     _spill_intervals[i] = new IntervalList(2);
       
  4630   }
       
  4631 }
       
  4632 
       
  4633 
       
  4634 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
       
  4635   for (int i = _first_reg; i <= _last_reg; i++) {
       
  4636     _use_pos[i] = max_jint;
       
  4637 
       
  4638     if (!only_process_use_pos) {
       
  4639       _block_pos[i] = max_jint;
       
  4640       _spill_intervals[i]->clear();
       
  4641     }
       
  4642   }
       
  4643 }
       
  4644 
       
  4645 inline void LinearScanWalker::exclude_from_use(int reg) {
       
  4646   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
       
  4647   if (reg >= _first_reg && reg <= _last_reg) {
       
  4648     _use_pos[reg] = 0;
       
  4649   }
       
  4650 }
       
  4651 inline void LinearScanWalker::exclude_from_use(Interval* i) {
       
  4652   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
       
  4653 
       
  4654   exclude_from_use(i->assigned_reg());
       
  4655   exclude_from_use(i->assigned_regHi());
       
  4656 }
       
  4657 
       
  4658 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
       
  4659   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
       
  4660 
       
  4661   if (reg >= _first_reg && reg <= _last_reg) {
       
  4662     if (_use_pos[reg] > use_pos) {
       
  4663       _use_pos[reg] = use_pos;
       
  4664     }
       
  4665     if (!only_process_use_pos) {
       
  4666       _spill_intervals[reg]->append(i);
       
  4667     }
       
  4668   }
       
  4669 }
       
  4670 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
       
  4671   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
       
  4672   if (use_pos != -1) {
       
  4673     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
       
  4674     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
       
  4675   }
       
  4676 }
       
  4677 
       
  4678 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
       
  4679   if (reg >= _first_reg && reg <= _last_reg) {
       
  4680     if (_block_pos[reg] > block_pos) {
       
  4681       _block_pos[reg] = block_pos;
       
  4682     }
       
  4683     if (_use_pos[reg] > block_pos) {
       
  4684       _use_pos[reg] = block_pos;
       
  4685     }
       
  4686   }
       
  4687 }
       
  4688 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
       
  4689   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
       
  4690   if (block_pos != -1) {
       
  4691     set_block_pos(i->assigned_reg(), i, block_pos);
       
  4692     set_block_pos(i->assigned_regHi(), i, block_pos);
       
  4693   }
       
  4694 }
       
  4695 
       
  4696 
       
  4697 void LinearScanWalker::free_exclude_active_fixed() {
       
  4698   Interval* list = active_first(fixedKind);
       
  4699   while (list != Interval::end()) {
       
  4700     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
       
  4701     exclude_from_use(list);
       
  4702     list = list->next();
       
  4703   }
       
  4704 }
       
  4705 
       
  4706 void LinearScanWalker::free_exclude_active_any() {
       
  4707   Interval* list = active_first(anyKind);
       
  4708   while (list != Interval::end()) {
       
  4709     exclude_from_use(list);
       
  4710     list = list->next();
       
  4711   }
       
  4712 }
       
  4713 
       
  4714 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
       
  4715   Interval* list = inactive_first(fixedKind);
       
  4716   while (list != Interval::end()) {
       
  4717     if (cur->to() <= list->current_from()) {
       
  4718       assert(list->current_intersects_at(cur) == -1, "must not intersect");
       
  4719       set_use_pos(list, list->current_from(), true);
       
  4720     } else {
       
  4721       set_use_pos(list, list->current_intersects_at(cur), true);
       
  4722     }
       
  4723     list = list->next();
       
  4724   }
       
  4725 }
       
  4726 
       
  4727 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
       
  4728   Interval* list = inactive_first(anyKind);
       
  4729   while (list != Interval::end()) {
       
  4730     set_use_pos(list, list->current_intersects_at(cur), true);
       
  4731     list = list->next();
       
  4732   }
       
  4733 }
       
  4734 
       
  4735 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
       
  4736   Interval* list = unhandled_first(kind);
       
  4737   while (list != Interval::end()) {
       
  4738     set_use_pos(list, list->intersects_at(cur), true);
       
  4739     if (kind == fixedKind && cur->to() <= list->from()) {
       
  4740       set_use_pos(list, list->from(), true);
       
  4741     }
       
  4742     list = list->next();
       
  4743   }
       
  4744 }
       
  4745 
       
  4746 void LinearScanWalker::spill_exclude_active_fixed() {
       
  4747   Interval* list = active_first(fixedKind);
       
  4748   while (list != Interval::end()) {
       
  4749     exclude_from_use(list);
       
  4750     list = list->next();
       
  4751   }
       
  4752 }
       
  4753 
       
  4754 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
       
  4755   Interval* list = unhandled_first(fixedKind);
       
  4756   while (list != Interval::end()) {
       
  4757     set_block_pos(list, list->intersects_at(cur));
       
  4758     list = list->next();
       
  4759   }
       
  4760 }
       
  4761 
       
  4762 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
       
  4763   Interval* list = inactive_first(fixedKind);
       
  4764   while (list != Interval::end()) {
       
  4765     if (cur->to() > list->current_from()) {
       
  4766       set_block_pos(list, list->current_intersects_at(cur));
       
  4767     } else {
       
  4768       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
       
  4769     }
       
  4770 
       
  4771     list = list->next();
       
  4772   }
       
  4773 }
       
  4774 
       
  4775 void LinearScanWalker::spill_collect_active_any() {
       
  4776   Interval* list = active_first(anyKind);
       
  4777   while (list != Interval::end()) {
       
  4778     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
       
  4779     list = list->next();
       
  4780   }
       
  4781 }
       
  4782 
       
  4783 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
       
  4784   Interval* list = inactive_first(anyKind);
       
  4785   while (list != Interval::end()) {
       
  4786     if (list->current_intersects(cur)) {
       
  4787       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
       
  4788     }
       
  4789     list = list->next();
       
  4790   }
       
  4791 }
       
  4792 
       
  4793 
       
  4794 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
       
  4795   // output all moves here. When source and target are equal, the move is
       
  4796   // optimized away later in assign_reg_nums
       
  4797 
       
  4798   op_id = (op_id + 1) & ~1;
       
  4799   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
       
  4800   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
       
  4801 
       
  4802   // calculate index of instruction inside instruction list of current block
       
  4803   // the minimal index (for a block with no spill moves) can be calculated because the
       
  4804   // numbering of instructions is known.
       
  4805   // When the block already contains spill moves, the index must be increased until the
       
  4806   // correct index is reached.
       
  4807   LIR_OpList* list = op_block->lir()->instructions_list();
       
  4808   int index = (op_id - list->at(0)->id()) / 2;
       
  4809   assert(list->at(index)->id() <= op_id, "error in calculation");
       
  4810 
       
  4811   while (list->at(index)->id() != op_id) {
       
  4812     index++;
       
  4813     assert(0 <= index && index < list->length(), "index out of bounds");
       
  4814   }
       
  4815   assert(1 <= index && index < list->length(), "index out of bounds");
       
  4816   assert(list->at(index)->id() == op_id, "error in calculation");
       
  4817 
       
  4818   // insert new instruction before instruction at position index
       
  4819   _move_resolver.move_insert_position(op_block->lir(), index - 1);
       
  4820   _move_resolver.add_mapping(src_it, dst_it);
       
  4821 }
       
  4822 
       
  4823 
       
  4824 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
       
  4825   int from_block_nr = min_block->linear_scan_number();
       
  4826   int to_block_nr = max_block->linear_scan_number();
       
  4827 
       
  4828   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
       
  4829   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
       
  4830   assert(from_block_nr < to_block_nr, "must cross block boundary");
       
  4831 
       
  4832   // Try to split at end of max_block. If this would be after
       
  4833   // max_split_pos, then use the begin of max_block
       
  4834   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
       
  4835   if (optimal_split_pos > max_split_pos) {
       
  4836     optimal_split_pos = max_block->first_lir_instruction_id();
       
  4837   }
       
  4838 
       
  4839   int min_loop_depth = max_block->loop_depth();
       
  4840   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
       
  4841     BlockBegin* cur = block_at(i);
       
  4842 
       
  4843     if (cur->loop_depth() < min_loop_depth) {
       
  4844       // block with lower loop-depth found -> split at the end of this block
       
  4845       min_loop_depth = cur->loop_depth();
       
  4846       optimal_split_pos = cur->last_lir_instruction_id() + 2;
       
  4847     }
       
  4848   }
       
  4849   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
       
  4850 
       
  4851   return optimal_split_pos;
       
  4852 }
       
  4853 
       
  4854 
       
  4855 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
       
  4856   int optimal_split_pos = -1;
       
  4857   if (min_split_pos == max_split_pos) {
       
  4858     // trivial case, no optimization of split position possible
       
  4859     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
       
  4860     optimal_split_pos = min_split_pos;
       
  4861 
       
  4862   } else {
       
  4863     assert(min_split_pos < max_split_pos, "must be true then");
       
  4864     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
       
  4865 
       
  4866     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
       
  4867     // beginning of a block, then min_split_pos is also a possible split position.
       
  4868     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
       
  4869     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
       
  4870 
       
  4871     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
       
  4872     // when an interval ends at the end of the last block of the method
       
  4873     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
       
  4874     // block at this op_id)
       
  4875     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
       
  4876 
       
  4877     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
       
  4878     if (min_block == max_block) {
       
  4879       // split position cannot be moved to block boundary, so split as late as possible
       
  4880       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
       
  4881       optimal_split_pos = max_split_pos;
       
  4882 
       
  4883     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
       
  4884       // Do not move split position if the interval has a hole before max_split_pos.
       
  4885       // Intervals resulting from Phi-Functions have more than one definition (marked
       
  4886       // as mustHaveRegister) with a hole before each definition. When the register is needed
       
  4887       // for the second definition, an earlier reloading is unnecessary.
       
  4888       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
       
  4889       optimal_split_pos = max_split_pos;
       
  4890 
       
  4891     } else {
       
  4892       // seach optimal block boundary between min_split_pos and max_split_pos
       
  4893       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
       
  4894 
       
  4895       if (do_loop_optimization) {
       
  4896         // Loop optimization: if a loop-end marker is found between min- and max-position,
       
  4897         // then split before this loop
       
  4898         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
       
  4899         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
       
  4900 
       
  4901         assert(loop_end_pos > min_split_pos, "invalid order");
       
  4902         if (loop_end_pos < max_split_pos) {
       
  4903           // loop-end marker found between min- and max-position
       
  4904           // if it is not the end marker for the same loop as the min-position, then move
       
  4905           // the max-position to this loop block.
       
  4906           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
       
  4907           // of the interval (normally, only mustHaveRegister causes a reloading)
       
  4908           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
       
  4909 
       
  4910           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
       
  4911           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
       
  4912 
       
  4913           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
       
  4914           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
       
  4915             optimal_split_pos = -1;
       
  4916             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
       
  4917           } else {
       
  4918             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
       
  4919           }
       
  4920         }
       
  4921       }
       
  4922 
       
  4923       if (optimal_split_pos == -1) {
       
  4924         // not calculated by loop optimization
       
  4925         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
       
  4926       }
       
  4927     }
       
  4928   }
       
  4929   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
       
  4930 
       
  4931   return optimal_split_pos;
       
  4932 }
       
  4933 
       
  4934 
       
  4935 /*
       
  4936   split an interval at the optimal position between min_split_pos and
       
  4937   max_split_pos in two parts:
       
  4938   1) the left part has already a location assigned
       
  4939   2) the right part is sorted into to the unhandled-list
       
  4940 */
       
  4941 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
       
  4942   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
       
  4943   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
       
  4944 
       
  4945   assert(it->from() < min_split_pos,         "cannot split at start of interval");
       
  4946   assert(current_position() < min_split_pos, "cannot split before current position");
       
  4947   assert(min_split_pos <= max_split_pos,     "invalid order");
       
  4948   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
       
  4949 
       
  4950   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
       
  4951 
       
  4952   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
       
  4953   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
       
  4954   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
       
  4955 
       
  4956   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
       
  4957     // the split position would be just before the end of the interval
       
  4958     // -> no split at all necessary
       
  4959     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
       
  4960     return;
       
  4961   }
       
  4962 
       
  4963   // must calculate this before the actual split is performed and before split position is moved to odd op_id
       
  4964   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
       
  4965 
       
  4966   if (!allocator()->is_block_begin(optimal_split_pos)) {
       
  4967     // move position before actual instruction (odd op_id)
       
  4968     optimal_split_pos = (optimal_split_pos - 1) | 1;
       
  4969   }
       
  4970 
       
  4971   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
       
  4972   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
       
  4973   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
       
  4974 
       
  4975   Interval* split_part = it->split(optimal_split_pos);
       
  4976 
       
  4977   allocator()->append_interval(split_part);
       
  4978   allocator()->copy_register_flags(it, split_part);
       
  4979   split_part->set_insert_move_when_activated(move_necessary);
       
  4980   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
       
  4981 
       
  4982   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
       
  4983   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
       
  4984   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
       
  4985 }
       
  4986 
       
  4987 /*
       
  4988   split an interval at the optimal position between min_split_pos and
       
  4989   max_split_pos in two parts:
       
  4990   1) the left part has already a location assigned
       
  4991   2) the right part is always on the stack and therefore ignored in further processing
       
  4992 */
       
  4993 void LinearScanWalker::split_for_spilling(Interval* it) {
       
  4994   // calculate allowed range of splitting position
       
  4995   int max_split_pos = current_position();
       
  4996   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
       
  4997 
       
  4998   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
       
  4999   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
       
  5000 
       
  5001   assert(it->state() == activeState,     "why spill interval that is not active?");
       
  5002   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
       
  5003   assert(min_split_pos <= max_split_pos, "invalid order");
       
  5004   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
       
  5005   assert(current_position() < it->to(),  "interval must not end before current position");
       
  5006 
       
  5007   if (min_split_pos == it->from()) {
       
  5008     // the whole interval is never used, so spill it entirely to memory
       
  5009     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
       
  5010     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
       
  5011 
       
  5012     allocator()->assign_spill_slot(it);
       
  5013     allocator()->change_spill_state(it, min_split_pos);
       
  5014 
       
  5015     // Also kick parent intervals out of register to memory when they have no use
       
  5016     // position. This avoids short interval in register surrounded by intervals in
       
  5017     // memory -> avoid useless moves from memory to register and back
       
  5018     Interval* parent = it;
       
  5019     while (parent != NULL && parent->is_split_child()) {
       
  5020       parent = parent->split_child_before_op_id(parent->from());
       
  5021 
       
  5022       if (parent->assigned_reg() < LinearScan::nof_regs) {
       
  5023         if (parent->first_usage(shouldHaveRegister) == max_jint) {
       
  5024           // parent is never used, so kick it out of its assigned register
       
  5025           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
       
  5026           allocator()->assign_spill_slot(parent);
       
  5027         } else {
       
  5028           // do not go further back because the register is actually used by the interval
       
  5029           parent = NULL;
       
  5030         }
       
  5031       }
       
  5032     }
       
  5033 
       
  5034   } else {
       
  5035     // search optimal split pos, split interval and spill only the right hand part
       
  5036     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
       
  5037 
       
  5038     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
       
  5039     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
       
  5040     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
       
  5041 
       
  5042     if (!allocator()->is_block_begin(optimal_split_pos)) {
       
  5043       // move position before actual instruction (odd op_id)
       
  5044       optimal_split_pos = (optimal_split_pos - 1) | 1;
       
  5045     }
       
  5046 
       
  5047     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
       
  5048     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
       
  5049     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
       
  5050 
       
  5051     Interval* spilled_part = it->split(optimal_split_pos);
       
  5052     allocator()->append_interval(spilled_part);
       
  5053     allocator()->assign_spill_slot(spilled_part);
       
  5054     allocator()->change_spill_state(spilled_part, optimal_split_pos);
       
  5055 
       
  5056     if (!allocator()->is_block_begin(optimal_split_pos)) {
       
  5057       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
       
  5058       insert_move(optimal_split_pos, it, spilled_part);
       
  5059     }
       
  5060 
       
  5061     // the current_split_child is needed later when moves are inserted for reloading
       
  5062     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
       
  5063     spilled_part->make_current_split_child();
       
  5064 
       
  5065     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
       
  5066     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
       
  5067     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
       
  5068   }
       
  5069 }
       
  5070 
       
  5071 
       
  5072 void LinearScanWalker::split_stack_interval(Interval* it) {
       
  5073   int min_split_pos = current_position() + 1;
       
  5074   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
       
  5075 
       
  5076   split_before_usage(it, min_split_pos, max_split_pos);
       
  5077 }
       
  5078 
       
  5079 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
       
  5080   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
       
  5081   int max_split_pos = register_available_until;
       
  5082 
       
  5083   split_before_usage(it, min_split_pos, max_split_pos);
       
  5084 }
       
  5085 
       
  5086 void LinearScanWalker::split_and_spill_interval(Interval* it) {
       
  5087   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
       
  5088 
       
  5089   int current_pos = current_position();
       
  5090   if (it->state() == inactiveState) {
       
  5091     // the interval is currently inactive, so no spill slot is needed for now.
       
  5092     // when the split part is activated, the interval has a new chance to get a register,
       
  5093     // so in the best case no stack slot is necessary
       
  5094     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
       
  5095     split_before_usage(it, current_pos + 1, current_pos + 1);
       
  5096 
       
  5097   } else {
       
  5098     // search the position where the interval must have a register and split
       
  5099     // at the optimal position before.
       
  5100     // The new created part is added to the unhandled list and will get a register
       
  5101     // when it is activated
       
  5102     int min_split_pos = current_pos + 1;
       
  5103     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
       
  5104 
       
  5105     split_before_usage(it, min_split_pos, max_split_pos);
       
  5106 
       
  5107     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
       
  5108     split_for_spilling(it);
       
  5109   }
       
  5110 }
       
  5111 
       
  5112 
       
  5113 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
       
  5114   int min_full_reg = any_reg;
       
  5115   int max_partial_reg = any_reg;
       
  5116 
       
  5117   for (int i = _first_reg; i <= _last_reg; i++) {
       
  5118     if (i == ignore_reg) {
       
  5119       // this register must be ignored
       
  5120 
       
  5121     } else if (_use_pos[i] >= interval_to) {
       
  5122       // this register is free for the full interval
       
  5123       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
       
  5124         min_full_reg = i;
       
  5125       }
       
  5126     } else if (_use_pos[i] > reg_needed_until) {
       
  5127       // this register is at least free until reg_needed_until
       
  5128       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
       
  5129         max_partial_reg = i;
       
  5130       }
       
  5131     }
       
  5132   }
       
  5133 
       
  5134   if (min_full_reg != any_reg) {
       
  5135     return min_full_reg;
       
  5136   } else if (max_partial_reg != any_reg) {
       
  5137     *need_split = true;
       
  5138     return max_partial_reg;
       
  5139   } else {
       
  5140     return any_reg;
       
  5141   }
       
  5142 }
       
  5143 
       
  5144 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
       
  5145   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
       
  5146 
       
  5147   int min_full_reg = any_reg;
       
  5148   int max_partial_reg = any_reg;
       
  5149 
       
  5150   for (int i = _first_reg; i < _last_reg; i+=2) {
       
  5151     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
       
  5152       // this register is free for the full interval
       
  5153       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
       
  5154         min_full_reg = i;
       
  5155       }
       
  5156     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
       
  5157       // this register is at least free until reg_needed_until
       
  5158       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
       
  5159         max_partial_reg = i;
       
  5160       }
       
  5161     }
       
  5162   }
       
  5163 
       
  5164   if (min_full_reg != any_reg) {
       
  5165     return min_full_reg;
       
  5166   } else if (max_partial_reg != any_reg) {
       
  5167     *need_split = true;
       
  5168     return max_partial_reg;
       
  5169   } else {
       
  5170     return any_reg;
       
  5171   }
       
  5172 }
       
  5173 
       
  5174 
       
  5175 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
       
  5176   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
       
  5177 
       
  5178   init_use_lists(true);
       
  5179   free_exclude_active_fixed();
       
  5180   free_exclude_active_any();
       
  5181   free_collect_inactive_fixed(cur);
       
  5182   free_collect_inactive_any(cur);
       
  5183 //  free_collect_unhandled(fixedKind, cur);
       
  5184   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
       
  5185 
       
  5186   // _use_pos contains the start of the next interval that has this register assigned
       
  5187   // (either as a fixed register or a normal allocated register in the past)
       
  5188   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
       
  5189   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
       
  5190   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
       
  5191 
       
  5192   int hint_reg, hint_regHi;
       
  5193   Interval* register_hint = cur->register_hint();
       
  5194   if (register_hint != NULL) {
       
  5195     hint_reg = register_hint->assigned_reg();
       
  5196     hint_regHi = register_hint->assigned_regHi();
       
  5197 
       
  5198     if (allocator()->is_precolored_cpu_interval(register_hint)) {
       
  5199       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
       
  5200       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
       
  5201     }
       
  5202     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
       
  5203 
       
  5204   } else {
       
  5205     hint_reg = any_reg;
       
  5206     hint_regHi = any_reg;
       
  5207   }
       
  5208   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
       
  5209   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
       
  5210 
       
  5211   // the register must be free at least until this position
       
  5212   int reg_needed_until = cur->from() + 1;
       
  5213   int interval_to = cur->to();
       
  5214 
       
  5215   bool need_split = false;
       
  5216   int split_pos = -1;
       
  5217   int reg = any_reg;
       
  5218   int regHi = any_reg;
       
  5219 
       
  5220   if (_adjacent_regs) {
       
  5221     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
       
  5222     regHi = reg + 1;
       
  5223     if (reg == any_reg) {
       
  5224       return false;
       
  5225     }
       
  5226     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
       
  5227 
       
  5228   } else {
       
  5229     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
       
  5230     if (reg == any_reg) {
       
  5231       return false;
       
  5232     }
       
  5233     split_pos = _use_pos[reg];
       
  5234 
       
  5235     if (_num_phys_regs == 2) {
       
  5236       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
       
  5237 
       
  5238       if (_use_pos[reg] < interval_to && regHi == any_reg) {
       
  5239         // do not split interval if only one register can be assigned until the split pos
       
  5240         // (when one register is found for the whole interval, split&spill is only
       
  5241         // performed for the hi register)
       
  5242         return false;
       
  5243 
       
  5244       } else if (regHi != any_reg) {
       
  5245         split_pos = MIN2(split_pos, _use_pos[regHi]);
       
  5246 
       
  5247         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
       
  5248         if (reg > regHi) {
       
  5249           int temp = reg;
       
  5250           reg = regHi;
       
  5251           regHi = temp;
       
  5252         }
       
  5253       }
       
  5254     }
       
  5255   }
       
  5256 
       
  5257   cur->assign_reg(reg, regHi);
       
  5258   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
       
  5259 
       
  5260   assert(split_pos > 0, "invalid split_pos");
       
  5261   if (need_split) {
       
  5262     // register not available for full interval, so split it
       
  5263     split_when_partial_register_available(cur, split_pos);
       
  5264   }
       
  5265 
       
  5266   // only return true if interval is completely assigned
       
  5267   return _num_phys_regs == 1 || regHi != any_reg;
       
  5268 }
       
  5269 
       
  5270 
       
  5271 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
       
  5272   int max_reg = any_reg;
       
  5273 
       
  5274   for (int i = _first_reg; i <= _last_reg; i++) {
       
  5275     if (i == ignore_reg) {
       
  5276       // this register must be ignored
       
  5277 
       
  5278     } else if (_use_pos[i] > reg_needed_until) {
       
  5279       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
       
  5280         max_reg = i;
       
  5281       }
       
  5282     }
       
  5283   }
       
  5284 
       
  5285   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
       
  5286     *need_split = true;
       
  5287   }
       
  5288 
       
  5289   return max_reg;
       
  5290 }
       
  5291 
       
  5292 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
       
  5293   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
       
  5294 
       
  5295   int max_reg = any_reg;
       
  5296 
       
  5297   for (int i = _first_reg; i < _last_reg; i+=2) {
       
  5298     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
       
  5299       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
       
  5300         max_reg = i;
       
  5301       }
       
  5302     }
       
  5303   }
       
  5304 
       
  5305   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
       
  5306     *need_split = true;
       
  5307   }
       
  5308 
       
  5309   return max_reg;
       
  5310 }
       
  5311 
       
  5312 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
       
  5313   assert(reg != any_reg, "no register assigned");
       
  5314 
       
  5315   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
       
  5316     Interval* it = _spill_intervals[reg]->at(i);
       
  5317     remove_from_list(it);
       
  5318     split_and_spill_interval(it);
       
  5319   }
       
  5320 
       
  5321   if (regHi != any_reg) {
       
  5322     IntervalList* processed = _spill_intervals[reg];
       
  5323     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
       
  5324       Interval* it = _spill_intervals[regHi]->at(i);
       
  5325       if (processed->index_of(it) == -1) {
       
  5326         remove_from_list(it);
       
  5327         split_and_spill_interval(it);
       
  5328       }
       
  5329     }
       
  5330   }
       
  5331 }
       
  5332 
       
  5333 
       
  5334 // Split an Interval and spill it to memory so that cur can be placed in a register
       
  5335 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
       
  5336   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
       
  5337 
       
  5338   // collect current usage of registers
       
  5339   init_use_lists(false);
       
  5340   spill_exclude_active_fixed();
       
  5341 //  spill_block_unhandled_fixed(cur);
       
  5342   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
       
  5343   spill_block_inactive_fixed(cur);
       
  5344   spill_collect_active_any();
       
  5345   spill_collect_inactive_any(cur);
       
  5346 
       
  5347 #ifndef PRODUCT
       
  5348   if (TraceLinearScanLevel >= 4) {
       
  5349     tty->print_cr("      state of registers:");
       
  5350     for (int i = _first_reg; i <= _last_reg; i++) {
       
  5351       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
       
  5352       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
       
  5353         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
       
  5354       }
       
  5355       tty->cr();
       
  5356     }
       
  5357   }
       
  5358 #endif
       
  5359 
       
  5360   // the register must be free at least until this position
       
  5361   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
       
  5362   int interval_to = cur->to();
       
  5363   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
       
  5364 
       
  5365   int split_pos = 0;
       
  5366   int use_pos = 0;
       
  5367   bool need_split = false;
       
  5368   int reg, regHi;
       
  5369 
       
  5370   if (_adjacent_regs) {
       
  5371     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
       
  5372     regHi = reg + 1;
       
  5373 
       
  5374     if (reg != any_reg) {
       
  5375       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
       
  5376       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
       
  5377     }
       
  5378   } else {
       
  5379     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
       
  5380     regHi = any_reg;
       
  5381 
       
  5382     if (reg != any_reg) {
       
  5383       use_pos = _use_pos[reg];
       
  5384       split_pos = _block_pos[reg];
       
  5385 
       
  5386       if (_num_phys_regs == 2) {
       
  5387         if (cur->assigned_reg() != any_reg) {
       
  5388           regHi = reg;
       
  5389           reg = cur->assigned_reg();
       
  5390         } else {
       
  5391           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
       
  5392           if (regHi != any_reg) {
       
  5393             use_pos = MIN2(use_pos, _use_pos[regHi]);
       
  5394             split_pos = MIN2(split_pos, _block_pos[regHi]);
       
  5395           }
       
  5396         }
       
  5397 
       
  5398         if (regHi != any_reg && reg > regHi) {
       
  5399           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
       
  5400           int temp = reg;
       
  5401           reg = regHi;
       
  5402           regHi = temp;
       
  5403         }
       
  5404       }
       
  5405     }
       
  5406   }
       
  5407 
       
  5408   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
       
  5409     // the first use of cur is later than the spilling position -> spill cur
       
  5410     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
       
  5411 
       
  5412     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
       
  5413       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
       
  5414       // assign a reasonable register and do a bailout in product mode to avoid errors
       
  5415       allocator()->assign_spill_slot(cur);
       
  5416       BAILOUT("LinearScan: no register found");
       
  5417     }
       
  5418 
       
  5419     split_and_spill_interval(cur);
       
  5420   } else {
       
  5421     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
       
  5422     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
       
  5423     assert(split_pos > 0, "invalid split_pos");
       
  5424     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
       
  5425 
       
  5426     cur->assign_reg(reg, regHi);
       
  5427     if (need_split) {
       
  5428       // register not available for full interval, so split it
       
  5429       split_when_partial_register_available(cur, split_pos);
       
  5430     }
       
  5431 
       
  5432     // perform splitting and spilling for all affected intervalls
       
  5433     split_and_spill_intersecting_intervals(reg, regHi);
       
  5434   }
       
  5435 }
       
  5436 
       
  5437 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
       
  5438 #ifdef IA32
       
  5439   // fast calculation of intervals that can never get a register because the
       
  5440   // the next instruction is a call that blocks all registers
       
  5441   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
       
  5442 
       
  5443   // check if this interval is the result of a split operation
       
  5444   // (an interval got a register until this position)
       
  5445   int pos = cur->from();
       
  5446   if ((pos & 1) == 1) {
       
  5447     // the current instruction is a call that blocks all registers
       
  5448     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
       
  5449       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
       
  5450 
       
  5451       // safety check that there is really no register available
       
  5452       assert(alloc_free_reg(cur) == false, "found a register for this interval");
       
  5453       return true;
       
  5454     }
       
  5455 
       
  5456   }
       
  5457 #endif
       
  5458   return false;
       
  5459 }
       
  5460 
       
  5461 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
       
  5462   BasicType type = cur->type();
       
  5463   _num_phys_regs = LinearScan::num_physical_regs(type);
       
  5464   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
       
  5465 
       
  5466   if (pd_init_regs_for_alloc(cur)) {
       
  5467     // the appropriate register range was selected.
       
  5468   } else if (type == T_FLOAT || type == T_DOUBLE) {
       
  5469     _first_reg = pd_first_fpu_reg;
       
  5470     _last_reg = pd_last_fpu_reg;
       
  5471   } else {
       
  5472     _first_reg = pd_first_cpu_reg;
       
  5473     _last_reg = pd_last_cpu_reg;
       
  5474   }
       
  5475 
       
  5476   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
       
  5477   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
       
  5478 }
       
  5479 
       
  5480 
       
  5481 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
       
  5482   if (op->code() != lir_move) {
       
  5483     return false;
       
  5484   }
       
  5485   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
       
  5486 
       
  5487   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
       
  5488   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
       
  5489   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
       
  5490 }
       
  5491 
       
  5492 // optimization (especially for phi functions of nested loops):
       
  5493 // assign same spill slot to non-intersecting intervals
       
  5494 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
       
  5495   if (cur->is_split_child()) {
       
  5496     // optimization is only suitable for split parents
       
  5497     return;
       
  5498   }
       
  5499 
       
  5500   Interval* register_hint = cur->register_hint(false);
       
  5501   if (register_hint == NULL) {
       
  5502     // cur is not the target of a move, otherwise register_hint would be set
       
  5503     return;
       
  5504   }
       
  5505   assert(register_hint->is_split_parent(), "register hint must be split parent");
       
  5506 
       
  5507   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
       
  5508     // combining the stack slots for intervals where spill move optimization is applied
       
  5509     // is not benefitial and would cause problems
       
  5510     return;
       
  5511   }
       
  5512 
       
  5513   int begin_pos = cur->from();
       
  5514   int end_pos = cur->to();
       
  5515   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
       
  5516     // safety check that lir_op_with_id is allowed
       
  5517     return;
       
  5518   }
       
  5519 
       
  5520   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
       
  5521     // cur and register_hint are not connected with two moves
       
  5522     return;
       
  5523   }
       
  5524 
       
  5525   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
       
  5526   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
       
  5527   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
       
  5528     // register_hint must be split, otherwise the re-writing of use positions does not work
       
  5529     return;
       
  5530   }
       
  5531 
       
  5532   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
       
  5533   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
       
  5534   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
       
  5535   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
       
  5536 
       
  5537   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
       
  5538     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
       
  5539     return;
       
  5540   }
       
  5541   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
       
  5542 
       
  5543   // modify intervals such that cur gets the same stack slot as register_hint
       
  5544   // delete use positions to prevent the intervals to get a register at beginning
       
  5545   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
       
  5546   cur->remove_first_use_pos();
       
  5547   end_hint->remove_first_use_pos();
       
  5548 }
       
  5549 
       
  5550 
       
  5551 // allocate a physical register or memory location to an interval
       
  5552 bool LinearScanWalker::activate_current() {
       
  5553   Interval* cur = current();
       
  5554   bool result = true;
       
  5555 
       
  5556   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
       
  5557   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
       
  5558 
       
  5559   if (cur->assigned_reg() >= LinearScan::nof_regs) {
       
  5560     // activating an interval that has a stack slot assigned -> split it at first use position
       
  5561     // used for method parameters
       
  5562     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
       
  5563 
       
  5564     split_stack_interval(cur);
       
  5565     result = false;
       
  5566 
       
  5567   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
       
  5568     // activating an interval that must start in a stack slot, but may get a register later
       
  5569     // used for lir_roundfp: rounding is done by store to stack and reload later
       
  5570     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
       
  5571     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
       
  5572 
       
  5573     allocator()->assign_spill_slot(cur);
       
  5574     split_stack_interval(cur);
       
  5575     result = false;
       
  5576 
       
  5577   } else if (cur->assigned_reg() == any_reg) {
       
  5578     // interval has not assigned register -> normal allocation
       
  5579     // (this is the normal case for most intervals)
       
  5580     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
       
  5581 
       
  5582     // assign same spill slot to non-intersecting intervals
       
  5583     combine_spilled_intervals(cur);
       
  5584 
       
  5585     init_vars_for_alloc(cur);
       
  5586     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
       
  5587       // no empty register available.
       
  5588       // split and spill another interval so that this interval gets a register
       
  5589       alloc_locked_reg(cur);
       
  5590     }
       
  5591 
       
  5592     // spilled intervals need not be move to active-list
       
  5593     if (cur->assigned_reg() >= LinearScan::nof_regs) {
       
  5594       result = false;
       
  5595     }
       
  5596   }
       
  5597 
       
  5598   // load spilled values that become active from stack slot to register
       
  5599   if (cur->insert_move_when_activated()) {
       
  5600     assert(cur->is_split_child(), "must be");
       
  5601     assert(cur->current_split_child() != NULL, "must be");
       
  5602     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
       
  5603     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
       
  5604 
       
  5605     insert_move(cur->from(), cur->current_split_child(), cur);
       
  5606   }
       
  5607   cur->make_current_split_child();
       
  5608 
       
  5609   return result; // true = interval is moved to active list
       
  5610 }
       
  5611 
       
  5612 
       
  5613 // Implementation of EdgeMoveOptimizer
       
  5614 
       
  5615 EdgeMoveOptimizer::EdgeMoveOptimizer() :
       
  5616   _edge_instructions(4),
       
  5617   _edge_instructions_idx(4)
       
  5618 {
       
  5619 }
       
  5620 
       
  5621 void EdgeMoveOptimizer::optimize(BlockList* code) {
       
  5622   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
       
  5623 
       
  5624   // ignore the first block in the list (index 0 is not processed)
       
  5625   for (int i = code->length() - 1; i >= 1; i--) {
       
  5626     BlockBegin* block = code->at(i);
       
  5627 
       
  5628     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
       
  5629       optimizer.optimize_moves_at_block_end(block);
       
  5630     }
       
  5631     if (block->number_of_sux() == 2) {
       
  5632       optimizer.optimize_moves_at_block_begin(block);
       
  5633     }
       
  5634   }
       
  5635 }
       
  5636 
       
  5637 
       
  5638 // clear all internal data structures
       
  5639 void EdgeMoveOptimizer::init_instructions() {
       
  5640   _edge_instructions.clear();
       
  5641   _edge_instructions_idx.clear();
       
  5642 }
       
  5643 
       
  5644 // append a lir-instruction-list and the index of the current operation in to the list
       
  5645 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
       
  5646   _edge_instructions.append(instructions);
       
  5647   _edge_instructions_idx.append(instructions_idx);
       
  5648 }
       
  5649 
       
  5650 // return the current operation of the given edge (predecessor or successor)
       
  5651 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
       
  5652   LIR_OpList* instructions = _edge_instructions.at(edge);
       
  5653   int idx = _edge_instructions_idx.at(edge);
       
  5654 
       
  5655   if (idx < instructions->length()) {
       
  5656     return instructions->at(idx);
       
  5657   } else {
       
  5658     return NULL;
       
  5659   }
       
  5660 }
       
  5661 
       
  5662 // removes the current operation of the given edge (predecessor or successor)
       
  5663 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
       
  5664   LIR_OpList* instructions = _edge_instructions.at(edge);
       
  5665   int idx = _edge_instructions_idx.at(edge);
       
  5666   instructions->remove_at(idx);
       
  5667 
       
  5668   if (decrement_index) {
       
  5669     _edge_instructions_idx.at_put(edge, idx - 1);
       
  5670   }
       
  5671 }
       
  5672 
       
  5673 
       
  5674 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
       
  5675   if (op1 == NULL || op2 == NULL) {
       
  5676     // at least one block is already empty -> no optimization possible
       
  5677     return true;
       
  5678   }
       
  5679 
       
  5680   if (op1->code() == lir_move && op2->code() == lir_move) {
       
  5681     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
       
  5682     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
       
  5683     LIR_Op1* move1 = (LIR_Op1*)op1;
       
  5684     LIR_Op1* move2 = (LIR_Op1*)op2;
       
  5685     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
       
  5686       // these moves are exactly equal and can be optimized
       
  5687       return false;
       
  5688     }
       
  5689 
       
  5690   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
       
  5691     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
       
  5692     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
       
  5693     LIR_Op1* fxch1 = (LIR_Op1*)op1;
       
  5694     LIR_Op1* fxch2 = (LIR_Op1*)op2;
       
  5695     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
       
  5696       // equal FPU stack operations can be optimized
       
  5697       return false;
       
  5698     }
       
  5699 
       
  5700   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
       
  5701     // equal FPU stack operations can be optimized
       
  5702     return false;
       
  5703   }
       
  5704 
       
  5705   // no optimization possible
       
  5706   return true;
       
  5707 }
       
  5708 
       
  5709 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
       
  5710   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
       
  5711 
       
  5712   if (block->is_predecessor(block)) {
       
  5713     // currently we can't handle this correctly.
       
  5714     return;
       
  5715   }
       
  5716 
       
  5717   init_instructions();
       
  5718   int num_preds = block->number_of_preds();
       
  5719   assert(num_preds > 1, "do not call otherwise");
       
  5720   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
       
  5721 
       
  5722   // setup a list with the lir-instructions of all predecessors
       
  5723   int i;
       
  5724   for (i = 0; i < num_preds; i++) {
       
  5725     BlockBegin* pred = block->pred_at(i);
       
  5726     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
       
  5727 
       
  5728     if (pred->number_of_sux() != 1) {
       
  5729       // this can happen with switch-statements where multiple edges are between
       
  5730       // the same blocks.
       
  5731       return;
       
  5732     }
       
  5733 
       
  5734     assert(pred->number_of_sux() == 1, "can handle only one successor");
       
  5735     assert(pred->sux_at(0) == block, "invalid control flow");
       
  5736     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
       
  5737     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
       
  5738     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
       
  5739 
       
  5740     if (pred_instructions->last()->info() != NULL) {
       
  5741       // can not optimize instructions when debug info is needed
       
  5742       return;
       
  5743     }
       
  5744 
       
  5745     // ignore the unconditional branch at the end of the block
       
  5746     append_instructions(pred_instructions, pred_instructions->length() - 2);
       
  5747   }
       
  5748 
       
  5749 
       
  5750   // process lir-instructions while all predecessors end with the same instruction
       
  5751   while (true) {
       
  5752     LIR_Op* op = instruction_at(0);
       
  5753     for (i = 1; i < num_preds; i++) {
       
  5754       if (operations_different(op, instruction_at(i))) {
       
  5755         // these instructions are different and cannot be optimized ->
       
  5756         // no further optimization possible
       
  5757         return;
       
  5758       }
       
  5759     }
       
  5760 
       
  5761     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
       
  5762 
       
  5763     // insert the instruction at the beginning of the current block
       
  5764     block->lir()->insert_before(1, op);
       
  5765 
       
  5766     // delete the instruction at the end of all predecessors
       
  5767     for (i = 0; i < num_preds; i++) {
       
  5768       remove_cur_instruction(i, true);
       
  5769     }
       
  5770   }
       
  5771 }
       
  5772 
       
  5773 
       
  5774 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
       
  5775   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
       
  5776 
       
  5777   init_instructions();
       
  5778   int num_sux = block->number_of_sux();
       
  5779 
       
  5780   LIR_OpList* cur_instructions = block->lir()->instructions_list();
       
  5781 
       
  5782   assert(num_sux == 2, "method should not be called otherwise");
       
  5783   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
       
  5784   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
       
  5785   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
       
  5786 
       
  5787   if (cur_instructions->last()->info() != NULL) {
       
  5788     // can no optimize instructions when debug info is needed
       
  5789     return;
       
  5790   }
       
  5791 
       
  5792   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
       
  5793   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
       
  5794     // not a valid case for optimization
       
  5795     // currently, only blocks that end with two branches (conditional branch followed
       
  5796     // by unconditional branch) are optimized
       
  5797     return;
       
  5798   }
       
  5799 
       
  5800   // now it is guaranteed that the block ends with two branch instructions.
       
  5801   // the instructions are inserted at the end of the block before these two branches
       
  5802   int insert_idx = cur_instructions->length() - 2;
       
  5803 
       
  5804   int i;
       
  5805 #ifdef ASSERT
       
  5806   for (i = insert_idx - 1; i >= 0; i--) {
       
  5807     LIR_Op* op = cur_instructions->at(i);
       
  5808     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
       
  5809       assert(false, "block with two successors can have only two branch instructions");
       
  5810     }
       
  5811   }
       
  5812 #endif
       
  5813 
       
  5814   // setup a list with the lir-instructions of all successors
       
  5815   for (i = 0; i < num_sux; i++) {
       
  5816     BlockBegin* sux = block->sux_at(i);
       
  5817     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
       
  5818 
       
  5819     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
       
  5820 
       
  5821     if (sux->number_of_preds() != 1) {
       
  5822       // this can happen with switch-statements where multiple edges are between
       
  5823       // the same blocks.
       
  5824       return;
       
  5825     }
       
  5826     assert(sux->pred_at(0) == block, "invalid control flow");
       
  5827     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
       
  5828 
       
  5829     // ignore the label at the beginning of the block
       
  5830     append_instructions(sux_instructions, 1);
       
  5831   }
       
  5832 
       
  5833   // process lir-instructions while all successors begin with the same instruction
       
  5834   while (true) {
       
  5835     LIR_Op* op = instruction_at(0);
       
  5836     for (i = 1; i < num_sux; i++) {
       
  5837       if (operations_different(op, instruction_at(i))) {
       
  5838         // these instructions are different and cannot be optimized ->
       
  5839         // no further optimization possible
       
  5840         return;
       
  5841       }
       
  5842     }
       
  5843 
       
  5844     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
       
  5845 
       
  5846     // insert instruction at end of current block
       
  5847     block->lir()->insert_before(insert_idx, op);
       
  5848     insert_idx++;
       
  5849 
       
  5850     // delete the instructions at the beginning of all successors
       
  5851     for (i = 0; i < num_sux; i++) {
       
  5852       remove_cur_instruction(i, false);
       
  5853     }
       
  5854   }
       
  5855 }
       
  5856 
       
  5857 
       
  5858 // Implementation of ControlFlowOptimizer
       
  5859 
       
  5860 ControlFlowOptimizer::ControlFlowOptimizer() :
       
  5861   _original_preds(4)
       
  5862 {
       
  5863 }
       
  5864 
       
  5865 void ControlFlowOptimizer::optimize(BlockList* code) {
       
  5866   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
       
  5867 
       
  5868   // push the OSR entry block to the end so that we're not jumping over it.
       
  5869   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
       
  5870   if (osr_entry) {
       
  5871     int index = osr_entry->linear_scan_number();
       
  5872     assert(code->at(index) == osr_entry, "wrong index");
       
  5873     code->remove_at(index);
       
  5874     code->append(osr_entry);
       
  5875   }
       
  5876 
       
  5877   optimizer.reorder_short_loops(code);
       
  5878   optimizer.delete_empty_blocks(code);
       
  5879   optimizer.delete_unnecessary_jumps(code);
       
  5880   optimizer.delete_jumps_to_return(code);
       
  5881 }
       
  5882 
       
  5883 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
       
  5884   int i = header_idx + 1;
       
  5885   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
       
  5886   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
       
  5887     i++;
       
  5888   }
       
  5889 
       
  5890   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
       
  5891     int end_idx = i - 1;
       
  5892     BlockBegin* end_block = code->at(end_idx);
       
  5893 
       
  5894     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
       
  5895       // short loop from header_idx to end_idx found -> reorder blocks such that
       
  5896       // the header_block is the last block instead of the first block of the loop
       
  5897       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
       
  5898                                          end_idx - header_idx + 1,
       
  5899                                          header_block->block_id(), end_block->block_id()));
       
  5900 
       
  5901       for (int j = header_idx; j < end_idx; j++) {
       
  5902         code->at_put(j, code->at(j + 1));
       
  5903       }
       
  5904       code->at_put(end_idx, header_block);
       
  5905 
       
  5906       // correct the flags so that any loop alignment occurs in the right place.
       
  5907       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
       
  5908       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
       
  5909       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
       
  5910     }
       
  5911   }
       
  5912 }
       
  5913 
       
  5914 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
       
  5915   for (int i = code->length() - 1; i >= 0; i--) {
       
  5916     BlockBegin* block = code->at(i);
       
  5917 
       
  5918     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
       
  5919       reorder_short_loop(code, block, i);
       
  5920     }
       
  5921   }
       
  5922 
       
  5923   DEBUG_ONLY(verify(code));
       
  5924 }
       
  5925 
       
  5926 // only blocks with exactly one successor can be deleted. Such blocks
       
  5927 // must always end with an unconditional branch to this successor
       
  5928 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
       
  5929   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
       
  5930     return false;
       
  5931   }
       
  5932 
       
  5933   LIR_OpList* instructions = block->lir()->instructions_list();
       
  5934 
       
  5935   assert(instructions->length() >= 2, "block must have label and branch");
       
  5936   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
       
  5937   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
       
  5938   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
       
  5939   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
       
  5940 
       
  5941   // block must have exactly one successor
       
  5942 
       
  5943   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
       
  5944     return true;
       
  5945   }
       
  5946   return false;
       
  5947 }
       
  5948 
       
  5949 // substitute branch targets in all branch-instructions of this blocks
       
  5950 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
       
  5951   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
       
  5952 
       
  5953   LIR_OpList* instructions = block->lir()->instructions_list();
       
  5954 
       
  5955   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
       
  5956   for (int i = instructions->length() - 1; i >= 1; i--) {
       
  5957     LIR_Op* op = instructions->at(i);
       
  5958 
       
  5959     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
       
  5960       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
       
  5961       LIR_OpBranch* branch = (LIR_OpBranch*)op;
       
  5962 
       
  5963       if (branch->block() == target_from) {
       
  5964         branch->change_block(target_to);
       
  5965       }
       
  5966       if (branch->ublock() == target_from) {
       
  5967         branch->change_ublock(target_to);
       
  5968       }
       
  5969     }
       
  5970   }
       
  5971 }
       
  5972 
       
  5973 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
       
  5974   int old_pos = 0;
       
  5975   int new_pos = 0;
       
  5976   int num_blocks = code->length();
       
  5977 
       
  5978   while (old_pos < num_blocks) {
       
  5979     BlockBegin* block = code->at(old_pos);
       
  5980 
       
  5981     if (can_delete_block(block)) {
       
  5982       BlockBegin* new_target = block->sux_at(0);
       
  5983 
       
  5984       // propagate backward branch target flag for correct code alignment
       
  5985       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
       
  5986         new_target->set(BlockBegin::backward_branch_target_flag);
       
  5987       }
       
  5988 
       
  5989       // collect a list with all predecessors that contains each predecessor only once
       
  5990       // the predecessors of cur are changed during the substitution, so a copy of the
       
  5991       // predecessor list is necessary
       
  5992       int j;
       
  5993       _original_preds.clear();
       
  5994       for (j = block->number_of_preds() - 1; j >= 0; j--) {
       
  5995         BlockBegin* pred = block->pred_at(j);
       
  5996         if (_original_preds.index_of(pred) == -1) {
       
  5997           _original_preds.append(pred);
       
  5998         }
       
  5999       }
       
  6000 
       
  6001       for (j = _original_preds.length() - 1; j >= 0; j--) {
       
  6002         BlockBegin* pred = _original_preds.at(j);
       
  6003         substitute_branch_target(pred, block, new_target);
       
  6004         pred->substitute_sux(block, new_target);
       
  6005       }
       
  6006     } else {
       
  6007       // adjust position of this block in the block list if blocks before
       
  6008       // have been deleted
       
  6009       if (new_pos != old_pos) {
       
  6010         code->at_put(new_pos, code->at(old_pos));
       
  6011       }
       
  6012       new_pos++;
       
  6013     }
       
  6014     old_pos++;
       
  6015   }
       
  6016   code->truncate(new_pos);
       
  6017 
       
  6018   DEBUG_ONLY(verify(code));
       
  6019 }
       
  6020 
       
  6021 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
       
  6022   // skip the last block because there a branch is always necessary
       
  6023   for (int i = code->length() - 2; i >= 0; i--) {
       
  6024     BlockBegin* block = code->at(i);
       
  6025     LIR_OpList* instructions = block->lir()->instructions_list();
       
  6026 
       
  6027     LIR_Op* last_op = instructions->last();
       
  6028     if (last_op->code() == lir_branch) {
       
  6029       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
       
  6030       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
       
  6031 
       
  6032       assert(last_branch->block() != NULL, "last branch must always have a block as target");
       
  6033       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
       
  6034 
       
  6035       if (last_branch->info() == NULL) {
       
  6036         if (last_branch->block() == code->at(i + 1)) {
       
  6037 
       
  6038           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
       
  6039 
       
  6040           // delete last branch instruction
       
  6041           instructions->truncate(instructions->length() - 1);
       
  6042 
       
  6043         } else {
       
  6044           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
       
  6045           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
       
  6046             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
       
  6047             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
       
  6048 
       
  6049             if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
       
  6050 
       
  6051               TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
       
  6052 
       
  6053               // eliminate a conditional branch to the immediate successor
       
  6054               prev_branch->change_block(last_branch->block());
       
  6055               prev_branch->negate_cond();
       
  6056               instructions->truncate(instructions->length() - 1);
       
  6057             }
       
  6058           }
       
  6059         }
       
  6060       }
       
  6061     }
       
  6062   }
       
  6063 
       
  6064   DEBUG_ONLY(verify(code));
       
  6065 }
       
  6066 
       
  6067 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
       
  6068 #ifdef ASSERT
       
  6069   BitMap return_converted(BlockBegin::number_of_blocks());
       
  6070   return_converted.clear();
       
  6071 #endif
       
  6072 
       
  6073   for (int i = code->length() - 1; i >= 0; i--) {
       
  6074     BlockBegin* block = code->at(i);
       
  6075     LIR_OpList* cur_instructions = block->lir()->instructions_list();
       
  6076     LIR_Op*     cur_last_op = cur_instructions->last();
       
  6077 
       
  6078     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
       
  6079     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
       
  6080       // the block contains only a label and a return
       
  6081       // if a predecessor ends with an unconditional jump to this block, then the jump
       
  6082       // can be replaced with a return instruction
       
  6083       //
       
  6084       // Note: the original block with only a return statement cannot be deleted completely
       
  6085       //       because the predecessors might have other (conditional) jumps to this block
       
  6086       //       -> this may lead to unnecesary return instructions in the final code
       
  6087 
       
  6088       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
       
  6089       assert(block->number_of_sux() == 0 ||
       
  6090              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
       
  6091              "blocks that end with return must not have successors");
       
  6092 
       
  6093       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
       
  6094       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
       
  6095 
       
  6096       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
       
  6097         BlockBegin* pred = block->pred_at(j);
       
  6098         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
       
  6099         LIR_Op*     pred_last_op = pred_instructions->last();
       
  6100 
       
  6101         if (pred_last_op->code() == lir_branch) {
       
  6102           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
       
  6103           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
       
  6104 
       
  6105           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
       
  6106             // replace the jump to a return with a direct return
       
  6107             // Note: currently the edge between the blocks is not deleted
       
  6108             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
       
  6109 #ifdef ASSERT
       
  6110             return_converted.set_bit(pred->block_id());
       
  6111 #endif
       
  6112           }
       
  6113         }
       
  6114       }
       
  6115     }
       
  6116   }
       
  6117 }
       
  6118 
       
  6119 
       
  6120 #ifdef ASSERT
       
  6121 void ControlFlowOptimizer::verify(BlockList* code) {
       
  6122   for (int i = 0; i < code->length(); i++) {
       
  6123     BlockBegin* block = code->at(i);
       
  6124     LIR_OpList* instructions = block->lir()->instructions_list();
       
  6125 
       
  6126     int j;
       
  6127     for (j = 0; j < instructions->length(); j++) {
       
  6128       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
       
  6129 
       
  6130       if (op_branch != NULL) {
       
  6131         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
       
  6132         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
       
  6133       }
       
  6134     }
       
  6135 
       
  6136     for (j = 0; j < block->number_of_sux() - 1; j++) {
       
  6137       BlockBegin* sux = block->sux_at(j);
       
  6138       assert(code->index_of(sux) != -1, "successor not valid");
       
  6139     }
       
  6140 
       
  6141     for (j = 0; j < block->number_of_preds() - 1; j++) {
       
  6142       BlockBegin* pred = block->pred_at(j);
       
  6143       assert(code->index_of(pred) != -1, "successor not valid");
       
  6144     }
       
  6145   }
       
  6146 }
       
  6147 #endif
       
  6148 
       
  6149 
       
  6150 #ifndef PRODUCT
       
  6151 
       
  6152 // Implementation of LinearStatistic
       
  6153 
       
  6154 const char* LinearScanStatistic::counter_name(int counter_idx) {
       
  6155   switch (counter_idx) {
       
  6156     case counter_method:          return "compiled methods";
       
  6157     case counter_fpu_method:      return "methods using fpu";
       
  6158     case counter_loop_method:     return "methods with loops";
       
  6159     case counter_exception_method:return "methods with xhandler";
       
  6160 
       
  6161     case counter_loop:            return "loops";
       
  6162     case counter_block:           return "blocks";
       
  6163     case counter_loop_block:      return "blocks inside loop";
       
  6164     case counter_exception_block: return "exception handler entries";
       
  6165     case counter_interval:        return "intervals";
       
  6166     case counter_fixed_interval:  return "fixed intervals";
       
  6167     case counter_range:           return "ranges";
       
  6168     case counter_fixed_range:     return "fixed ranges";
       
  6169     case counter_use_pos:         return "use positions";
       
  6170     case counter_fixed_use_pos:   return "fixed use positions";
       
  6171     case counter_spill_slots:     return "spill slots";
       
  6172 
       
  6173     // counter for classes of lir instructions
       
  6174     case counter_instruction:     return "total instructions";
       
  6175     case counter_label:           return "labels";
       
  6176     case counter_entry:           return "method entries";
       
  6177     case counter_return:          return "method returns";
       
  6178     case counter_call:            return "method calls";
       
  6179     case counter_move:            return "moves";
       
  6180     case counter_cmp:             return "compare";
       
  6181     case counter_cond_branch:     return "conditional branches";
       
  6182     case counter_uncond_branch:   return "unconditional branches";
       
  6183     case counter_stub_branch:     return "branches to stub";
       
  6184     case counter_alu:             return "artithmetic + logic";
       
  6185     case counter_alloc:           return "allocations";
       
  6186     case counter_sync:            return "synchronisation";
       
  6187     case counter_throw:           return "throw";
       
  6188     case counter_unwind:          return "unwind";
       
  6189     case counter_typecheck:       return "type+null-checks";
       
  6190     case counter_fpu_stack:       return "fpu-stack";
       
  6191     case counter_misc_inst:       return "other instructions";
       
  6192     case counter_other_inst:      return "misc. instructions";
       
  6193 
       
  6194     // counter for different types of moves
       
  6195     case counter_move_total:      return "total moves";
       
  6196     case counter_move_reg_reg:    return "register->register";
       
  6197     case counter_move_reg_stack:  return "register->stack";
       
  6198     case counter_move_stack_reg:  return "stack->register";
       
  6199     case counter_move_stack_stack:return "stack->stack";
       
  6200     case counter_move_reg_mem:    return "register->memory";
       
  6201     case counter_move_mem_reg:    return "memory->register";
       
  6202     case counter_move_const_any:  return "constant->any";
       
  6203 
       
  6204     case blank_line_1:            return "";
       
  6205     case blank_line_2:            return "";
       
  6206 
       
  6207     default: ShouldNotReachHere(); return "";
       
  6208   }
       
  6209 }
       
  6210 
       
  6211 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
       
  6212   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
       
  6213     return counter_method;
       
  6214   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
       
  6215     return counter_block;
       
  6216   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
       
  6217     return counter_instruction;
       
  6218   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
       
  6219     return counter_move_total;
       
  6220   }
       
  6221   return invalid_counter;
       
  6222 }
       
  6223 
       
  6224 LinearScanStatistic::LinearScanStatistic() {
       
  6225   for (int i = 0; i < number_of_counters; i++) {
       
  6226     _counters_sum[i] = 0;
       
  6227     _counters_max[i] = -1;
       
  6228   }
       
  6229 
       
  6230 }
       
  6231 
       
  6232 // add the method-local numbers to the total sum
       
  6233 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
       
  6234   for (int i = 0; i < number_of_counters; i++) {
       
  6235     _counters_sum[i] += method_statistic._counters_sum[i];
       
  6236     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
       
  6237   }
       
  6238 }
       
  6239 
       
  6240 void LinearScanStatistic::print(const char* title) {
       
  6241   if (CountLinearScan || TraceLinearScanLevel > 0) {
       
  6242     tty->cr();
       
  6243     tty->print_cr("***** LinearScan statistic - %s *****", title);
       
  6244 
       
  6245     for (int i = 0; i < number_of_counters; i++) {
       
  6246       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
       
  6247         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
       
  6248 
       
  6249         if (base_counter(i) != invalid_counter) {
       
  6250           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
       
  6251         } else {
       
  6252           tty->print("           ");
       
  6253         }
       
  6254 
       
  6255         if (_counters_max[i] >= 0) {
       
  6256           tty->print("%8d", _counters_max[i]);
       
  6257         }
       
  6258       }
       
  6259       tty->cr();
       
  6260     }
       
  6261   }
       
  6262 }
       
  6263 
       
  6264 void LinearScanStatistic::collect(LinearScan* allocator) {
       
  6265   inc_counter(counter_method);
       
  6266   if (allocator->has_fpu_registers()) {
       
  6267     inc_counter(counter_fpu_method);
       
  6268   }
       
  6269   if (allocator->num_loops() > 0) {
       
  6270     inc_counter(counter_loop_method);
       
  6271   }
       
  6272   inc_counter(counter_loop, allocator->num_loops());
       
  6273   inc_counter(counter_spill_slots, allocator->max_spills());
       
  6274 
       
  6275   int i;
       
  6276   for (i = 0; i < allocator->interval_count(); i++) {
       
  6277     Interval* cur = allocator->interval_at(i);
       
  6278 
       
  6279     if (cur != NULL) {
       
  6280       inc_counter(counter_interval);
       
  6281       inc_counter(counter_use_pos, cur->num_use_positions());
       
  6282       if (LinearScan::is_precolored_interval(cur)) {
       
  6283         inc_counter(counter_fixed_interval);
       
  6284         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
       
  6285       }
       
  6286 
       
  6287       Range* range = cur->first();
       
  6288       while (range != Range::end()) {
       
  6289         inc_counter(counter_range);
       
  6290         if (LinearScan::is_precolored_interval(cur)) {
       
  6291           inc_counter(counter_fixed_range);
       
  6292         }
       
  6293         range = range->next();
       
  6294       }
       
  6295     }
       
  6296   }
       
  6297 
       
  6298   bool has_xhandlers = false;
       
  6299   // Note: only count blocks that are in code-emit order
       
  6300   for (i = 0; i < allocator->ir()->code()->length(); i++) {
       
  6301     BlockBegin* cur = allocator->ir()->code()->at(i);
       
  6302 
       
  6303     inc_counter(counter_block);
       
  6304     if (cur->loop_depth() > 0) {
       
  6305       inc_counter(counter_loop_block);
       
  6306     }
       
  6307     if (cur->is_set(BlockBegin::exception_entry_flag)) {
       
  6308       inc_counter(counter_exception_block);
       
  6309       has_xhandlers = true;
       
  6310     }
       
  6311 
       
  6312     LIR_OpList* instructions = cur->lir()->instructions_list();
       
  6313     for (int j = 0; j < instructions->length(); j++) {
       
  6314       LIR_Op* op = instructions->at(j);
       
  6315 
       
  6316       inc_counter(counter_instruction);
       
  6317 
       
  6318       switch (op->code()) {
       
  6319         case lir_label:           inc_counter(counter_label); break;
       
  6320         case lir_std_entry:
       
  6321         case lir_osr_entry:       inc_counter(counter_entry); break;
       
  6322         case lir_return:          inc_counter(counter_return); break;
       
  6323 
       
  6324         case lir_rtcall:
       
  6325         case lir_static_call:
       
  6326         case lir_optvirtual_call:
       
  6327         case lir_virtual_call:    inc_counter(counter_call); break;
       
  6328 
       
  6329         case lir_move: {
       
  6330           inc_counter(counter_move);
       
  6331           inc_counter(counter_move_total);
       
  6332 
       
  6333           LIR_Opr in = op->as_Op1()->in_opr();
       
  6334           LIR_Opr res = op->as_Op1()->result_opr();
       
  6335           if (in->is_register()) {
       
  6336             if (res->is_register()) {
       
  6337               inc_counter(counter_move_reg_reg);
       
  6338             } else if (res->is_stack()) {
       
  6339               inc_counter(counter_move_reg_stack);
       
  6340             } else if (res->is_address()) {
       
  6341               inc_counter(counter_move_reg_mem);
       
  6342             } else {
       
  6343               ShouldNotReachHere();
       
  6344             }
       
  6345           } else if (in->is_stack()) {
       
  6346             if (res->is_register()) {
       
  6347               inc_counter(counter_move_stack_reg);
       
  6348             } else {
       
  6349               inc_counter(counter_move_stack_stack);
       
  6350             }
       
  6351           } else if (in->is_address()) {
       
  6352             assert(res->is_register(), "must be");
       
  6353             inc_counter(counter_move_mem_reg);
       
  6354           } else if (in->is_constant()) {
       
  6355             inc_counter(counter_move_const_any);
       
  6356           } else {
       
  6357             ShouldNotReachHere();
       
  6358           }
       
  6359           break;
       
  6360         }
       
  6361 
       
  6362         case lir_cmp:             inc_counter(counter_cmp); break;
       
  6363 
       
  6364         case lir_branch:
       
  6365         case lir_cond_float_branch: {
       
  6366           LIR_OpBranch* branch = op->as_OpBranch();
       
  6367           if (branch->block() == NULL) {
       
  6368             inc_counter(counter_stub_branch);
       
  6369           } else if (branch->cond() == lir_cond_always) {
       
  6370             inc_counter(counter_uncond_branch);
       
  6371           } else {
       
  6372             inc_counter(counter_cond_branch);
       
  6373           }
       
  6374           break;
       
  6375         }
       
  6376 
       
  6377         case lir_neg:
       
  6378         case lir_add:
       
  6379         case lir_sub:
       
  6380         case lir_mul:
       
  6381         case lir_mul_strictfp:
       
  6382         case lir_div:
       
  6383         case lir_div_strictfp:
       
  6384         case lir_rem:
       
  6385         case lir_sqrt:
       
  6386         case lir_sin:
       
  6387         case lir_cos:
       
  6388         case lir_abs:
       
  6389         case lir_log10:
       
  6390         case lir_log:
       
  6391         case lir_logic_and:
       
  6392         case lir_logic_or:
       
  6393         case lir_logic_xor:
       
  6394         case lir_shl:
       
  6395         case lir_shr:
       
  6396         case lir_ushr:            inc_counter(counter_alu); break;
       
  6397 
       
  6398         case lir_alloc_object:
       
  6399         case lir_alloc_array:     inc_counter(counter_alloc); break;
       
  6400 
       
  6401         case lir_monaddr:
       
  6402         case lir_lock:
       
  6403         case lir_unlock:          inc_counter(counter_sync); break;
       
  6404 
       
  6405         case lir_throw:           inc_counter(counter_throw); break;
       
  6406 
       
  6407         case lir_unwind:          inc_counter(counter_unwind); break;
       
  6408 
       
  6409         case lir_null_check:
       
  6410         case lir_leal:
       
  6411         case lir_instanceof:
       
  6412         case lir_checkcast:
       
  6413         case lir_store_check:     inc_counter(counter_typecheck); break;
       
  6414 
       
  6415         case lir_fpop_raw:
       
  6416         case lir_fxch:
       
  6417         case lir_fld:             inc_counter(counter_fpu_stack); break;
       
  6418 
       
  6419         case lir_nop:
       
  6420         case lir_push:
       
  6421         case lir_pop:
       
  6422         case lir_convert:
       
  6423         case lir_roundfp:
       
  6424         case lir_cmove:           inc_counter(counter_misc_inst); break;
       
  6425 
       
  6426         default:                  inc_counter(counter_other_inst); break;
       
  6427       }
       
  6428     }
       
  6429   }
       
  6430 
       
  6431   if (has_xhandlers) {
       
  6432     inc_counter(counter_exception_method);
       
  6433   }
       
  6434 }
       
  6435 
       
  6436 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
       
  6437   if (CountLinearScan || TraceLinearScanLevel > 0) {
       
  6438 
       
  6439     LinearScanStatistic local_statistic = LinearScanStatistic();
       
  6440 
       
  6441     local_statistic.collect(allocator);
       
  6442     global_statistic.sum_up(local_statistic);
       
  6443 
       
  6444     if (TraceLinearScanLevel > 2) {
       
  6445       local_statistic.print("current local statistic");
       
  6446     }
       
  6447   }
       
  6448 }
       
  6449 
       
  6450 
       
  6451 // Implementation of LinearTimers
       
  6452 
       
  6453 LinearScanTimers::LinearScanTimers() {
       
  6454   for (int i = 0; i < number_of_timers; i++) {
       
  6455     timer(i)->reset();
       
  6456   }
       
  6457 }
       
  6458 
       
  6459 const char* LinearScanTimers::timer_name(int idx) {
       
  6460   switch (idx) {
       
  6461     case timer_do_nothing:               return "Nothing (Time Check)";
       
  6462     case timer_number_instructions:      return "Number Instructions";
       
  6463     case timer_compute_local_live_sets:  return "Local Live Sets";
       
  6464     case timer_compute_global_live_sets: return "Global Live Sets";
       
  6465     case timer_build_intervals:          return "Build Intervals";
       
  6466     case timer_sort_intervals_before:    return "Sort Intervals Before";
       
  6467     case timer_allocate_registers:       return "Allocate Registers";
       
  6468     case timer_resolve_data_flow:        return "Resolve Data Flow";
       
  6469     case timer_sort_intervals_after:     return "Sort Intervals After";
       
  6470     case timer_eliminate_spill_moves:    return "Spill optimization";
       
  6471     case timer_assign_reg_num:           return "Assign Reg Num";
       
  6472     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
       
  6473     case timer_optimize_lir:             return "Optimize LIR";
       
  6474     default: ShouldNotReachHere();       return "";
       
  6475   }
       
  6476 }
       
  6477 
       
  6478 void LinearScanTimers::begin_method() {
       
  6479   if (TimeEachLinearScan) {
       
  6480     // reset all timers to measure only current method
       
  6481     for (int i = 0; i < number_of_timers; i++) {
       
  6482       timer(i)->reset();
       
  6483     }
       
  6484   }
       
  6485 }
       
  6486 
       
  6487 void LinearScanTimers::end_method(LinearScan* allocator) {
       
  6488   if (TimeEachLinearScan) {
       
  6489 
       
  6490     double c = timer(timer_do_nothing)->seconds();
       
  6491     double total = 0;
       
  6492     for (int i = 1; i < number_of_timers; i++) {
       
  6493       total += timer(i)->seconds() - c;
       
  6494     }
       
  6495 
       
  6496     if (total >= 0.0005) {
       
  6497       // print all information in one line for automatic processing
       
  6498       tty->print("@"); allocator->compilation()->method()->print_name();
       
  6499 
       
  6500       tty->print("@ %d ", allocator->compilation()->method()->code_size());
       
  6501       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
       
  6502       tty->print("@ %d ", allocator->block_count());
       
  6503       tty->print("@ %d ", allocator->num_virtual_regs());
       
  6504       tty->print("@ %d ", allocator->interval_count());
       
  6505       tty->print("@ %d ", allocator->_num_calls);
       
  6506       tty->print("@ %d ", allocator->num_loops());
       
  6507 
       
  6508       tty->print("@ %6.6f ", total);
       
  6509       for (int i = 1; i < number_of_timers; i++) {
       
  6510         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
       
  6511       }
       
  6512       tty->cr();
       
  6513     }
       
  6514   }
       
  6515 }
       
  6516 
       
  6517 void LinearScanTimers::print(double total_time) {
       
  6518   if (TimeLinearScan) {
       
  6519     // correction value: sum of dummy-timer that only measures the time that
       
  6520     // is necesary to start and stop itself
       
  6521     double c = timer(timer_do_nothing)->seconds();
       
  6522 
       
  6523     for (int i = 0; i < number_of_timers; i++) {
       
  6524       double t = timer(i)->seconds();
       
  6525       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
       
  6526     }
       
  6527   }
       
  6528 }
       
  6529 
       
  6530 #endif // #ifndef PRODUCT