hotspot/src/os/windows/vm/os_windows.cpp
changeset 1 489c9b5090e2
child 234 4da9c1bbc810
child 193 171c404abf72
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #ifdef _WIN64
       
    26 // Must be at least Windows 2000 or XP to use VectoredExceptions
       
    27 #define _WIN32_WINNT 0x500
       
    28 #endif
       
    29 
       
    30 // do not include precompiled header file
       
    31 # include "incls/_os_windows.cpp.incl"
       
    32 
       
    33 #ifdef _DEBUG
       
    34 #include <crtdbg.h>
       
    35 #endif
       
    36 
       
    37 
       
    38 #include <windows.h>
       
    39 #include <sys/types.h>
       
    40 #include <sys/stat.h>
       
    41 #include <sys/timeb.h>
       
    42 #include <objidl.h>
       
    43 #include <shlobj.h>
       
    44 
       
    45 #include <malloc.h>
       
    46 #include <signal.h>
       
    47 #include <direct.h>
       
    48 #include <errno.h>
       
    49 #include <fcntl.h>
       
    50 #include <io.h>
       
    51 #include <process.h>              // For _beginthreadex(), _endthreadex()
       
    52 #include <imagehlp.h>             // For os::dll_address_to_function_name
       
    53 
       
    54 /* for enumerating dll libraries */
       
    55 #include <tlhelp32.h>
       
    56 #include <vdmdbg.h>
       
    57 
       
    58 // for timer info max values which include all bits
       
    59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
       
    60 
       
    61 // For DLL loading/load error detection
       
    62 // Values of PE COFF
       
    63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
       
    64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
       
    65 
       
    66 static HANDLE main_process;
       
    67 static HANDLE main_thread;
       
    68 static int    main_thread_id;
       
    69 
       
    70 static FILETIME process_creation_time;
       
    71 static FILETIME process_exit_time;
       
    72 static FILETIME process_user_time;
       
    73 static FILETIME process_kernel_time;
       
    74 
       
    75 #ifdef _WIN64
       
    76 PVOID  topLevelVectoredExceptionHandler = NULL;
       
    77 #endif
       
    78 
       
    79 #ifdef _M_IA64
       
    80 #define __CPU__ ia64
       
    81 #elif _M_AMD64
       
    82 #define __CPU__ amd64
       
    83 #else
       
    84 #define __CPU__ i486
       
    85 #endif
       
    86 
       
    87 // save DLL module handle, used by GetModuleFileName
       
    88 
       
    89 HINSTANCE vm_lib_handle;
       
    90 static int getLastErrorString(char *buf, size_t len);
       
    91 
       
    92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
       
    93   switch (reason) {
       
    94     case DLL_PROCESS_ATTACH:
       
    95       vm_lib_handle = hinst;
       
    96       if(ForceTimeHighResolution)
       
    97         timeBeginPeriod(1L);
       
    98       break;
       
    99     case DLL_PROCESS_DETACH:
       
   100       if(ForceTimeHighResolution)
       
   101         timeEndPeriod(1L);
       
   102 #ifdef _WIN64
       
   103       if (topLevelVectoredExceptionHandler != NULL) {
       
   104         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
       
   105         topLevelVectoredExceptionHandler = NULL;
       
   106       }
       
   107 #endif
       
   108       break;
       
   109     default:
       
   110       break;
       
   111   }
       
   112   return true;
       
   113 }
       
   114 
       
   115 static inline double fileTimeAsDouble(FILETIME* time) {
       
   116   const double high  = (double) ((unsigned int) ~0);
       
   117   const double split = 10000000.0;
       
   118   double result = (time->dwLowDateTime / split) +
       
   119                    time->dwHighDateTime * (high/split);
       
   120   return result;
       
   121 }
       
   122 
       
   123 // Implementation of os
       
   124 
       
   125 bool os::getenv(const char* name, char* buffer, int len) {
       
   126  int result = GetEnvironmentVariable(name, buffer, len);
       
   127  return result > 0 && result < len;
       
   128 }
       
   129 
       
   130 
       
   131 // No setuid programs under Windows.
       
   132 bool os::have_special_privileges() {
       
   133   return false;
       
   134 }
       
   135 
       
   136 
       
   137 // This method is  a periodic task to check for misbehaving JNI applications
       
   138 // under CheckJNI, we can add any periodic checks here.
       
   139 // For Windows at the moment does nothing
       
   140 void os::run_periodic_checks() {
       
   141   return;
       
   142 }
       
   143 
       
   144 #ifndef _WIN64
       
   145 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
       
   146 #endif
       
   147 void os::init_system_properties_values() {
       
   148   /* sysclasspath, java_home, dll_dir */
       
   149   {
       
   150       char *home_path;
       
   151       char *dll_path;
       
   152       char *pslash;
       
   153       char *bin = "\\bin";
       
   154       char home_dir[MAX_PATH];
       
   155 
       
   156       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
       
   157           os::jvm_path(home_dir, sizeof(home_dir));
       
   158           // Found the full path to jvm[_g].dll.
       
   159           // Now cut the path to <java_home>/jre if we can.
       
   160           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
       
   161           pslash = strrchr(home_dir, '\\');
       
   162           if (pslash != NULL) {
       
   163               *pslash = '\0';                 /* get rid of \{client|server} */
       
   164               pslash = strrchr(home_dir, '\\');
       
   165               if (pslash != NULL)
       
   166                   *pslash = '\0';             /* get rid of \bin */
       
   167           }
       
   168       }
       
   169 
       
   170       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
       
   171       if (home_path == NULL)
       
   172           return;
       
   173       strcpy(home_path, home_dir);
       
   174       Arguments::set_java_home(home_path);
       
   175 
       
   176       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
       
   177       if (dll_path == NULL)
       
   178           return;
       
   179       strcpy(dll_path, home_dir);
       
   180       strcat(dll_path, bin);
       
   181       Arguments::set_dll_dir(dll_path);
       
   182 
       
   183       if (!set_boot_path('\\', ';'))
       
   184           return;
       
   185   }
       
   186 
       
   187   /* library_path */
       
   188   #define EXT_DIR "\\lib\\ext"
       
   189   #define BIN_DIR "\\bin"
       
   190   #define PACKAGE_DIR "\\Sun\\Java"
       
   191   {
       
   192     /* Win32 library search order (See the documentation for LoadLibrary):
       
   193      *
       
   194      * 1. The directory from which application is loaded.
       
   195      * 2. The current directory
       
   196      * 3. The system wide Java Extensions directory (Java only)
       
   197      * 4. System directory (GetSystemDirectory)
       
   198      * 5. Windows directory (GetWindowsDirectory)
       
   199      * 6. The PATH environment variable
       
   200      */
       
   201 
       
   202     char *library_path;
       
   203     char tmp[MAX_PATH];
       
   204     char *path_str = ::getenv("PATH");
       
   205 
       
   206     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
       
   207         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
       
   208 
       
   209     library_path[0] = '\0';
       
   210 
       
   211     GetModuleFileName(NULL, tmp, sizeof(tmp));
       
   212     *(strrchr(tmp, '\\')) = '\0';
       
   213     strcat(library_path, tmp);
       
   214 
       
   215     strcat(library_path, ";.");
       
   216 
       
   217     GetWindowsDirectory(tmp, sizeof(tmp));
       
   218     strcat(library_path, ";");
       
   219     strcat(library_path, tmp);
       
   220     strcat(library_path, PACKAGE_DIR BIN_DIR);
       
   221 
       
   222     GetSystemDirectory(tmp, sizeof(tmp));
       
   223     strcat(library_path, ";");
       
   224     strcat(library_path, tmp);
       
   225 
       
   226     GetWindowsDirectory(tmp, sizeof(tmp));
       
   227     strcat(library_path, ";");
       
   228     strcat(library_path, tmp);
       
   229 
       
   230     if (path_str) {
       
   231         strcat(library_path, ";");
       
   232         strcat(library_path, path_str);
       
   233     }
       
   234 
       
   235     Arguments::set_library_path(library_path);
       
   236     FREE_C_HEAP_ARRAY(char, library_path);
       
   237   }
       
   238 
       
   239   /* Default extensions directory */
       
   240   {
       
   241     char path[MAX_PATH];
       
   242     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
       
   243     GetWindowsDirectory(path, MAX_PATH);
       
   244     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
       
   245         path, PACKAGE_DIR, EXT_DIR);
       
   246     Arguments::set_ext_dirs(buf);
       
   247   }
       
   248   #undef EXT_DIR
       
   249   #undef BIN_DIR
       
   250   #undef PACKAGE_DIR
       
   251 
       
   252   /* Default endorsed standards directory. */
       
   253   {
       
   254     #define ENDORSED_DIR "\\lib\\endorsed"
       
   255     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
       
   256     char * buf = NEW_C_HEAP_ARRAY(char, len);
       
   257     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
       
   258     Arguments::set_endorsed_dirs(buf);
       
   259     #undef ENDORSED_DIR
       
   260   }
       
   261 
       
   262 #ifndef _WIN64
       
   263   SetUnhandledExceptionFilter(Handle_FLT_Exception);
       
   264 #endif
       
   265 
       
   266   // Done
       
   267   return;
       
   268 }
       
   269 
       
   270 void os::breakpoint() {
       
   271   DebugBreak();
       
   272 }
       
   273 
       
   274 // Invoked from the BREAKPOINT Macro
       
   275 extern "C" void breakpoint() {
       
   276   os::breakpoint();
       
   277 }
       
   278 
       
   279 // Returns an estimate of the current stack pointer. Result must be guaranteed
       
   280 // to point into the calling threads stack, and be no lower than the current
       
   281 // stack pointer.
       
   282 
       
   283 address os::current_stack_pointer() {
       
   284   int dummy;
       
   285   address sp = (address)&dummy;
       
   286   return sp;
       
   287 }
       
   288 
       
   289 // os::current_stack_base()
       
   290 //
       
   291 //   Returns the base of the stack, which is the stack's
       
   292 //   starting address.  This function must be called
       
   293 //   while running on the stack of the thread being queried.
       
   294 
       
   295 address os::current_stack_base() {
       
   296   MEMORY_BASIC_INFORMATION minfo;
       
   297   address stack_bottom;
       
   298   size_t stack_size;
       
   299 
       
   300   VirtualQuery(&minfo, &minfo, sizeof(minfo));
       
   301   stack_bottom =  (address)minfo.AllocationBase;
       
   302   stack_size = minfo.RegionSize;
       
   303 
       
   304   // Add up the sizes of all the regions with the same
       
   305   // AllocationBase.
       
   306   while( 1 )
       
   307   {
       
   308     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
       
   309     if ( stack_bottom == (address)minfo.AllocationBase )
       
   310       stack_size += minfo.RegionSize;
       
   311     else
       
   312       break;
       
   313   }
       
   314 
       
   315 #ifdef _M_IA64
       
   316   // IA64 has memory and register stacks
       
   317   stack_size = stack_size / 2;
       
   318 #endif
       
   319   return stack_bottom + stack_size;
       
   320 }
       
   321 
       
   322 size_t os::current_stack_size() {
       
   323   size_t sz;
       
   324   MEMORY_BASIC_INFORMATION minfo;
       
   325   VirtualQuery(&minfo, &minfo, sizeof(minfo));
       
   326   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
       
   327   return sz;
       
   328 }
       
   329 
       
   330 
       
   331 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
       
   332 
       
   333 // Thread start routine for all new Java threads
       
   334 static unsigned __stdcall java_start(Thread* thread) {
       
   335   // Try to randomize the cache line index of hot stack frames.
       
   336   // This helps when threads of the same stack traces evict each other's
       
   337   // cache lines. The threads can be either from the same JVM instance, or
       
   338   // from different JVM instances. The benefit is especially true for
       
   339   // processors with hyperthreading technology.
       
   340   static int counter = 0;
       
   341   int pid = os::current_process_id();
       
   342   _alloca(((pid ^ counter++) & 7) * 128);
       
   343 
       
   344   OSThread* osthr = thread->osthread();
       
   345   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
       
   346 
       
   347   if (UseNUMA) {
       
   348     int lgrp_id = os::numa_get_group_id();
       
   349     if (lgrp_id != -1) {
       
   350       thread->set_lgrp_id(lgrp_id);
       
   351     }
       
   352   }
       
   353 
       
   354 
       
   355   if (UseVectoredExceptions) {
       
   356     // If we are using vectored exception we don't need to set a SEH
       
   357     thread->run();
       
   358   }
       
   359   else {
       
   360     // Install a win32 structured exception handler around every thread created
       
   361     // by VM, so VM can genrate error dump when an exception occurred in non-
       
   362     // Java thread (e.g. VM thread).
       
   363     __try {
       
   364        thread->run();
       
   365     } __except(topLevelExceptionFilter(
       
   366                (_EXCEPTION_POINTERS*)_exception_info())) {
       
   367         // Nothing to do.
       
   368     }
       
   369   }
       
   370 
       
   371   // One less thread is executing
       
   372   // When the VMThread gets here, the main thread may have already exited
       
   373   // which frees the CodeHeap containing the Atomic::add code
       
   374   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
       
   375     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
       
   376   }
       
   377 
       
   378   return 0;
       
   379 }
       
   380 
       
   381 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
       
   382   // Allocate the OSThread object
       
   383   OSThread* osthread = new OSThread(NULL, NULL);
       
   384   if (osthread == NULL) return NULL;
       
   385 
       
   386   // Initialize support for Java interrupts
       
   387   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
       
   388   if (interrupt_event == NULL) {
       
   389     delete osthread;
       
   390     return NULL;
       
   391   }
       
   392   osthread->set_interrupt_event(interrupt_event);
       
   393 
       
   394   // Store info on the Win32 thread into the OSThread
       
   395   osthread->set_thread_handle(thread_handle);
       
   396   osthread->set_thread_id(thread_id);
       
   397 
       
   398   if (UseNUMA) {
       
   399     int lgrp_id = os::numa_get_group_id();
       
   400     if (lgrp_id != -1) {
       
   401       thread->set_lgrp_id(lgrp_id);
       
   402     }
       
   403   }
       
   404 
       
   405   // Initial thread state is INITIALIZED, not SUSPENDED
       
   406   osthread->set_state(INITIALIZED);
       
   407 
       
   408   return osthread;
       
   409 }
       
   410 
       
   411 
       
   412 bool os::create_attached_thread(JavaThread* thread) {
       
   413 #ifdef ASSERT
       
   414   thread->verify_not_published();
       
   415 #endif
       
   416   HANDLE thread_h;
       
   417   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
       
   418                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
       
   419     fatal("DuplicateHandle failed\n");
       
   420   }
       
   421   OSThread* osthread = create_os_thread(thread, thread_h,
       
   422                                         (int)current_thread_id());
       
   423   if (osthread == NULL) {
       
   424      return false;
       
   425   }
       
   426 
       
   427   // Initial thread state is RUNNABLE
       
   428   osthread->set_state(RUNNABLE);
       
   429 
       
   430   thread->set_osthread(osthread);
       
   431   return true;
       
   432 }
       
   433 
       
   434 bool os::create_main_thread(JavaThread* thread) {
       
   435 #ifdef ASSERT
       
   436   thread->verify_not_published();
       
   437 #endif
       
   438   if (_starting_thread == NULL) {
       
   439     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
       
   440      if (_starting_thread == NULL) {
       
   441         return false;
       
   442      }
       
   443   }
       
   444 
       
   445   // The primordial thread is runnable from the start)
       
   446   _starting_thread->set_state(RUNNABLE);
       
   447 
       
   448   thread->set_osthread(_starting_thread);
       
   449   return true;
       
   450 }
       
   451 
       
   452 // Allocate and initialize a new OSThread
       
   453 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
       
   454   unsigned thread_id;
       
   455 
       
   456   // Allocate the OSThread object
       
   457   OSThread* osthread = new OSThread(NULL, NULL);
       
   458   if (osthread == NULL) {
       
   459     return false;
       
   460   }
       
   461 
       
   462   // Initialize support for Java interrupts
       
   463   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
       
   464   if (interrupt_event == NULL) {
       
   465     delete osthread;
       
   466     return NULL;
       
   467   }
       
   468   osthread->set_interrupt_event(interrupt_event);
       
   469   osthread->set_interrupted(false);
       
   470 
       
   471   thread->set_osthread(osthread);
       
   472 
       
   473   if (stack_size == 0) {
       
   474     switch (thr_type) {
       
   475     case os::java_thread:
       
   476       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
       
   477       if (JavaThread::stack_size_at_create() > 0)
       
   478         stack_size = JavaThread::stack_size_at_create();
       
   479       break;
       
   480     case os::compiler_thread:
       
   481       if (CompilerThreadStackSize > 0) {
       
   482         stack_size = (size_t)(CompilerThreadStackSize * K);
       
   483         break;
       
   484       } // else fall through:
       
   485         // use VMThreadStackSize if CompilerThreadStackSize is not defined
       
   486     case os::vm_thread:
       
   487     case os::pgc_thread:
       
   488     case os::cgc_thread:
       
   489     case os::watcher_thread:
       
   490       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
       
   491       break;
       
   492     }
       
   493   }
       
   494 
       
   495   // Create the Win32 thread
       
   496   //
       
   497   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
       
   498   // does not specify stack size. Instead, it specifies the size of
       
   499   // initially committed space. The stack size is determined by
       
   500   // PE header in the executable. If the committed "stack_size" is larger
       
   501   // than default value in the PE header, the stack is rounded up to the
       
   502   // nearest multiple of 1MB. For example if the launcher has default
       
   503   // stack size of 320k, specifying any size less than 320k does not
       
   504   // affect the actual stack size at all, it only affects the initial
       
   505   // commitment. On the other hand, specifying 'stack_size' larger than
       
   506   // default value may cause significant increase in memory usage, because
       
   507   // not only the stack space will be rounded up to MB, but also the
       
   508   // entire space is committed upfront.
       
   509   //
       
   510   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
       
   511   // for CreateThread() that can treat 'stack_size' as stack size. However we
       
   512   // are not supposed to call CreateThread() directly according to MSDN
       
   513   // document because JVM uses C runtime library. The good news is that the
       
   514   // flag appears to work with _beginthredex() as well.
       
   515 
       
   516 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
       
   517 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
       
   518 #endif
       
   519 
       
   520   HANDLE thread_handle =
       
   521     (HANDLE)_beginthreadex(NULL,
       
   522                            (unsigned)stack_size,
       
   523                            (unsigned (__stdcall *)(void*)) java_start,
       
   524                            thread,
       
   525                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
       
   526                            &thread_id);
       
   527   if (thread_handle == NULL) {
       
   528     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
       
   529     // without the flag.
       
   530     thread_handle =
       
   531     (HANDLE)_beginthreadex(NULL,
       
   532                            (unsigned)stack_size,
       
   533                            (unsigned (__stdcall *)(void*)) java_start,
       
   534                            thread,
       
   535                            CREATE_SUSPENDED,
       
   536                            &thread_id);
       
   537   }
       
   538   if (thread_handle == NULL) {
       
   539     // Need to clean up stuff we've allocated so far
       
   540     CloseHandle(osthread->interrupt_event());
       
   541     thread->set_osthread(NULL);
       
   542     delete osthread;
       
   543     return NULL;
       
   544   }
       
   545 
       
   546   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
       
   547 
       
   548   // Store info on the Win32 thread into the OSThread
       
   549   osthread->set_thread_handle(thread_handle);
       
   550   osthread->set_thread_id(thread_id);
       
   551 
       
   552   // Initial thread state is INITIALIZED, not SUSPENDED
       
   553   osthread->set_state(INITIALIZED);
       
   554 
       
   555   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
       
   556   return true;
       
   557 }
       
   558 
       
   559 
       
   560 // Free Win32 resources related to the OSThread
       
   561 void os::free_thread(OSThread* osthread) {
       
   562   assert(osthread != NULL, "osthread not set");
       
   563   CloseHandle(osthread->thread_handle());
       
   564   CloseHandle(osthread->interrupt_event());
       
   565   delete osthread;
       
   566 }
       
   567 
       
   568 
       
   569 static int    has_performance_count = 0;
       
   570 static jlong first_filetime;
       
   571 static jlong initial_performance_count;
       
   572 static jlong performance_frequency;
       
   573 
       
   574 
       
   575 jlong as_long(LARGE_INTEGER x) {
       
   576   jlong result = 0; // initialization to avoid warning
       
   577   set_high(&result, x.HighPart);
       
   578   set_low(&result,  x.LowPart);
       
   579   return result;
       
   580 }
       
   581 
       
   582 
       
   583 jlong os::elapsed_counter() {
       
   584   LARGE_INTEGER count;
       
   585   if (has_performance_count) {
       
   586     QueryPerformanceCounter(&count);
       
   587     return as_long(count) - initial_performance_count;
       
   588   } else {
       
   589     FILETIME wt;
       
   590     GetSystemTimeAsFileTime(&wt);
       
   591     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
       
   592   }
       
   593 }
       
   594 
       
   595 
       
   596 jlong os::elapsed_frequency() {
       
   597   if (has_performance_count) {
       
   598     return performance_frequency;
       
   599   } else {
       
   600    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
       
   601    return 10000000;
       
   602   }
       
   603 }
       
   604 
       
   605 
       
   606 julong os::available_memory() {
       
   607   return win32::available_memory();
       
   608 }
       
   609 
       
   610 julong os::win32::available_memory() {
       
   611   // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
       
   612   // is larger than 4GB
       
   613   MEMORYSTATUS ms;
       
   614   GlobalMemoryStatus(&ms);
       
   615 
       
   616   return (julong)ms.dwAvailPhys;
       
   617 }
       
   618 
       
   619 julong os::physical_memory() {
       
   620   return win32::physical_memory();
       
   621 }
       
   622 
       
   623 julong os::allocatable_physical_memory(julong size) {
       
   624   return MIN2(size, (julong)1400*M);
       
   625 }
       
   626 
       
   627 // VC6 lacks DWORD_PTR
       
   628 #if _MSC_VER < 1300
       
   629 typedef UINT_PTR DWORD_PTR;
       
   630 #endif
       
   631 
       
   632 int os::active_processor_count() {
       
   633   DWORD_PTR lpProcessAffinityMask = 0;
       
   634   DWORD_PTR lpSystemAffinityMask = 0;
       
   635   int proc_count = processor_count();
       
   636   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
       
   637       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
       
   638     // Nof active processors is number of bits in process affinity mask
       
   639     int bitcount = 0;
       
   640     while (lpProcessAffinityMask != 0) {
       
   641       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
       
   642       bitcount++;
       
   643     }
       
   644     return bitcount;
       
   645   } else {
       
   646     return proc_count;
       
   647   }
       
   648 }
       
   649 
       
   650 bool os::distribute_processes(uint length, uint* distribution) {
       
   651   // Not yet implemented.
       
   652   return false;
       
   653 }
       
   654 
       
   655 bool os::bind_to_processor(uint processor_id) {
       
   656   // Not yet implemented.
       
   657   return false;
       
   658 }
       
   659 
       
   660 static void initialize_performance_counter() {
       
   661   LARGE_INTEGER count;
       
   662   if (QueryPerformanceFrequency(&count)) {
       
   663     has_performance_count = 1;
       
   664     performance_frequency = as_long(count);
       
   665     QueryPerformanceCounter(&count);
       
   666     initial_performance_count = as_long(count);
       
   667   } else {
       
   668     has_performance_count = 0;
       
   669     FILETIME wt;
       
   670     GetSystemTimeAsFileTime(&wt);
       
   671     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
       
   672   }
       
   673 }
       
   674 
       
   675 
       
   676 double os::elapsedTime() {
       
   677   return (double) elapsed_counter() / (double) elapsed_frequency();
       
   678 }
       
   679 
       
   680 
       
   681 // Windows format:
       
   682 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
       
   683 // Java format:
       
   684 //   Java standards require the number of milliseconds since 1/1/1970
       
   685 
       
   686 // Constant offset - calculated using offset()
       
   687 static jlong  _offset   = 116444736000000000;
       
   688 // Fake time counter for reproducible results when debugging
       
   689 static jlong  fake_time = 0;
       
   690 
       
   691 #ifdef ASSERT
       
   692 // Just to be safe, recalculate the offset in debug mode
       
   693 static jlong _calculated_offset = 0;
       
   694 static int   _has_calculated_offset = 0;
       
   695 
       
   696 jlong offset() {
       
   697   if (_has_calculated_offset) return _calculated_offset;
       
   698   SYSTEMTIME java_origin;
       
   699   java_origin.wYear          = 1970;
       
   700   java_origin.wMonth         = 1;
       
   701   java_origin.wDayOfWeek     = 0; // ignored
       
   702   java_origin.wDay           = 1;
       
   703   java_origin.wHour          = 0;
       
   704   java_origin.wMinute        = 0;
       
   705   java_origin.wSecond        = 0;
       
   706   java_origin.wMilliseconds  = 0;
       
   707   FILETIME jot;
       
   708   if (!SystemTimeToFileTime(&java_origin, &jot)) {
       
   709     fatal1("Error = %d\nWindows error", GetLastError());
       
   710   }
       
   711   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
       
   712   _has_calculated_offset = 1;
       
   713   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
       
   714   return _calculated_offset;
       
   715 }
       
   716 #else
       
   717 jlong offset() {
       
   718   return _offset;
       
   719 }
       
   720 #endif
       
   721 
       
   722 jlong windows_to_java_time(FILETIME wt) {
       
   723   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
       
   724   return (a - offset()) / 10000;
       
   725 }
       
   726 
       
   727 FILETIME java_to_windows_time(jlong l) {
       
   728   jlong a = (l * 10000) + offset();
       
   729   FILETIME result;
       
   730   result.dwHighDateTime = high(a);
       
   731   result.dwLowDateTime  = low(a);
       
   732   return result;
       
   733 }
       
   734 
       
   735 jlong os::timeofday() {
       
   736   FILETIME wt;
       
   737   GetSystemTimeAsFileTime(&wt);
       
   738   return windows_to_java_time(wt);
       
   739 }
       
   740 
       
   741 
       
   742 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
       
   743 // _use_global_time is only set if CacheTimeMillis is true
       
   744 jlong os::javaTimeMillis() {
       
   745   if (UseFakeTimers) {
       
   746     return fake_time++;
       
   747   } else {
       
   748     return (_use_global_time ? read_global_time() : timeofday());
       
   749   }
       
   750 }
       
   751 
       
   752 #define NANOS_PER_SEC         CONST64(1000000000)
       
   753 #define NANOS_PER_MILLISEC    1000000
       
   754 jlong os::javaTimeNanos() {
       
   755   if (!has_performance_count) {
       
   756     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
       
   757   } else {
       
   758     LARGE_INTEGER current_count;
       
   759     QueryPerformanceCounter(&current_count);
       
   760     double current = as_long(current_count);
       
   761     double freq = performance_frequency;
       
   762     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
       
   763     return time;
       
   764   }
       
   765 }
       
   766 
       
   767 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
       
   768   if (!has_performance_count) {
       
   769     // javaTimeMillis() doesn't have much percision,
       
   770     // but it is not going to wrap -- so all 64 bits
       
   771     info_ptr->max_value = ALL_64_BITS;
       
   772 
       
   773     // this is a wall clock timer, so may skip
       
   774     info_ptr->may_skip_backward = true;
       
   775     info_ptr->may_skip_forward = true;
       
   776   } else {
       
   777     jlong freq = performance_frequency;
       
   778     if (freq < NANOS_PER_SEC) {
       
   779       // the performance counter is 64 bits and we will
       
   780       // be multiplying it -- so no wrap in 64 bits
       
   781       info_ptr->max_value = ALL_64_BITS;
       
   782     } else if (freq > NANOS_PER_SEC) {
       
   783       // use the max value the counter can reach to
       
   784       // determine the max value which could be returned
       
   785       julong max_counter = (julong)ALL_64_BITS;
       
   786       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
       
   787     } else {
       
   788       // the performance counter is 64 bits and we will
       
   789       // be using it directly -- so no wrap in 64 bits
       
   790       info_ptr->max_value = ALL_64_BITS;
       
   791     }
       
   792 
       
   793     // using a counter, so no skipping
       
   794     info_ptr->may_skip_backward = false;
       
   795     info_ptr->may_skip_forward = false;
       
   796   }
       
   797   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
       
   798 }
       
   799 
       
   800 char* os::local_time_string(char *buf, size_t buflen) {
       
   801   SYSTEMTIME st;
       
   802   GetLocalTime(&st);
       
   803   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
       
   804                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
       
   805   return buf;
       
   806 }
       
   807 
       
   808 bool os::getTimesSecs(double* process_real_time,
       
   809                      double* process_user_time,
       
   810                      double* process_system_time) {
       
   811   HANDLE h_process = GetCurrentProcess();
       
   812   FILETIME create_time, exit_time, kernel_time, user_time;
       
   813   BOOL result = GetProcessTimes(h_process,
       
   814                                &create_time,
       
   815                                &exit_time,
       
   816                                &kernel_time,
       
   817                                &user_time);
       
   818   if (result != 0) {
       
   819     FILETIME wt;
       
   820     GetSystemTimeAsFileTime(&wt);
       
   821     jlong rtc_millis = windows_to_java_time(wt);
       
   822     jlong user_millis = windows_to_java_time(user_time);
       
   823     jlong system_millis = windows_to_java_time(kernel_time);
       
   824     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
       
   825     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
       
   826     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
       
   827     return true;
       
   828   } else {
       
   829     return false;
       
   830   }
       
   831 }
       
   832 
       
   833 void os::shutdown() {
       
   834 
       
   835   // allow PerfMemory to attempt cleanup of any persistent resources
       
   836   perfMemory_exit();
       
   837 
       
   838   // flush buffered output, finish log files
       
   839   ostream_abort();
       
   840 
       
   841   // Check for abort hook
       
   842   abort_hook_t abort_hook = Arguments::abort_hook();
       
   843   if (abort_hook != NULL) {
       
   844     abort_hook();
       
   845   }
       
   846 }
       
   847 
       
   848 void os::abort(bool dump_core)
       
   849 {
       
   850   os::shutdown();
       
   851   // no core dump on Windows
       
   852   ::exit(1);
       
   853 }
       
   854 
       
   855 // Die immediately, no exit hook, no abort hook, no cleanup.
       
   856 void os::die() {
       
   857   _exit(-1);
       
   858 }
       
   859 
       
   860 // Directory routines copied from src/win32/native/java/io/dirent_md.c
       
   861 //  * dirent_md.c       1.15 00/02/02
       
   862 //
       
   863 // The declarations for DIR and struct dirent are in jvm_win32.h.
       
   864 
       
   865 /* Caller must have already run dirname through JVM_NativePath, which removes
       
   866    duplicate slashes and converts all instances of '/' into '\\'. */
       
   867 
       
   868 DIR *
       
   869 os::opendir(const char *dirname)
       
   870 {
       
   871     assert(dirname != NULL, "just checking");   // hotspot change
       
   872     DIR *dirp = (DIR *)malloc(sizeof(DIR));
       
   873     DWORD fattr;                                // hotspot change
       
   874     char alt_dirname[4] = { 0, 0, 0, 0 };
       
   875 
       
   876     if (dirp == 0) {
       
   877         errno = ENOMEM;
       
   878         return 0;
       
   879     }
       
   880 
       
   881     /*
       
   882      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
       
   883      * as a directory in FindFirstFile().  We detect this case here and
       
   884      * prepend the current drive name.
       
   885      */
       
   886     if (dirname[1] == '\0' && dirname[0] == '\\') {
       
   887         alt_dirname[0] = _getdrive() + 'A' - 1;
       
   888         alt_dirname[1] = ':';
       
   889         alt_dirname[2] = '\\';
       
   890         alt_dirname[3] = '\0';
       
   891         dirname = alt_dirname;
       
   892     }
       
   893 
       
   894     dirp->path = (char *)malloc(strlen(dirname) + 5);
       
   895     if (dirp->path == 0) {
       
   896         free(dirp);
       
   897         errno = ENOMEM;
       
   898         return 0;
       
   899     }
       
   900     strcpy(dirp->path, dirname);
       
   901 
       
   902     fattr = GetFileAttributes(dirp->path);
       
   903     if (fattr == 0xffffffff) {
       
   904         free(dirp->path);
       
   905         free(dirp);
       
   906         errno = ENOENT;
       
   907         return 0;
       
   908     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
       
   909         free(dirp->path);
       
   910         free(dirp);
       
   911         errno = ENOTDIR;
       
   912         return 0;
       
   913     }
       
   914 
       
   915     /* Append "*.*", or possibly "\\*.*", to path */
       
   916     if (dirp->path[1] == ':'
       
   917         && (dirp->path[2] == '\0'
       
   918             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
       
   919         /* No '\\' needed for cases like "Z:" or "Z:\" */
       
   920         strcat(dirp->path, "*.*");
       
   921     } else {
       
   922         strcat(dirp->path, "\\*.*");
       
   923     }
       
   924 
       
   925     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
       
   926     if (dirp->handle == INVALID_HANDLE_VALUE) {
       
   927         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
       
   928             free(dirp->path);
       
   929             free(dirp);
       
   930             errno = EACCES;
       
   931             return 0;
       
   932         }
       
   933     }
       
   934     return dirp;
       
   935 }
       
   936 
       
   937 /* parameter dbuf unused on Windows */
       
   938 
       
   939 struct dirent *
       
   940 os::readdir(DIR *dirp, dirent *dbuf)
       
   941 {
       
   942     assert(dirp != NULL, "just checking");      // hotspot change
       
   943     if (dirp->handle == INVALID_HANDLE_VALUE) {
       
   944         return 0;
       
   945     }
       
   946 
       
   947     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
       
   948 
       
   949     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
       
   950         if (GetLastError() == ERROR_INVALID_HANDLE) {
       
   951             errno = EBADF;
       
   952             return 0;
       
   953         }
       
   954         FindClose(dirp->handle);
       
   955         dirp->handle = INVALID_HANDLE_VALUE;
       
   956     }
       
   957 
       
   958     return &dirp->dirent;
       
   959 }
       
   960 
       
   961 int
       
   962 os::closedir(DIR *dirp)
       
   963 {
       
   964     assert(dirp != NULL, "just checking");      // hotspot change
       
   965     if (dirp->handle != INVALID_HANDLE_VALUE) {
       
   966         if (!FindClose(dirp->handle)) {
       
   967             errno = EBADF;
       
   968             return -1;
       
   969         }
       
   970         dirp->handle = INVALID_HANDLE_VALUE;
       
   971     }
       
   972     free(dirp->path);
       
   973     free(dirp);
       
   974     return 0;
       
   975 }
       
   976 
       
   977 const char* os::dll_file_extension() { return ".dll"; }
       
   978 
       
   979 const char * os::get_temp_directory()
       
   980 {
       
   981     static char path_buf[MAX_PATH];
       
   982     if (GetTempPath(MAX_PATH, path_buf)>0)
       
   983       return path_buf;
       
   984     else{
       
   985       path_buf[0]='\0';
       
   986       return path_buf;
       
   987     }
       
   988 }
       
   989 
       
   990 // Needs to be in os specific directory because windows requires another
       
   991 // header file <direct.h>
       
   992 const char* os::get_current_directory(char *buf, int buflen) {
       
   993   return _getcwd(buf, buflen);
       
   994 }
       
   995 
       
   996 //-----------------------------------------------------------
       
   997 // Helper functions for fatal error handler
       
   998 
       
   999 // The following library functions are resolved dynamically at runtime:
       
  1000 
       
  1001 // PSAPI functions, for Windows NT, 2000, XP
       
  1002 
       
  1003 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
       
  1004 // SDK from Microsoft.  Here are the definitions copied from psapi.h
       
  1005 typedef struct _MODULEINFO {
       
  1006     LPVOID lpBaseOfDll;
       
  1007     DWORD SizeOfImage;
       
  1008     LPVOID EntryPoint;
       
  1009 } MODULEINFO, *LPMODULEINFO;
       
  1010 
       
  1011 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
       
  1012 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
       
  1013 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
       
  1014 
       
  1015 // ToolHelp Functions, for Windows 95, 98 and ME
       
  1016 
       
  1017 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
       
  1018 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
       
  1019 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
       
  1020 
       
  1021 bool _has_psapi;
       
  1022 bool _psapi_init = false;
       
  1023 bool _has_toolhelp;
       
  1024 
       
  1025 static bool _init_psapi() {
       
  1026   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
       
  1027   if( psapi == NULL ) return false ;
       
  1028 
       
  1029   _EnumProcessModules = CAST_TO_FN_PTR(
       
  1030       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
       
  1031       GetProcAddress(psapi, "EnumProcessModules")) ;
       
  1032   _GetModuleFileNameEx = CAST_TO_FN_PTR(
       
  1033       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
       
  1034       GetProcAddress(psapi, "GetModuleFileNameExA"));
       
  1035   _GetModuleInformation = CAST_TO_FN_PTR(
       
  1036       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
       
  1037       GetProcAddress(psapi, "GetModuleInformation"));
       
  1038 
       
  1039   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
       
  1040   _psapi_init = true;
       
  1041   return _has_psapi;
       
  1042 }
       
  1043 
       
  1044 static bool _init_toolhelp() {
       
  1045   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
       
  1046   if (kernel32 == NULL) return false ;
       
  1047 
       
  1048   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
       
  1049       HANDLE(WINAPI *)(DWORD,DWORD),
       
  1050       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
       
  1051   _Module32First = CAST_TO_FN_PTR(
       
  1052       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
       
  1053       GetProcAddress(kernel32, "Module32First" ));
       
  1054   _Module32Next = CAST_TO_FN_PTR(
       
  1055       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
       
  1056       GetProcAddress(kernel32, "Module32Next" ));
       
  1057 
       
  1058   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
       
  1059   return _has_toolhelp;
       
  1060 }
       
  1061 
       
  1062 #ifdef _WIN64
       
  1063 // Helper routine which returns true if address in
       
  1064 // within the NTDLL address space.
       
  1065 //
       
  1066 static bool _addr_in_ntdll( address addr )
       
  1067 {
       
  1068   HMODULE hmod;
       
  1069   MODULEINFO minfo;
       
  1070 
       
  1071   hmod = GetModuleHandle("NTDLL.DLL");
       
  1072   if ( hmod == NULL ) return false;
       
  1073   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
       
  1074                                &minfo, sizeof(MODULEINFO)) )
       
  1075     return false;
       
  1076 
       
  1077   if ( (addr >= minfo.lpBaseOfDll) &&
       
  1078        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
       
  1079     return true;
       
  1080   else
       
  1081     return false;
       
  1082 }
       
  1083 #endif
       
  1084 
       
  1085 
       
  1086 // Enumerate all modules for a given process ID
       
  1087 //
       
  1088 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
       
  1089 // different API for doing this. We use PSAPI.DLL on NT based
       
  1090 // Windows and ToolHelp on 95/98/Me.
       
  1091 
       
  1092 // Callback function that is called by enumerate_modules() on
       
  1093 // every DLL module.
       
  1094 // Input parameters:
       
  1095 //    int       pid,
       
  1096 //    char*     module_file_name,
       
  1097 //    address   module_base_addr,
       
  1098 //    unsigned  module_size,
       
  1099 //    void*     param
       
  1100 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
       
  1101 
       
  1102 // enumerate_modules for Windows NT, using PSAPI
       
  1103 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
       
  1104 {
       
  1105   HANDLE   hProcess ;
       
  1106 
       
  1107 # define MAX_NUM_MODULES 128
       
  1108   HMODULE     modules[MAX_NUM_MODULES];
       
  1109   static char filename[ MAX_PATH ];
       
  1110   int         result = 0;
       
  1111 
       
  1112   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
       
  1113 
       
  1114   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
       
  1115                          FALSE, pid ) ;
       
  1116   if (hProcess == NULL) return 0;
       
  1117 
       
  1118   DWORD size_needed;
       
  1119   if (!_EnumProcessModules(hProcess, modules,
       
  1120                            sizeof(modules), &size_needed)) {
       
  1121       CloseHandle( hProcess );
       
  1122       return 0;
       
  1123   }
       
  1124 
       
  1125   // number of modules that are currently loaded
       
  1126   int num_modules = size_needed / sizeof(HMODULE);
       
  1127 
       
  1128   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
       
  1129     // Get Full pathname:
       
  1130     if(!_GetModuleFileNameEx(hProcess, modules[i],
       
  1131                              filename, sizeof(filename))) {
       
  1132         filename[0] = '\0';
       
  1133     }
       
  1134 
       
  1135     MODULEINFO modinfo;
       
  1136     if (!_GetModuleInformation(hProcess, modules[i],
       
  1137                                &modinfo, sizeof(modinfo))) {
       
  1138         modinfo.lpBaseOfDll = NULL;
       
  1139         modinfo.SizeOfImage = 0;
       
  1140     }
       
  1141 
       
  1142     // Invoke callback function
       
  1143     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
       
  1144                   modinfo.SizeOfImage, param);
       
  1145     if (result) break;
       
  1146   }
       
  1147 
       
  1148   CloseHandle( hProcess ) ;
       
  1149   return result;
       
  1150 }
       
  1151 
       
  1152 
       
  1153 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
       
  1154 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
       
  1155 {
       
  1156   HANDLE                hSnapShot ;
       
  1157   static MODULEENTRY32  modentry ;
       
  1158   int                   result = 0;
       
  1159 
       
  1160   if (!_has_toolhelp) return 0;
       
  1161 
       
  1162   // Get a handle to a Toolhelp snapshot of the system
       
  1163   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
       
  1164   if( hSnapShot == INVALID_HANDLE_VALUE ) {
       
  1165       return FALSE ;
       
  1166   }
       
  1167 
       
  1168   // iterate through all modules
       
  1169   modentry.dwSize = sizeof(MODULEENTRY32) ;
       
  1170   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
       
  1171 
       
  1172   while( not_done ) {
       
  1173     // invoke the callback
       
  1174     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
       
  1175                 modentry.modBaseSize, param);
       
  1176     if (result) break;
       
  1177 
       
  1178     modentry.dwSize = sizeof(MODULEENTRY32) ;
       
  1179     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
       
  1180   }
       
  1181 
       
  1182   CloseHandle(hSnapShot);
       
  1183   return result;
       
  1184 }
       
  1185 
       
  1186 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
       
  1187 {
       
  1188   // Get current process ID if caller doesn't provide it.
       
  1189   if (!pid) pid = os::current_process_id();
       
  1190 
       
  1191   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
       
  1192   else                    return _enumerate_modules_windows(pid, func, param);
       
  1193 }
       
  1194 
       
  1195 struct _modinfo {
       
  1196    address addr;
       
  1197    char*   full_path;   // point to a char buffer
       
  1198    int     buflen;      // size of the buffer
       
  1199    address base_addr;
       
  1200 };
       
  1201 
       
  1202 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
       
  1203                                   unsigned size, void * param) {
       
  1204    struct _modinfo *pmod = (struct _modinfo *)param;
       
  1205    if (!pmod) return -1;
       
  1206 
       
  1207    if (base_addr     <= pmod->addr &&
       
  1208        base_addr+size > pmod->addr) {
       
  1209      // if a buffer is provided, copy path name to the buffer
       
  1210      if (pmod->full_path) {
       
  1211        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
       
  1212      }
       
  1213      pmod->base_addr = base_addr;
       
  1214      return 1;
       
  1215    }
       
  1216    return 0;
       
  1217 }
       
  1218 
       
  1219 bool os::dll_address_to_library_name(address addr, char* buf,
       
  1220                                      int buflen, int* offset) {
       
  1221 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
       
  1222 //       return the full path to the DLL file, sometimes it returns path
       
  1223 //       to the corresponding PDB file (debug info); sometimes it only
       
  1224 //       returns partial path, which makes life painful.
       
  1225 
       
  1226    struct _modinfo mi;
       
  1227    mi.addr      = addr;
       
  1228    mi.full_path = buf;
       
  1229    mi.buflen    = buflen;
       
  1230    int pid = os::current_process_id();
       
  1231    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
       
  1232       // buf already contains path name
       
  1233       if (offset) *offset = addr - mi.base_addr;
       
  1234       return true;
       
  1235    } else {
       
  1236       if (buf) buf[0] = '\0';
       
  1237       if (offset) *offset = -1;
       
  1238       return false;
       
  1239    }
       
  1240 }
       
  1241 
       
  1242 bool os::dll_address_to_function_name(address addr, char *buf,
       
  1243                                       int buflen, int *offset) {
       
  1244   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
       
  1245   // we need to initialize imagehlp/dbghelp, then load symbol table
       
  1246   // for every module. That's too much work to do after a fatal error.
       
  1247   // For an example on how to implement this function, see 1.4.2.
       
  1248   if (offset)  *offset  = -1;
       
  1249   if (buf) buf[0] = '\0';
       
  1250   return false;
       
  1251 }
       
  1252 
       
  1253 // save the start and end address of jvm.dll into param[0] and param[1]
       
  1254 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
       
  1255                     unsigned size, void * param) {
       
  1256    if (!param) return -1;
       
  1257 
       
  1258    if (base_addr     <= (address)_locate_jvm_dll &&
       
  1259        base_addr+size > (address)_locate_jvm_dll) {
       
  1260          ((address*)param)[0] = base_addr;
       
  1261          ((address*)param)[1] = base_addr + size;
       
  1262          return 1;
       
  1263    }
       
  1264    return 0;
       
  1265 }
       
  1266 
       
  1267 address vm_lib_location[2];    // start and end address of jvm.dll
       
  1268 
       
  1269 // check if addr is inside jvm.dll
       
  1270 bool os::address_is_in_vm(address addr) {
       
  1271   if (!vm_lib_location[0] || !vm_lib_location[1]) {
       
  1272     int pid = os::current_process_id();
       
  1273     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
       
  1274       assert(false, "Can't find jvm module.");
       
  1275       return false;
       
  1276     }
       
  1277   }
       
  1278 
       
  1279   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
       
  1280 }
       
  1281 
       
  1282 // print module info; param is outputStream*
       
  1283 static int _print_module(int pid, char* fname, address base,
       
  1284                          unsigned size, void* param) {
       
  1285    if (!param) return -1;
       
  1286 
       
  1287    outputStream* st = (outputStream*)param;
       
  1288 
       
  1289    address end_addr = base + size;
       
  1290    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
       
  1291    return 0;
       
  1292 }
       
  1293 
       
  1294 // Loads .dll/.so and
       
  1295 // in case of error it checks if .dll/.so was built for the
       
  1296 // same architecture as Hotspot is running on
       
  1297 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
       
  1298 {
       
  1299   void * result = LoadLibrary(name);
       
  1300   if (result != NULL)
       
  1301   {
       
  1302     return result;
       
  1303   }
       
  1304 
       
  1305   long errcode = GetLastError();
       
  1306   if (errcode == ERROR_MOD_NOT_FOUND) {
       
  1307     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
       
  1308     ebuf[ebuflen-1]='\0';
       
  1309     return NULL;
       
  1310   }
       
  1311 
       
  1312   // Parsing dll below
       
  1313   // If we can read dll-info and find that dll was built
       
  1314   // for an architecture other than Hotspot is running in
       
  1315   // - then print to buffer "DLL was built for a different architecture"
       
  1316   // else call getLastErrorString to obtain system error message
       
  1317 
       
  1318   // Read system error message into ebuf
       
  1319   // It may or may not be overwritten below (in the for loop and just above)
       
  1320   getLastErrorString(ebuf, (size_t) ebuflen);
       
  1321   ebuf[ebuflen-1]='\0';
       
  1322   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
       
  1323   if (file_descriptor<0)
       
  1324   {
       
  1325     return NULL;
       
  1326   }
       
  1327 
       
  1328   uint32_t signature_offset;
       
  1329   uint16_t lib_arch=0;
       
  1330   bool failed_to_get_lib_arch=
       
  1331   (
       
  1332     //Go to position 3c in the dll
       
  1333     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
       
  1334     ||
       
  1335     // Read loacation of signature
       
  1336     (sizeof(signature_offset)!=
       
  1337       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
       
  1338     ||
       
  1339     //Go to COFF File Header in dll
       
  1340     //that is located after"signature" (4 bytes long)
       
  1341     (os::seek_to_file_offset(file_descriptor,
       
  1342       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
       
  1343     ||
       
  1344     //Read field that contains code of architecture
       
  1345     // that dll was build for
       
  1346     (sizeof(lib_arch)!=
       
  1347       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
       
  1348   );
       
  1349 
       
  1350   ::close(file_descriptor);
       
  1351   if (failed_to_get_lib_arch)
       
  1352   {
       
  1353     // file i/o error - report getLastErrorString(...) msg
       
  1354     return NULL;
       
  1355   }
       
  1356 
       
  1357   typedef struct
       
  1358   {
       
  1359     uint16_t arch_code;
       
  1360     char* arch_name;
       
  1361   } arch_t;
       
  1362 
       
  1363   static const arch_t arch_array[]={
       
  1364     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
       
  1365     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
       
  1366     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
       
  1367   };
       
  1368   #if   (defined _M_IA64)
       
  1369     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
       
  1370   #elif (defined _M_AMD64)
       
  1371     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
       
  1372   #elif (defined _M_IX86)
       
  1373     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
       
  1374   #else
       
  1375     #error Method os::dll_load requires that one of following \
       
  1376            is defined :_M_IA64,_M_AMD64 or _M_IX86
       
  1377   #endif
       
  1378 
       
  1379 
       
  1380   // Obtain a string for printf operation
       
  1381   // lib_arch_str shall contain string what platform this .dll was built for
       
  1382   // running_arch_str shall string contain what platform Hotspot was built for
       
  1383   char *running_arch_str=NULL,*lib_arch_str=NULL;
       
  1384   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
       
  1385   {
       
  1386     if (lib_arch==arch_array[i].arch_code)
       
  1387       lib_arch_str=arch_array[i].arch_name;
       
  1388     if (running_arch==arch_array[i].arch_code)
       
  1389       running_arch_str=arch_array[i].arch_name;
       
  1390   }
       
  1391 
       
  1392   assert(running_arch_str,
       
  1393     "Didn't find runing architecture code in arch_array");
       
  1394 
       
  1395   // If the architure is right
       
  1396   // but some other error took place - report getLastErrorString(...) msg
       
  1397   if (lib_arch == running_arch)
       
  1398   {
       
  1399     return NULL;
       
  1400   }
       
  1401 
       
  1402   if (lib_arch_str!=NULL)
       
  1403   {
       
  1404     ::_snprintf(ebuf, ebuflen-1,
       
  1405       "Can't load %s-bit .dll on a %s-bit platform",
       
  1406       lib_arch_str,running_arch_str);
       
  1407   }
       
  1408   else
       
  1409   {
       
  1410     // don't know what architecture this dll was build for
       
  1411     ::_snprintf(ebuf, ebuflen-1,
       
  1412       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
       
  1413       lib_arch,running_arch_str);
       
  1414   }
       
  1415 
       
  1416   return NULL;
       
  1417 }
       
  1418 
       
  1419 
       
  1420 void os::print_dll_info(outputStream *st) {
       
  1421    int pid = os::current_process_id();
       
  1422    st->print_cr("Dynamic libraries:");
       
  1423    enumerate_modules(pid, _print_module, (void *)st);
       
  1424 }
       
  1425 
       
  1426 void os::print_os_info(outputStream* st) {
       
  1427    st->print("OS:");
       
  1428 
       
  1429    OSVERSIONINFOEX osvi;
       
  1430    ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
       
  1431    osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
       
  1432 
       
  1433    if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
       
  1434       st->print_cr("N/A");
       
  1435       return;
       
  1436    }
       
  1437 
       
  1438    int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
       
  1439 
       
  1440    if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
       
  1441      switch (os_vers) {
       
  1442        case 3051: st->print(" Windows NT 3.51"); break;
       
  1443        case 4000: st->print(" Windows NT 4.0"); break;
       
  1444        case 5000: st->print(" Windows 2000"); break;
       
  1445        case 5001: st->print(" Windows XP"); break;
       
  1446        case 5002: st->print(" Windows Server 2003 family"); break;
       
  1447        case 6000: st->print(" Windows Vista"); break;
       
  1448        default: // future windows, print out its major and minor versions
       
  1449                 st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
       
  1450      }
       
  1451    } else {
       
  1452      switch (os_vers) {
       
  1453        case 4000: st->print(" Windows 95"); break;
       
  1454        case 4010: st->print(" Windows 98"); break;
       
  1455        case 4090: st->print(" Windows Me"); break;
       
  1456        default: // future windows, print out its major and minor versions
       
  1457                 st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
       
  1458      }
       
  1459    }
       
  1460 
       
  1461    st->print(" Build %d", osvi.dwBuildNumber);
       
  1462    st->print(" %s", osvi.szCSDVersion);           // service pack
       
  1463    st->cr();
       
  1464 }
       
  1465 
       
  1466 void os::print_memory_info(outputStream* st) {
       
  1467   st->print("Memory:");
       
  1468   st->print(" %dk page", os::vm_page_size()>>10);
       
  1469 
       
  1470   // FIXME: GlobalMemoryStatus() may return incorrect value if total memory
       
  1471   // is larger than 4GB
       
  1472   MEMORYSTATUS ms;
       
  1473   GlobalMemoryStatus(&ms);
       
  1474 
       
  1475   st->print(", physical %uk", os::physical_memory() >> 10);
       
  1476   st->print("(%uk free)", os::available_memory() >> 10);
       
  1477 
       
  1478   st->print(", swap %uk", ms.dwTotalPageFile >> 10);
       
  1479   st->print("(%uk free)", ms.dwAvailPageFile >> 10);
       
  1480   st->cr();
       
  1481 }
       
  1482 
       
  1483 void os::print_siginfo(outputStream *st, void *siginfo) {
       
  1484   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
       
  1485   st->print("siginfo:");
       
  1486   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
       
  1487 
       
  1488   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
       
  1489       er->NumberParameters >= 2) {
       
  1490       switch (er->ExceptionInformation[0]) {
       
  1491       case 0: st->print(", reading address"); break;
       
  1492       case 1: st->print(", writing address"); break;
       
  1493       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
       
  1494                             er->ExceptionInformation[0]);
       
  1495       }
       
  1496       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
       
  1497   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
       
  1498              er->NumberParameters >= 2 && UseSharedSpaces) {
       
  1499     FileMapInfo* mapinfo = FileMapInfo::current_info();
       
  1500     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
       
  1501       st->print("\n\nError accessing class data sharing archive."       \
       
  1502                 " Mapped file inaccessible during execution, "          \
       
  1503                 " possible disk/network problem.");
       
  1504     }
       
  1505   } else {
       
  1506     int num = er->NumberParameters;
       
  1507     if (num > 0) {
       
  1508       st->print(", ExceptionInformation=");
       
  1509       for (int i = 0; i < num; i++) {
       
  1510         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
       
  1511       }
       
  1512     }
       
  1513   }
       
  1514   st->cr();
       
  1515 }
       
  1516 
       
  1517 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
       
  1518   // do nothing
       
  1519 }
       
  1520 
       
  1521 static char saved_jvm_path[MAX_PATH] = {0};
       
  1522 
       
  1523 // Find the full path to the current module, jvm.dll or jvm_g.dll
       
  1524 void os::jvm_path(char *buf, jint buflen) {
       
  1525   // Error checking.
       
  1526   if (buflen < MAX_PATH) {
       
  1527     assert(false, "must use a large-enough buffer");
       
  1528     buf[0] = '\0';
       
  1529     return;
       
  1530   }
       
  1531   // Lazy resolve the path to current module.
       
  1532   if (saved_jvm_path[0] != 0) {
       
  1533     strcpy(buf, saved_jvm_path);
       
  1534     return;
       
  1535   }
       
  1536 
       
  1537   GetModuleFileName(vm_lib_handle, buf, buflen);
       
  1538   strcpy(saved_jvm_path, buf);
       
  1539 }
       
  1540 
       
  1541 
       
  1542 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
       
  1543 #ifndef _WIN64
       
  1544   st->print("_");
       
  1545 #endif
       
  1546 }
       
  1547 
       
  1548 
       
  1549 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
       
  1550 #ifndef _WIN64
       
  1551   st->print("@%d", args_size  * sizeof(int));
       
  1552 #endif
       
  1553 }
       
  1554 
       
  1555 // sun.misc.Signal
       
  1556 // NOTE that this is a workaround for an apparent kernel bug where if
       
  1557 // a signal handler for SIGBREAK is installed then that signal handler
       
  1558 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
       
  1559 // See bug 4416763.
       
  1560 static void (*sigbreakHandler)(int) = NULL;
       
  1561 
       
  1562 static void UserHandler(int sig, void *siginfo, void *context) {
       
  1563   os::signal_notify(sig);
       
  1564   // We need to reinstate the signal handler each time...
       
  1565   os::signal(sig, (void*)UserHandler);
       
  1566 }
       
  1567 
       
  1568 void* os::user_handler() {
       
  1569   return (void*) UserHandler;
       
  1570 }
       
  1571 
       
  1572 void* os::signal(int signal_number, void* handler) {
       
  1573   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
       
  1574     void (*oldHandler)(int) = sigbreakHandler;
       
  1575     sigbreakHandler = (void (*)(int)) handler;
       
  1576     return (void*) oldHandler;
       
  1577   } else {
       
  1578     return (void*)::signal(signal_number, (void (*)(int))handler);
       
  1579   }
       
  1580 }
       
  1581 
       
  1582 void os::signal_raise(int signal_number) {
       
  1583   raise(signal_number);
       
  1584 }
       
  1585 
       
  1586 // The Win32 C runtime library maps all console control events other than ^C
       
  1587 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
       
  1588 // logoff, and shutdown events.  We therefore install our own console handler
       
  1589 // that raises SIGTERM for the latter cases.
       
  1590 //
       
  1591 static BOOL WINAPI consoleHandler(DWORD event) {
       
  1592   switch(event) {
       
  1593     case CTRL_C_EVENT:
       
  1594       if (is_error_reported()) {
       
  1595         // Ctrl-C is pressed during error reporting, likely because the error
       
  1596         // handler fails to abort. Let VM die immediately.
       
  1597         os::die();
       
  1598       }
       
  1599 
       
  1600       os::signal_raise(SIGINT);
       
  1601       return TRUE;
       
  1602       break;
       
  1603     case CTRL_BREAK_EVENT:
       
  1604       if (sigbreakHandler != NULL) {
       
  1605         (*sigbreakHandler)(SIGBREAK);
       
  1606       }
       
  1607       return TRUE;
       
  1608       break;
       
  1609     case CTRL_CLOSE_EVENT:
       
  1610     case CTRL_LOGOFF_EVENT:
       
  1611     case CTRL_SHUTDOWN_EVENT:
       
  1612       os::signal_raise(SIGTERM);
       
  1613       return TRUE;
       
  1614       break;
       
  1615     default:
       
  1616       break;
       
  1617   }
       
  1618   return FALSE;
       
  1619 }
       
  1620 
       
  1621 /*
       
  1622  * The following code is moved from os.cpp for making this
       
  1623  * code platform specific, which it is by its very nature.
       
  1624  */
       
  1625 
       
  1626 // Return maximum OS signal used + 1 for internal use only
       
  1627 // Used as exit signal for signal_thread
       
  1628 int os::sigexitnum_pd(){
       
  1629   return NSIG;
       
  1630 }
       
  1631 
       
  1632 // a counter for each possible signal value, including signal_thread exit signal
       
  1633 static volatile jint pending_signals[NSIG+1] = { 0 };
       
  1634 static HANDLE sig_sem;
       
  1635 
       
  1636 void os::signal_init_pd() {
       
  1637   // Initialize signal structures
       
  1638   memset((void*)pending_signals, 0, sizeof(pending_signals));
       
  1639 
       
  1640   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
       
  1641 
       
  1642   // Programs embedding the VM do not want it to attempt to receive
       
  1643   // events like CTRL_LOGOFF_EVENT, which are used to implement the
       
  1644   // shutdown hooks mechanism introduced in 1.3.  For example, when
       
  1645   // the VM is run as part of a Windows NT service (i.e., a servlet
       
  1646   // engine in a web server), the correct behavior is for any console
       
  1647   // control handler to return FALSE, not TRUE, because the OS's
       
  1648   // "final" handler for such events allows the process to continue if
       
  1649   // it is a service (while terminating it if it is not a service).
       
  1650   // To make this behavior uniform and the mechanism simpler, we
       
  1651   // completely disable the VM's usage of these console events if -Xrs
       
  1652   // (=ReduceSignalUsage) is specified.  This means, for example, that
       
  1653   // the CTRL-BREAK thread dump mechanism is also disabled in this
       
  1654   // case.  See bugs 4323062, 4345157, and related bugs.
       
  1655 
       
  1656   if (!ReduceSignalUsage) {
       
  1657     // Add a CTRL-C handler
       
  1658     SetConsoleCtrlHandler(consoleHandler, TRUE);
       
  1659   }
       
  1660 }
       
  1661 
       
  1662 void os::signal_notify(int signal_number) {
       
  1663   BOOL ret;
       
  1664 
       
  1665   Atomic::inc(&pending_signals[signal_number]);
       
  1666   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
       
  1667   assert(ret != 0, "ReleaseSemaphore() failed");
       
  1668 }
       
  1669 
       
  1670 static int check_pending_signals(bool wait_for_signal) {
       
  1671   DWORD ret;
       
  1672   while (true) {
       
  1673     for (int i = 0; i < NSIG + 1; i++) {
       
  1674       jint n = pending_signals[i];
       
  1675       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
       
  1676         return i;
       
  1677       }
       
  1678     }
       
  1679     if (!wait_for_signal) {
       
  1680       return -1;
       
  1681     }
       
  1682 
       
  1683     JavaThread *thread = JavaThread::current();
       
  1684 
       
  1685     ThreadBlockInVM tbivm(thread);
       
  1686 
       
  1687     bool threadIsSuspended;
       
  1688     do {
       
  1689       thread->set_suspend_equivalent();
       
  1690       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
       
  1691       ret = ::WaitForSingleObject(sig_sem, INFINITE);
       
  1692       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
       
  1693 
       
  1694       // were we externally suspended while we were waiting?
       
  1695       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
       
  1696       if (threadIsSuspended) {
       
  1697         //
       
  1698         // The semaphore has been incremented, but while we were waiting
       
  1699         // another thread suspended us. We don't want to continue running
       
  1700         // while suspended because that would surprise the thread that
       
  1701         // suspended us.
       
  1702         //
       
  1703         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
       
  1704         assert(ret != 0, "ReleaseSemaphore() failed");
       
  1705 
       
  1706         thread->java_suspend_self();
       
  1707       }
       
  1708     } while (threadIsSuspended);
       
  1709   }
       
  1710 }
       
  1711 
       
  1712 int os::signal_lookup() {
       
  1713   return check_pending_signals(false);
       
  1714 }
       
  1715 
       
  1716 int os::signal_wait() {
       
  1717   return check_pending_signals(true);
       
  1718 }
       
  1719 
       
  1720 // Implicit OS exception handling
       
  1721 
       
  1722 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
       
  1723   JavaThread* thread = JavaThread::current();
       
  1724   // Save pc in thread
       
  1725 #ifdef _M_IA64
       
  1726   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
       
  1727   // Set pc to handler
       
  1728   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
       
  1729 #elif _M_AMD64
       
  1730   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
       
  1731   // Set pc to handler
       
  1732   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
       
  1733 #else
       
  1734   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
       
  1735   // Set pc to handler
       
  1736   exceptionInfo->ContextRecord->Eip = (LONG)handler;
       
  1737 #endif
       
  1738 
       
  1739   // Continue the execution
       
  1740   return EXCEPTION_CONTINUE_EXECUTION;
       
  1741 }
       
  1742 
       
  1743 
       
  1744 // Used for PostMortemDump
       
  1745 extern "C" void safepoints();
       
  1746 extern "C" void find(int x);
       
  1747 extern "C" void events();
       
  1748 
       
  1749 // According to Windows API documentation, an illegal instruction sequence should generate
       
  1750 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
       
  1751 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
       
  1752 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
       
  1753 
       
  1754 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
       
  1755 
       
  1756 // From "Execution Protection in the Windows Operating System" draft 0.35
       
  1757 // Once a system header becomes available, the "real" define should be
       
  1758 // included or copied here.
       
  1759 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
       
  1760 
       
  1761 #define def_excpt(val) #val, val
       
  1762 
       
  1763 struct siglabel {
       
  1764   char *name;
       
  1765   int   number;
       
  1766 };
       
  1767 
       
  1768 struct siglabel exceptlabels[] = {
       
  1769     def_excpt(EXCEPTION_ACCESS_VIOLATION),
       
  1770     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
       
  1771     def_excpt(EXCEPTION_BREAKPOINT),
       
  1772     def_excpt(EXCEPTION_SINGLE_STEP),
       
  1773     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
       
  1774     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
       
  1775     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
       
  1776     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
       
  1777     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
       
  1778     def_excpt(EXCEPTION_FLT_OVERFLOW),
       
  1779     def_excpt(EXCEPTION_FLT_STACK_CHECK),
       
  1780     def_excpt(EXCEPTION_FLT_UNDERFLOW),
       
  1781     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
       
  1782     def_excpt(EXCEPTION_INT_OVERFLOW),
       
  1783     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
       
  1784     def_excpt(EXCEPTION_IN_PAGE_ERROR),
       
  1785     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
       
  1786     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
       
  1787     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
       
  1788     def_excpt(EXCEPTION_STACK_OVERFLOW),
       
  1789     def_excpt(EXCEPTION_INVALID_DISPOSITION),
       
  1790     def_excpt(EXCEPTION_GUARD_PAGE),
       
  1791     def_excpt(EXCEPTION_INVALID_HANDLE),
       
  1792     NULL, 0
       
  1793 };
       
  1794 
       
  1795 const char* os::exception_name(int exception_code, char *buf, size_t size) {
       
  1796   for (int i = 0; exceptlabels[i].name != NULL; i++) {
       
  1797     if (exceptlabels[i].number == exception_code) {
       
  1798        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
       
  1799        return buf;
       
  1800     }
       
  1801   }
       
  1802 
       
  1803   return NULL;
       
  1804 }
       
  1805 
       
  1806 //-----------------------------------------------------------------------------
       
  1807 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
       
  1808   // handle exception caused by idiv; should only happen for -MinInt/-1
       
  1809   // (division by zero is handled explicitly)
       
  1810 #ifdef _M_IA64
       
  1811   assert(0, "Fix Handle_IDiv_Exception");
       
  1812 #elif _M_AMD64
       
  1813   PCONTEXT ctx = exceptionInfo->ContextRecord;
       
  1814   address pc = (address)ctx->Rip;
       
  1815   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
       
  1816   assert(pc[0] == 0xF7, "not an idiv opcode");
       
  1817   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
       
  1818   assert(ctx->Rax == min_jint, "unexpected idiv exception");
       
  1819   // set correct result values and continue after idiv instruction
       
  1820   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
       
  1821   ctx->Rax = (DWORD)min_jint;      // result
       
  1822   ctx->Rdx = (DWORD)0;             // remainder
       
  1823   // Continue the execution
       
  1824 #else
       
  1825   PCONTEXT ctx = exceptionInfo->ContextRecord;
       
  1826   address pc = (address)ctx->Eip;
       
  1827   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
       
  1828   assert(pc[0] == 0xF7, "not an idiv opcode");
       
  1829   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
       
  1830   assert(ctx->Eax == min_jint, "unexpected idiv exception");
       
  1831   // set correct result values and continue after idiv instruction
       
  1832   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
       
  1833   ctx->Eax = (DWORD)min_jint;      // result
       
  1834   ctx->Edx = (DWORD)0;             // remainder
       
  1835   // Continue the execution
       
  1836 #endif
       
  1837   return EXCEPTION_CONTINUE_EXECUTION;
       
  1838 }
       
  1839 
       
  1840 #ifndef  _WIN64
       
  1841 //-----------------------------------------------------------------------------
       
  1842 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
       
  1843   // handle exception caused by native mothod modifying control word
       
  1844   PCONTEXT ctx = exceptionInfo->ContextRecord;
       
  1845   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
       
  1846 
       
  1847   switch (exception_code) {
       
  1848     case EXCEPTION_FLT_DENORMAL_OPERAND:
       
  1849     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
       
  1850     case EXCEPTION_FLT_INEXACT_RESULT:
       
  1851     case EXCEPTION_FLT_INVALID_OPERATION:
       
  1852     case EXCEPTION_FLT_OVERFLOW:
       
  1853     case EXCEPTION_FLT_STACK_CHECK:
       
  1854     case EXCEPTION_FLT_UNDERFLOW:
       
  1855       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
       
  1856       if (fp_control_word != ctx->FloatSave.ControlWord) {
       
  1857         // Restore FPCW and mask out FLT exceptions
       
  1858         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
       
  1859         // Mask out pending FLT exceptions
       
  1860         ctx->FloatSave.StatusWord &=  0xffffff00;
       
  1861         return EXCEPTION_CONTINUE_EXECUTION;
       
  1862       }
       
  1863   }
       
  1864   return EXCEPTION_CONTINUE_SEARCH;
       
  1865 }
       
  1866 #else //_WIN64
       
  1867 /*
       
  1868   On Windows, the mxcsr control bits are non-volatile across calls
       
  1869   See also CR 6192333
       
  1870   If EXCEPTION_FLT_* happened after some native method modified
       
  1871   mxcsr - it is not a jvm fault.
       
  1872   However should we decide to restore of mxcsr after a faulty
       
  1873   native method we can uncomment following code
       
  1874       jint MxCsr = INITIAL_MXCSR;
       
  1875         // we can't use StubRoutines::addr_mxcsr_std()
       
  1876         // because in Win64 mxcsr is not saved there
       
  1877       if (MxCsr != ctx->MxCsr) {
       
  1878         ctx->MxCsr = MxCsr;
       
  1879         return EXCEPTION_CONTINUE_EXECUTION;
       
  1880       }
       
  1881 
       
  1882 */
       
  1883 #endif //_WIN64
       
  1884 
       
  1885 
       
  1886 // Fatal error reporting is single threaded so we can make this a
       
  1887 // static and preallocated.  If it's more than MAX_PATH silently ignore
       
  1888 // it.
       
  1889 static char saved_error_file[MAX_PATH] = {0};
       
  1890 
       
  1891 void os::set_error_file(const char *logfile) {
       
  1892   if (strlen(logfile) <= MAX_PATH) {
       
  1893     strncpy(saved_error_file, logfile, MAX_PATH);
       
  1894   }
       
  1895 }
       
  1896 
       
  1897 static inline void report_error(Thread* t, DWORD exception_code,
       
  1898                                 address addr, void* siginfo, void* context) {
       
  1899   VMError err(t, exception_code, addr, siginfo, context);
       
  1900   err.report_and_die();
       
  1901 
       
  1902   // If UseOsErrorReporting, this will return here and save the error file
       
  1903   // somewhere where we can find it in the minidump.
       
  1904 }
       
  1905 
       
  1906 //-----------------------------------------------------------------------------
       
  1907 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
       
  1908   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
       
  1909   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
       
  1910 #ifdef _M_IA64
       
  1911   address pc = (address) exceptionInfo->ContextRecord->StIIP;
       
  1912 #elif _M_AMD64
       
  1913   address pc = (address) exceptionInfo->ContextRecord->Rip;
       
  1914 #else
       
  1915   address pc = (address) exceptionInfo->ContextRecord->Eip;
       
  1916 #endif
       
  1917   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
       
  1918 
       
  1919 #ifndef _WIN64
       
  1920   // Execution protection violation - win32 running on AMD64 only
       
  1921   // Handled first to avoid misdiagnosis as a "normal" access violation;
       
  1922   // This is safe to do because we have a new/unique ExceptionInformation
       
  1923   // code for this condition.
       
  1924   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
       
  1925     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
       
  1926     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
       
  1927     address addr = (address) exceptionRecord->ExceptionInformation[1];
       
  1928 
       
  1929     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
       
  1930       int page_size = os::vm_page_size();
       
  1931 
       
  1932       // Make sure the pc and the faulting address are sane.
       
  1933       //
       
  1934       // If an instruction spans a page boundary, and the page containing
       
  1935       // the beginning of the instruction is executable but the following
       
  1936       // page is not, the pc and the faulting address might be slightly
       
  1937       // different - we still want to unguard the 2nd page in this case.
       
  1938       //
       
  1939       // 15 bytes seems to be a (very) safe value for max instruction size.
       
  1940       bool pc_is_near_addr =
       
  1941         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
       
  1942       bool instr_spans_page_boundary =
       
  1943         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
       
  1944                          (intptr_t) page_size) > 0);
       
  1945 
       
  1946       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
       
  1947         static volatile address last_addr =
       
  1948           (address) os::non_memory_address_word();
       
  1949 
       
  1950         // In conservative mode, don't unguard unless the address is in the VM
       
  1951         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
       
  1952             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
       
  1953 
       
  1954           // Unguard and retry
       
  1955           address page_start =
       
  1956             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
       
  1957           bool res = os::unguard_memory((char*) page_start, page_size);
       
  1958 
       
  1959           if (PrintMiscellaneous && Verbose) {
       
  1960             char buf[256];
       
  1961             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
       
  1962                          "at " INTPTR_FORMAT
       
  1963                          ", unguarding " INTPTR_FORMAT ": %s", addr,
       
  1964                          page_start, (res ? "success" : strerror(errno)));
       
  1965             tty->print_raw_cr(buf);
       
  1966           }
       
  1967 
       
  1968           // Set last_addr so if we fault again at the same address, we don't
       
  1969           // end up in an endless loop.
       
  1970           //
       
  1971           // There are two potential complications here.  Two threads trapping
       
  1972           // at the same address at the same time could cause one of the
       
  1973           // threads to think it already unguarded, and abort the VM.  Likely
       
  1974           // very rare.
       
  1975           //
       
  1976           // The other race involves two threads alternately trapping at
       
  1977           // different addresses and failing to unguard the page, resulting in
       
  1978           // an endless loop.  This condition is probably even more unlikely
       
  1979           // than the first.
       
  1980           //
       
  1981           // Although both cases could be avoided by using locks or thread
       
  1982           // local last_addr, these solutions are unnecessary complication:
       
  1983           // this handler is a best-effort safety net, not a complete solution.
       
  1984           // It is disabled by default and should only be used as a workaround
       
  1985           // in case we missed any no-execute-unsafe VM code.
       
  1986 
       
  1987           last_addr = addr;
       
  1988 
       
  1989           return EXCEPTION_CONTINUE_EXECUTION;
       
  1990         }
       
  1991       }
       
  1992 
       
  1993       // Last unguard failed or not unguarding
       
  1994       tty->print_raw_cr("Execution protection violation");
       
  1995       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
       
  1996                    exceptionInfo->ContextRecord);
       
  1997       return EXCEPTION_CONTINUE_SEARCH;
       
  1998     }
       
  1999   }
       
  2000 #endif // _WIN64
       
  2001 
       
  2002   // Check to see if we caught the safepoint code in the
       
  2003   // process of write protecting the memory serialization page.
       
  2004   // It write enables the page immediately after protecting it
       
  2005   // so just return.
       
  2006   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
       
  2007     JavaThread* thread = (JavaThread*) t;
       
  2008     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
       
  2009     address addr = (address) exceptionRecord->ExceptionInformation[1];
       
  2010     if ( os::is_memory_serialize_page(thread, addr) ) {
       
  2011       // Block current thread until the memory serialize page permission restored.
       
  2012       os::block_on_serialize_page_trap();
       
  2013       return EXCEPTION_CONTINUE_EXECUTION;
       
  2014     }
       
  2015   }
       
  2016 
       
  2017 
       
  2018   if (t != NULL && t->is_Java_thread()) {
       
  2019     JavaThread* thread = (JavaThread*) t;
       
  2020     bool in_java = thread->thread_state() == _thread_in_Java;
       
  2021 
       
  2022     // Handle potential stack overflows up front.
       
  2023     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
       
  2024       if (os::uses_stack_guard_pages()) {
       
  2025 #ifdef _M_IA64
       
  2026         //
       
  2027         // If it's a legal stack address continue, Windows will map it in.
       
  2028         //
       
  2029         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
       
  2030         address addr = (address) exceptionRecord->ExceptionInformation[1];
       
  2031         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
       
  2032           return EXCEPTION_CONTINUE_EXECUTION;
       
  2033 
       
  2034         // The register save area is the same size as the memory stack
       
  2035         // and starts at the page just above the start of the memory stack.
       
  2036         // If we get a fault in this area, we've run out of register
       
  2037         // stack.  If we are in java, try throwing a stack overflow exception.
       
  2038         if (addr > thread->stack_base() &&
       
  2039                       addr <= (thread->stack_base()+thread->stack_size()) ) {
       
  2040           char buf[256];
       
  2041           jio_snprintf(buf, sizeof(buf),
       
  2042                        "Register stack overflow, addr:%p, stack_base:%p\n",
       
  2043                        addr, thread->stack_base() );
       
  2044           tty->print_raw_cr(buf);
       
  2045           // If not in java code, return and hope for the best.
       
  2046           return in_java ? Handle_Exception(exceptionInfo,
       
  2047             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
       
  2048             :  EXCEPTION_CONTINUE_EXECUTION;
       
  2049         }
       
  2050 #endif
       
  2051         if (thread->stack_yellow_zone_enabled()) {
       
  2052           // Yellow zone violation.  The o/s has unprotected the first yellow
       
  2053           // zone page for us.  Note:  must call disable_stack_yellow_zone to
       
  2054           // update the enabled status, even if the zone contains only one page.
       
  2055           thread->disable_stack_yellow_zone();
       
  2056           // If not in java code, return and hope for the best.
       
  2057           return in_java ? Handle_Exception(exceptionInfo,
       
  2058             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
       
  2059             :  EXCEPTION_CONTINUE_EXECUTION;
       
  2060         } else {
       
  2061           // Fatal red zone violation.
       
  2062           thread->disable_stack_red_zone();
       
  2063           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
       
  2064           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
       
  2065                        exceptionInfo->ContextRecord);
       
  2066           return EXCEPTION_CONTINUE_SEARCH;
       
  2067         }
       
  2068       } else if (in_java) {
       
  2069         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
       
  2070         // a one-time-only guard page, which it has released to us.  The next
       
  2071         // stack overflow on this thread will result in an ACCESS_VIOLATION.
       
  2072         return Handle_Exception(exceptionInfo,
       
  2073           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
       
  2074       } else {
       
  2075         // Can only return and hope for the best.  Further stack growth will
       
  2076         // result in an ACCESS_VIOLATION.
       
  2077         return EXCEPTION_CONTINUE_EXECUTION;
       
  2078       }
       
  2079     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
       
  2080       // Either stack overflow or null pointer exception.
       
  2081       if (in_java) {
       
  2082         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
       
  2083         address addr = (address) exceptionRecord->ExceptionInformation[1];
       
  2084         address stack_end = thread->stack_base() - thread->stack_size();
       
  2085         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
       
  2086           // Stack overflow.
       
  2087           assert(!os::uses_stack_guard_pages(),
       
  2088             "should be caught by red zone code above.");
       
  2089           return Handle_Exception(exceptionInfo,
       
  2090             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
       
  2091         }
       
  2092         //
       
  2093         // Check for safepoint polling and implicit null
       
  2094         // We only expect null pointers in the stubs (vtable)
       
  2095         // the rest are checked explicitly now.
       
  2096         //
       
  2097         CodeBlob* cb = CodeCache::find_blob(pc);
       
  2098         if (cb != NULL) {
       
  2099           if (os::is_poll_address(addr)) {
       
  2100             address stub = SharedRuntime::get_poll_stub(pc);
       
  2101             return Handle_Exception(exceptionInfo, stub);
       
  2102           }
       
  2103         }
       
  2104         {
       
  2105 #ifdef _WIN64
       
  2106           //
       
  2107           // If it's a legal stack address map the entire region in
       
  2108           //
       
  2109           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
       
  2110           address addr = (address) exceptionRecord->ExceptionInformation[1];
       
  2111           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
       
  2112                   addr = (address)((uintptr_t)addr &
       
  2113                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
       
  2114                   os::commit_memory( (char *)addr, thread->stack_base() - addr );
       
  2115                   return EXCEPTION_CONTINUE_EXECUTION;
       
  2116           }
       
  2117           else
       
  2118 #endif
       
  2119           {
       
  2120             // Null pointer exception.
       
  2121 #ifdef _M_IA64
       
  2122             // We catch register stack overflows in compiled code by doing
       
  2123             // an explicit compare and executing a st8(G0, G0) if the
       
  2124             // BSP enters into our guard area.  We test for the overflow
       
  2125             // condition and fall into the normal null pointer exception
       
  2126             // code if BSP hasn't overflowed.
       
  2127             if ( in_java ) {
       
  2128               if(thread->register_stack_overflow()) {
       
  2129                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
       
  2130                                 thread->register_stack_limit(),
       
  2131                                "GR7 doesn't contain register_stack_limit");
       
  2132                 // Disable the yellow zone which sets the state that
       
  2133                 // we've got a stack overflow problem.
       
  2134                 if (thread->stack_yellow_zone_enabled()) {
       
  2135                   thread->disable_stack_yellow_zone();
       
  2136                 }
       
  2137                 // Give us some room to process the exception
       
  2138                 thread->disable_register_stack_guard();
       
  2139                 // Update GR7 with the new limit so we can continue running
       
  2140                 // compiled code.
       
  2141                 exceptionInfo->ContextRecord->IntS3 =
       
  2142                                (ULONGLONG)thread->register_stack_limit();
       
  2143                 return Handle_Exception(exceptionInfo,
       
  2144                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
       
  2145               } else {
       
  2146                 //
       
  2147                 // Check for implicit null
       
  2148                 // We only expect null pointers in the stubs (vtable)
       
  2149                 // the rest are checked explicitly now.
       
  2150                 //
       
  2151                 CodeBlob* cb = CodeCache::find_blob(pc);
       
  2152                 if (cb != NULL) {
       
  2153                   if (VtableStubs::stub_containing(pc) != NULL) {
       
  2154                     if (((uintptr_t)addr) < os::vm_page_size() ) {
       
  2155                       // an access to the first page of VM--assume it is a null pointer
       
  2156                       return Handle_Exception(exceptionInfo,
       
  2157                         SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL));
       
  2158                     }
       
  2159                   }
       
  2160                 }
       
  2161               }
       
  2162             } // in_java
       
  2163 
       
  2164             // IA64 doesn't use implicit null checking yet. So we shouldn't
       
  2165             // get here.
       
  2166             tty->print_raw_cr("Access violation, possible null pointer exception");
       
  2167             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
       
  2168                          exceptionInfo->ContextRecord);
       
  2169             return EXCEPTION_CONTINUE_SEARCH;
       
  2170 #else /* !IA64 */
       
  2171 
       
  2172             // Windows 98 reports faulting addresses incorrectly
       
  2173             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
       
  2174                 !os::win32::is_nt()) {
       
  2175               return Handle_Exception(exceptionInfo,
       
  2176                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL));
       
  2177             }
       
  2178             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
       
  2179                          exceptionInfo->ContextRecord);
       
  2180             return EXCEPTION_CONTINUE_SEARCH;
       
  2181 #endif
       
  2182           }
       
  2183         }
       
  2184       }
       
  2185 
       
  2186 #ifdef _WIN64
       
  2187       // Special care for fast JNI field accessors.
       
  2188       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
       
  2189       // in and the heap gets shrunk before the field access.
       
  2190       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
       
  2191         address addr = JNI_FastGetField::find_slowcase_pc(pc);
       
  2192         if (addr != (address)-1) {
       
  2193           return Handle_Exception(exceptionInfo, addr);
       
  2194         }
       
  2195       }
       
  2196 #endif
       
  2197 
       
  2198 #ifdef _WIN64
       
  2199       // Windows will sometimes generate an access violation
       
  2200       // when we call malloc.  Since we use VectoredExceptions
       
  2201       // on 64 bit platforms, we see this exception.  We must
       
  2202       // pass this exception on so Windows can recover.
       
  2203       // We check to see if the pc of the fault is in NTDLL.DLL
       
  2204       // if so, we pass control on to Windows for handling.
       
  2205       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
       
  2206 #endif
       
  2207 
       
  2208       // Stack overflow or null pointer exception in native code.
       
  2209       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
       
  2210                    exceptionInfo->ContextRecord);
       
  2211       return EXCEPTION_CONTINUE_SEARCH;
       
  2212     }
       
  2213 
       
  2214     if (in_java) {
       
  2215       switch (exception_code) {
       
  2216       case EXCEPTION_INT_DIVIDE_BY_ZERO:
       
  2217         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
       
  2218 
       
  2219       case EXCEPTION_INT_OVERFLOW:
       
  2220         return Handle_IDiv_Exception(exceptionInfo);
       
  2221 
       
  2222       } // switch
       
  2223     }
       
  2224 #ifndef _WIN64
       
  2225     if ((thread->thread_state() == _thread_in_Java) ||
       
  2226         (thread->thread_state() == _thread_in_native) )
       
  2227     {
       
  2228       LONG result=Handle_FLT_Exception(exceptionInfo);
       
  2229       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
       
  2230     }
       
  2231 #endif //_WIN64
       
  2232   }
       
  2233 
       
  2234   if (exception_code != EXCEPTION_BREAKPOINT) {
       
  2235 #ifndef _WIN64
       
  2236     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
       
  2237                  exceptionInfo->ContextRecord);
       
  2238 #else
       
  2239     // Itanium Windows uses a VectoredExceptionHandler
       
  2240     // Which means that C++ programatic exception handlers (try/except)
       
  2241     // will get here.  Continue the search for the right except block if
       
  2242     // the exception code is not a fatal code.
       
  2243     switch ( exception_code ) {
       
  2244       case EXCEPTION_ACCESS_VIOLATION:
       
  2245       case EXCEPTION_STACK_OVERFLOW:
       
  2246       case EXCEPTION_ILLEGAL_INSTRUCTION:
       
  2247       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
       
  2248       case EXCEPTION_INT_OVERFLOW:
       
  2249       case EXCEPTION_INT_DIVIDE_BY_ZERO:
       
  2250       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
       
  2251                        exceptionInfo->ContextRecord);
       
  2252       }
       
  2253         break;
       
  2254       default:
       
  2255         break;
       
  2256     }
       
  2257 #endif
       
  2258   }
       
  2259   return EXCEPTION_CONTINUE_SEARCH;
       
  2260 }
       
  2261 
       
  2262 #ifndef _WIN64
       
  2263 // Special care for fast JNI accessors.
       
  2264 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
       
  2265 // the heap gets shrunk before the field access.
       
  2266 // Need to install our own structured exception handler since native code may
       
  2267 // install its own.
       
  2268 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
       
  2269   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
       
  2270   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
       
  2271     address pc = (address) exceptionInfo->ContextRecord->Eip;
       
  2272     address addr = JNI_FastGetField::find_slowcase_pc(pc);
       
  2273     if (addr != (address)-1) {
       
  2274       return Handle_Exception(exceptionInfo, addr);
       
  2275     }
       
  2276   }
       
  2277   return EXCEPTION_CONTINUE_SEARCH;
       
  2278 }
       
  2279 
       
  2280 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
       
  2281 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
       
  2282   __try { \
       
  2283     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
       
  2284   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
       
  2285   } \
       
  2286   return 0; \
       
  2287 }
       
  2288 
       
  2289 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
       
  2290 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
       
  2291 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
       
  2292 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
       
  2293 DEFINE_FAST_GETFIELD(jint,     int,    Int)
       
  2294 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
       
  2295 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
       
  2296 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
       
  2297 
       
  2298 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
       
  2299   switch (type) {
       
  2300     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
       
  2301     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
       
  2302     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
       
  2303     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
       
  2304     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
       
  2305     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
       
  2306     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
       
  2307     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
       
  2308     default:        ShouldNotReachHere();
       
  2309   }
       
  2310   return (address)-1;
       
  2311 }
       
  2312 #endif
       
  2313 
       
  2314 // Virtual Memory
       
  2315 
       
  2316 int os::vm_page_size() { return os::win32::vm_page_size(); }
       
  2317 int os::vm_allocation_granularity() {
       
  2318   return os::win32::vm_allocation_granularity();
       
  2319 }
       
  2320 
       
  2321 // Windows large page support is available on Windows 2003. In order to use
       
  2322 // large page memory, the administrator must first assign additional privilege
       
  2323 // to the user:
       
  2324 //   + select Control Panel -> Administrative Tools -> Local Security Policy
       
  2325 //   + select Local Policies -> User Rights Assignment
       
  2326 //   + double click "Lock pages in memory", add users and/or groups
       
  2327 //   + reboot
       
  2328 // Note the above steps are needed for administrator as well, as administrators
       
  2329 // by default do not have the privilege to lock pages in memory.
       
  2330 //
       
  2331 // Note about Windows 2003: although the API supports committing large page
       
  2332 // memory on a page-by-page basis and VirtualAlloc() returns success under this
       
  2333 // scenario, I found through experiment it only uses large page if the entire
       
  2334 // memory region is reserved and committed in a single VirtualAlloc() call.
       
  2335 // This makes Windows large page support more or less like Solaris ISM, in
       
  2336 // that the entire heap must be committed upfront. This probably will change
       
  2337 // in the future, if so the code below needs to be revisited.
       
  2338 
       
  2339 #ifndef MEM_LARGE_PAGES
       
  2340 #define MEM_LARGE_PAGES 0x20000000
       
  2341 #endif
       
  2342 
       
  2343 // GetLargePageMinimum is only available on Windows 2003. The other functions
       
  2344 // are available on NT but not on Windows 98/Me. We have to resolve them at
       
  2345 // runtime.
       
  2346 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
       
  2347 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
       
  2348              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
       
  2349 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
       
  2350 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
       
  2351 
       
  2352 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
       
  2353 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
       
  2354 static OpenProcessToken_func_type      _OpenProcessToken;
       
  2355 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
       
  2356 
       
  2357 static HINSTANCE _kernel32;
       
  2358 static HINSTANCE _advapi32;
       
  2359 static HANDLE    _hProcess;
       
  2360 static HANDLE    _hToken;
       
  2361 
       
  2362 static size_t _large_page_size = 0;
       
  2363 
       
  2364 static bool resolve_functions_for_large_page_init() {
       
  2365   _kernel32 = LoadLibrary("kernel32.dll");
       
  2366   if (_kernel32 == NULL) return false;
       
  2367 
       
  2368   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
       
  2369                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
       
  2370   if (_GetLargePageMinimum == NULL) return false;
       
  2371 
       
  2372   _advapi32 = LoadLibrary("advapi32.dll");
       
  2373   if (_advapi32 == NULL) return false;
       
  2374 
       
  2375   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
       
  2376                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
       
  2377   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
       
  2378                             GetProcAddress(_advapi32, "OpenProcessToken"));
       
  2379   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
       
  2380                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
       
  2381   return _AdjustTokenPrivileges != NULL &&
       
  2382          _OpenProcessToken      != NULL &&
       
  2383          _LookupPrivilegeValue  != NULL;
       
  2384 }
       
  2385 
       
  2386 static bool request_lock_memory_privilege() {
       
  2387   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
       
  2388                                 os::current_process_id());
       
  2389 
       
  2390   LUID luid;
       
  2391   if (_hProcess != NULL &&
       
  2392       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
       
  2393       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
       
  2394 
       
  2395     TOKEN_PRIVILEGES tp;
       
  2396     tp.PrivilegeCount = 1;
       
  2397     tp.Privileges[0].Luid = luid;
       
  2398     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
       
  2399 
       
  2400     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
       
  2401     // privilege. Check GetLastError() too. See MSDN document.
       
  2402     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
       
  2403         (GetLastError() == ERROR_SUCCESS)) {
       
  2404       return true;
       
  2405     }
       
  2406   }
       
  2407 
       
  2408   return false;
       
  2409 }
       
  2410 
       
  2411 static void cleanup_after_large_page_init() {
       
  2412   _GetLargePageMinimum = NULL;
       
  2413   _AdjustTokenPrivileges = NULL;
       
  2414   _OpenProcessToken = NULL;
       
  2415   _LookupPrivilegeValue = NULL;
       
  2416   if (_kernel32) FreeLibrary(_kernel32);
       
  2417   _kernel32 = NULL;
       
  2418   if (_advapi32) FreeLibrary(_advapi32);
       
  2419   _advapi32 = NULL;
       
  2420   if (_hProcess) CloseHandle(_hProcess);
       
  2421   _hProcess = NULL;
       
  2422   if (_hToken) CloseHandle(_hToken);
       
  2423   _hToken = NULL;
       
  2424 }
       
  2425 
       
  2426 bool os::large_page_init() {
       
  2427   if (!UseLargePages) return false;
       
  2428 
       
  2429   // print a warning if any large page related flag is specified on command line
       
  2430   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
       
  2431                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
       
  2432   bool success = false;
       
  2433 
       
  2434 # define WARN(msg) if (warn_on_failure) { warning(msg); }
       
  2435   if (resolve_functions_for_large_page_init()) {
       
  2436     if (request_lock_memory_privilege()) {
       
  2437       size_t s = _GetLargePageMinimum();
       
  2438       if (s) {
       
  2439 #if defined(IA32) || defined(AMD64)
       
  2440         if (s > 4*M || LargePageSizeInBytes > 4*M) {
       
  2441           WARN("JVM cannot use large pages bigger than 4mb.");
       
  2442         } else {
       
  2443 #endif
       
  2444           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
       
  2445             _large_page_size = LargePageSizeInBytes;
       
  2446           } else {
       
  2447             _large_page_size = s;
       
  2448           }
       
  2449           success = true;
       
  2450 #if defined(IA32) || defined(AMD64)
       
  2451         }
       
  2452 #endif
       
  2453       } else {
       
  2454         WARN("Large page is not supported by the processor.");
       
  2455       }
       
  2456     } else {
       
  2457       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
       
  2458     }
       
  2459   } else {
       
  2460     WARN("Large page is not supported by the operating system.");
       
  2461   }
       
  2462 #undef WARN
       
  2463 
       
  2464   const size_t default_page_size = (size_t) vm_page_size();
       
  2465   if (success && _large_page_size > default_page_size) {
       
  2466     _page_sizes[0] = _large_page_size;
       
  2467     _page_sizes[1] = default_page_size;
       
  2468     _page_sizes[2] = 0;
       
  2469   }
       
  2470 
       
  2471   cleanup_after_large_page_init();
       
  2472   return success;
       
  2473 }
       
  2474 
       
  2475 // On win32, one cannot release just a part of reserved memory, it's an
       
  2476 // all or nothing deal.  When we split a reservation, we must break the
       
  2477 // reservation into two reservations.
       
  2478 void os::split_reserved_memory(char *base, size_t size, size_t split,
       
  2479                               bool realloc) {
       
  2480   if (size > 0) {
       
  2481     release_memory(base, size);
       
  2482     if (realloc) {
       
  2483       reserve_memory(split, base);
       
  2484     }
       
  2485     if (size != split) {
       
  2486       reserve_memory(size - split, base + split);
       
  2487     }
       
  2488   }
       
  2489 }
       
  2490 
       
  2491 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
       
  2492   assert((size_t)addr % os::vm_allocation_granularity() == 0,
       
  2493          "reserve alignment");
       
  2494   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
       
  2495   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE,
       
  2496                                   PAGE_EXECUTE_READWRITE);
       
  2497   assert(res == NULL || addr == NULL || addr == res,
       
  2498          "Unexpected address from reserve.");
       
  2499   return res;
       
  2500 }
       
  2501 
       
  2502 // Reserve memory at an arbitrary address, only if that area is
       
  2503 // available (and not reserved for something else).
       
  2504 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
       
  2505   // Windows os::reserve_memory() fails of the requested address range is
       
  2506   // not avilable.
       
  2507   return reserve_memory(bytes, requested_addr);
       
  2508 }
       
  2509 
       
  2510 size_t os::large_page_size() {
       
  2511   return _large_page_size;
       
  2512 }
       
  2513 
       
  2514 bool os::can_commit_large_page_memory() {
       
  2515   // Windows only uses large page memory when the entire region is reserved
       
  2516   // and committed in a single VirtualAlloc() call. This may change in the
       
  2517   // future, but with Windows 2003 it's not possible to commit on demand.
       
  2518   return false;
       
  2519 }
       
  2520 
       
  2521 char* os::reserve_memory_special(size_t bytes) {
       
  2522   DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
       
  2523   char * res = (char *)VirtualAlloc(NULL, bytes, flag, PAGE_READWRITE);
       
  2524   return res;
       
  2525 }
       
  2526 
       
  2527 bool os::release_memory_special(char* base, size_t bytes) {
       
  2528   return release_memory(base, bytes);
       
  2529 }
       
  2530 
       
  2531 void os::print_statistics() {
       
  2532 }
       
  2533 
       
  2534 bool os::commit_memory(char* addr, size_t bytes) {
       
  2535   if (bytes == 0) {
       
  2536     // Don't bother the OS with noops.
       
  2537     return true;
       
  2538   }
       
  2539   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
       
  2540   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
       
  2541   // Don't attempt to print anything if the OS call fails. We're
       
  2542   // probably low on resources, so the print itself may cause crashes.
       
  2543   return VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_EXECUTE_READWRITE) != NULL;
       
  2544 }
       
  2545 
       
  2546 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint) {
       
  2547   return commit_memory(addr, size);
       
  2548 }
       
  2549 
       
  2550 bool os::uncommit_memory(char* addr, size_t bytes) {
       
  2551   if (bytes == 0) {
       
  2552     // Don't bother the OS with noops.
       
  2553     return true;
       
  2554   }
       
  2555   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
       
  2556   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
       
  2557   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
       
  2558 }
       
  2559 
       
  2560 bool os::release_memory(char* addr, size_t bytes) {
       
  2561   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
       
  2562 }
       
  2563 
       
  2564 bool os::protect_memory(char* addr, size_t bytes) {
       
  2565   DWORD old_status;
       
  2566   return VirtualProtect(addr, bytes, PAGE_READONLY, &old_status) != 0;
       
  2567 }
       
  2568 
       
  2569 bool os::guard_memory(char* addr, size_t bytes) {
       
  2570   DWORD old_status;
       
  2571   return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE | PAGE_GUARD, &old_status) != 0;
       
  2572 }
       
  2573 
       
  2574 bool os::unguard_memory(char* addr, size_t bytes) {
       
  2575   DWORD old_status;
       
  2576   return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &old_status) != 0;
       
  2577 }
       
  2578 
       
  2579 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
       
  2580 void os::free_memory(char *addr, size_t bytes)         { }
       
  2581 void os::numa_make_global(char *addr, size_t bytes)    { }
       
  2582 void os::numa_make_local(char *addr, size_t bytes)     { }
       
  2583 bool os::numa_topology_changed()                       { return false; }
       
  2584 size_t os::numa_get_groups_num()                       { return 1; }
       
  2585 int os::numa_get_group_id()                            { return 0; }
       
  2586 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
       
  2587   if (size > 0) {
       
  2588     ids[0] = 0;
       
  2589     return 1;
       
  2590   }
       
  2591   return 0;
       
  2592 }
       
  2593 
       
  2594 bool os::get_page_info(char *start, page_info* info) {
       
  2595   return false;
       
  2596 }
       
  2597 
       
  2598 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
       
  2599   return end;
       
  2600 }
       
  2601 
       
  2602 char* os::non_memory_address_word() {
       
  2603   // Must never look like an address returned by reserve_memory,
       
  2604   // even in its subfields (as defined by the CPU immediate fields,
       
  2605   // if the CPU splits constants across multiple instructions).
       
  2606   return (char*)-1;
       
  2607 }
       
  2608 
       
  2609 #define MAX_ERROR_COUNT 100
       
  2610 #define SYS_THREAD_ERROR 0xffffffffUL
       
  2611 
       
  2612 void os::pd_start_thread(Thread* thread) {
       
  2613   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
       
  2614   // Returns previous suspend state:
       
  2615   // 0:  Thread was not suspended
       
  2616   // 1:  Thread is running now
       
  2617   // >1: Thread is still suspended.
       
  2618   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
       
  2619 }
       
  2620 
       
  2621 size_t os::read(int fd, void *buf, unsigned int nBytes) {
       
  2622   return ::read(fd, buf, nBytes);
       
  2623 }
       
  2624 
       
  2625 class HighResolutionInterval {
       
  2626   // The default timer resolution seems to be 10 milliseconds.
       
  2627   // (Where is this written down?)
       
  2628   // If someone wants to sleep for only a fraction of the default,
       
  2629   // then we set the timer resolution down to 1 millisecond for
       
  2630   // the duration of their interval.
       
  2631   // We carefully set the resolution back, since otherwise we
       
  2632   // seem to incur an overhead (3%?) that we don't need.
       
  2633   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
       
  2634   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
       
  2635   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
       
  2636   // timeBeginPeriod() if the relative error exceeded some threshold.
       
  2637   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
       
  2638   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
       
  2639   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
       
  2640   // resolution timers running.
       
  2641 private:
       
  2642     jlong resolution;
       
  2643 public:
       
  2644   HighResolutionInterval(jlong ms) {
       
  2645     resolution = ms % 10L;
       
  2646     if (resolution != 0) {
       
  2647       MMRESULT result = timeBeginPeriod(1L);
       
  2648     }
       
  2649   }
       
  2650   ~HighResolutionInterval() {
       
  2651     if (resolution != 0) {
       
  2652       MMRESULT result = timeEndPeriod(1L);
       
  2653     }
       
  2654     resolution = 0L;
       
  2655   }
       
  2656 };
       
  2657 
       
  2658 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
       
  2659   jlong limit = (jlong) MAXDWORD;
       
  2660 
       
  2661   while(ms > limit) {
       
  2662     int res;
       
  2663     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
       
  2664       return res;
       
  2665     ms -= limit;
       
  2666   }
       
  2667 
       
  2668   assert(thread == Thread::current(),  "thread consistency check");
       
  2669   OSThread* osthread = thread->osthread();
       
  2670   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
       
  2671   int result;
       
  2672   if (interruptable) {
       
  2673     assert(thread->is_Java_thread(), "must be java thread");
       
  2674     JavaThread *jt = (JavaThread *) thread;
       
  2675     ThreadBlockInVM tbivm(jt);
       
  2676 
       
  2677     jt->set_suspend_equivalent();
       
  2678     // cleared by handle_special_suspend_equivalent_condition() or
       
  2679     // java_suspend_self() via check_and_wait_while_suspended()
       
  2680 
       
  2681     HANDLE events[1];
       
  2682     events[0] = osthread->interrupt_event();
       
  2683     HighResolutionInterval *phri=NULL;
       
  2684     if(!ForceTimeHighResolution)
       
  2685       phri = new HighResolutionInterval( ms );
       
  2686     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
       
  2687       result = OS_TIMEOUT;
       
  2688     } else {
       
  2689       ResetEvent(osthread->interrupt_event());
       
  2690       osthread->set_interrupted(false);
       
  2691       result = OS_INTRPT;
       
  2692     }
       
  2693     delete phri; //if it is NULL, harmless
       
  2694 
       
  2695     // were we externally suspended while we were waiting?
       
  2696     jt->check_and_wait_while_suspended();
       
  2697   } else {
       
  2698     assert(!thread->is_Java_thread(), "must not be java thread");
       
  2699     Sleep((long) ms);
       
  2700     result = OS_TIMEOUT;
       
  2701   }
       
  2702   return result;
       
  2703 }
       
  2704 
       
  2705 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
       
  2706 void os::infinite_sleep() {
       
  2707   while (true) {    // sleep forever ...
       
  2708     Sleep(100000);  // ... 100 seconds at a time
       
  2709   }
       
  2710 }
       
  2711 
       
  2712 typedef BOOL (WINAPI * STTSignature)(void) ;
       
  2713 
       
  2714 os::YieldResult os::NakedYield() {
       
  2715   // Use either SwitchToThread() or Sleep(0)
       
  2716   // Consider passing back the return value from SwitchToThread().
       
  2717   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
       
  2718   // In that case we revert to Sleep(0).
       
  2719   static volatile STTSignature stt = (STTSignature) 1 ;
       
  2720 
       
  2721   if (stt == ((STTSignature) 1)) {
       
  2722     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
       
  2723     // It's OK if threads race during initialization as the operation above is idempotent.
       
  2724   }
       
  2725   if (stt != NULL) {
       
  2726     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
       
  2727   } else {
       
  2728     Sleep (0) ;
       
  2729   }
       
  2730   return os::YIELD_UNKNOWN ;
       
  2731 }
       
  2732 
       
  2733 void os::yield() {  os::NakedYield(); }
       
  2734 
       
  2735 void os::yield_all(int attempts) {
       
  2736   // Yields to all threads, including threads with lower priorities
       
  2737   Sleep(1);
       
  2738 }
       
  2739 
       
  2740 // Win32 only gives you access to seven real priorities at a time,
       
  2741 // so we compress Java's ten down to seven.  It would be better
       
  2742 // if we dynamically adjusted relative priorities.
       
  2743 
       
  2744 int os::java_to_os_priority[MaxPriority + 1] = {
       
  2745   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
       
  2746   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
       
  2747   THREAD_PRIORITY_LOWEST,                       // 2
       
  2748   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
       
  2749   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
       
  2750   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
       
  2751   THREAD_PRIORITY_NORMAL,                       // 6
       
  2752   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
       
  2753   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
       
  2754   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
       
  2755   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
       
  2756 };
       
  2757 
       
  2758 int prio_policy1[MaxPriority + 1] = {
       
  2759   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
       
  2760   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
       
  2761   THREAD_PRIORITY_LOWEST,                       // 2
       
  2762   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
       
  2763   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
       
  2764   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
       
  2765   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
       
  2766   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
       
  2767   THREAD_PRIORITY_HIGHEST,                      // 8
       
  2768   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
       
  2769   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
       
  2770 };
       
  2771 
       
  2772 static int prio_init() {
       
  2773   // If ThreadPriorityPolicy is 1, switch tables
       
  2774   if (ThreadPriorityPolicy == 1) {
       
  2775     int i;
       
  2776     for (i = 0; i < MaxPriority + 1; i++) {
       
  2777       os::java_to_os_priority[i] = prio_policy1[i];
       
  2778     }
       
  2779   }
       
  2780   return 0;
       
  2781 }
       
  2782 
       
  2783 OSReturn os::set_native_priority(Thread* thread, int priority) {
       
  2784   if (!UseThreadPriorities) return OS_OK;
       
  2785   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
       
  2786   return ret ? OS_OK : OS_ERR;
       
  2787 }
       
  2788 
       
  2789 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
       
  2790   if ( !UseThreadPriorities ) {
       
  2791     *priority_ptr = java_to_os_priority[NormPriority];
       
  2792     return OS_OK;
       
  2793   }
       
  2794   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
       
  2795   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
       
  2796     assert(false, "GetThreadPriority failed");
       
  2797     return OS_ERR;
       
  2798   }
       
  2799   *priority_ptr = os_prio;
       
  2800   return OS_OK;
       
  2801 }
       
  2802 
       
  2803 
       
  2804 // Hint to the underlying OS that a task switch would not be good.
       
  2805 // Void return because it's a hint and can fail.
       
  2806 void os::hint_no_preempt() {}
       
  2807 
       
  2808 void os::interrupt(Thread* thread) {
       
  2809   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
       
  2810          "possibility of dangling Thread pointer");
       
  2811 
       
  2812   OSThread* osthread = thread->osthread();
       
  2813   osthread->set_interrupted(true);
       
  2814   // More than one thread can get here with the same value of osthread,
       
  2815   // resulting in multiple notifications.  We do, however, want the store
       
  2816   // to interrupted() to be visible to other threads before we post
       
  2817   // the interrupt event.
       
  2818   OrderAccess::release();
       
  2819   SetEvent(osthread->interrupt_event());
       
  2820   // For JSR166:  unpark after setting status
       
  2821   if (thread->is_Java_thread())
       
  2822     ((JavaThread*)thread)->parker()->unpark();
       
  2823 
       
  2824   ParkEvent * ev = thread->_ParkEvent ;
       
  2825   if (ev != NULL) ev->unpark() ;
       
  2826 
       
  2827 }
       
  2828 
       
  2829 
       
  2830 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
       
  2831   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
       
  2832          "possibility of dangling Thread pointer");
       
  2833 
       
  2834   OSThread* osthread = thread->osthread();
       
  2835   bool interrupted;
       
  2836   interrupted = osthread->interrupted();
       
  2837   if (clear_interrupted == true) {
       
  2838     osthread->set_interrupted(false);
       
  2839     ResetEvent(osthread->interrupt_event());
       
  2840   } // Otherwise leave the interrupted state alone
       
  2841 
       
  2842   return interrupted;
       
  2843 }
       
  2844 
       
  2845 // Get's a pc (hint) for a running thread. Currently used only for profiling.
       
  2846 ExtendedPC os::get_thread_pc(Thread* thread) {
       
  2847   CONTEXT context;
       
  2848   context.ContextFlags = CONTEXT_CONTROL;
       
  2849   HANDLE handle = thread->osthread()->thread_handle();
       
  2850 #ifdef _M_IA64
       
  2851   assert(0, "Fix get_thread_pc");
       
  2852   return ExtendedPC(NULL);
       
  2853 #else
       
  2854   if (GetThreadContext(handle, &context)) {
       
  2855 #ifdef _M_AMD64
       
  2856     return ExtendedPC((address) context.Rip);
       
  2857 #else
       
  2858     return ExtendedPC((address) context.Eip);
       
  2859 #endif
       
  2860   } else {
       
  2861     return ExtendedPC(NULL);
       
  2862   }
       
  2863 #endif
       
  2864 }
       
  2865 
       
  2866 // GetCurrentThreadId() returns DWORD
       
  2867 intx os::current_thread_id()          { return GetCurrentThreadId(); }
       
  2868 
       
  2869 static int _initial_pid = 0;
       
  2870 
       
  2871 int os::current_process_id()
       
  2872 {
       
  2873   return (_initial_pid ? _initial_pid : _getpid());
       
  2874 }
       
  2875 
       
  2876 int    os::win32::_vm_page_size       = 0;
       
  2877 int    os::win32::_vm_allocation_granularity = 0;
       
  2878 int    os::win32::_processor_type     = 0;
       
  2879 // Processor level is not available on non-NT systems, use vm_version instead
       
  2880 int    os::win32::_processor_level    = 0;
       
  2881 julong os::win32::_physical_memory    = 0;
       
  2882 size_t os::win32::_default_stack_size = 0;
       
  2883 
       
  2884          intx os::win32::_os_thread_limit    = 0;
       
  2885 volatile intx os::win32::_os_thread_count    = 0;
       
  2886 
       
  2887 bool   os::win32::_is_nt              = false;
       
  2888 
       
  2889 
       
  2890 void os::win32::initialize_system_info() {
       
  2891   SYSTEM_INFO si;
       
  2892   GetSystemInfo(&si);
       
  2893   _vm_page_size    = si.dwPageSize;
       
  2894   _vm_allocation_granularity = si.dwAllocationGranularity;
       
  2895   _processor_type  = si.dwProcessorType;
       
  2896   _processor_level = si.wProcessorLevel;
       
  2897   _processor_count = si.dwNumberOfProcessors;
       
  2898 
       
  2899   MEMORYSTATUS ms;
       
  2900   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
       
  2901   // dwMemoryLoad (% of memory in use)
       
  2902   GlobalMemoryStatus(&ms);
       
  2903   _physical_memory = ms.dwTotalPhys;
       
  2904 
       
  2905   OSVERSIONINFO oi;
       
  2906   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
       
  2907   GetVersionEx(&oi);
       
  2908   switch(oi.dwPlatformId) {
       
  2909     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
       
  2910     case VER_PLATFORM_WIN32_NT:      _is_nt = true;  break;
       
  2911     default: fatal("Unknown platform");
       
  2912   }
       
  2913 
       
  2914   _default_stack_size = os::current_stack_size();
       
  2915   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
       
  2916   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
       
  2917     "stack size not a multiple of page size");
       
  2918 
       
  2919   initialize_performance_counter();
       
  2920 
       
  2921   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
       
  2922   // known to deadlock the system, if the VM issues to thread operations with
       
  2923   // a too high frequency, e.g., such as changing the priorities.
       
  2924   // The 6000 seems to work well - no deadlocks has been notices on the test
       
  2925   // programs that we have seen experience this problem.
       
  2926   if (!os::win32::is_nt()) {
       
  2927     StarvationMonitorInterval = 6000;
       
  2928   }
       
  2929 }
       
  2930 
       
  2931 
       
  2932 void os::win32::setmode_streams() {
       
  2933   _setmode(_fileno(stdin), _O_BINARY);
       
  2934   _setmode(_fileno(stdout), _O_BINARY);
       
  2935   _setmode(_fileno(stderr), _O_BINARY);
       
  2936 }
       
  2937 
       
  2938 
       
  2939 int os::message_box(const char* title, const char* message) {
       
  2940   int result = MessageBox(NULL, message, title,
       
  2941                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
       
  2942   return result == IDYES;
       
  2943 }
       
  2944 
       
  2945 int os::allocate_thread_local_storage() {
       
  2946   return TlsAlloc();
       
  2947 }
       
  2948 
       
  2949 
       
  2950 void os::free_thread_local_storage(int index) {
       
  2951   TlsFree(index);
       
  2952 }
       
  2953 
       
  2954 
       
  2955 void os::thread_local_storage_at_put(int index, void* value) {
       
  2956   TlsSetValue(index, value);
       
  2957   assert(thread_local_storage_at(index) == value, "Just checking");
       
  2958 }
       
  2959 
       
  2960 
       
  2961 void* os::thread_local_storage_at(int index) {
       
  2962   return TlsGetValue(index);
       
  2963 }
       
  2964 
       
  2965 
       
  2966 #ifndef PRODUCT
       
  2967 #ifndef _WIN64
       
  2968 // Helpers to check whether NX protection is enabled
       
  2969 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
       
  2970   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
       
  2971       pex->ExceptionRecord->NumberParameters > 0 &&
       
  2972       pex->ExceptionRecord->ExceptionInformation[0] ==
       
  2973       EXCEPTION_INFO_EXEC_VIOLATION) {
       
  2974     return EXCEPTION_EXECUTE_HANDLER;
       
  2975   }
       
  2976   return EXCEPTION_CONTINUE_SEARCH;
       
  2977 }
       
  2978 
       
  2979 void nx_check_protection() {
       
  2980   // If NX is enabled we'll get an exception calling into code on the stack
       
  2981   char code[] = { (char)0xC3 }; // ret
       
  2982   void *code_ptr = (void *)code;
       
  2983   __try {
       
  2984     __asm call code_ptr
       
  2985   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
       
  2986     tty->print_raw_cr("NX protection detected.");
       
  2987   }
       
  2988 }
       
  2989 #endif // _WIN64
       
  2990 #endif // PRODUCT
       
  2991 
       
  2992 // this is called _before_ the global arguments have been parsed
       
  2993 void os::init(void) {
       
  2994   _initial_pid = _getpid();
       
  2995 
       
  2996   init_random(1234567);
       
  2997 
       
  2998   win32::initialize_system_info();
       
  2999   win32::setmode_streams();
       
  3000   init_page_sizes((size_t) win32::vm_page_size());
       
  3001 
       
  3002   // For better scalability on MP systems (must be called after initialize_system_info)
       
  3003 #ifndef PRODUCT
       
  3004   if (is_MP()) {
       
  3005     NoYieldsInMicrolock = true;
       
  3006   }
       
  3007 #endif
       
  3008   // Initialize main_process and main_thread
       
  3009   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
       
  3010   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
       
  3011                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
       
  3012     fatal("DuplicateHandle failed\n");
       
  3013   }
       
  3014   main_thread_id = (int) GetCurrentThreadId();
       
  3015 }
       
  3016 
       
  3017 // To install functions for atexit processing
       
  3018 extern "C" {
       
  3019   static void perfMemory_exit_helper() {
       
  3020     perfMemory_exit();
       
  3021   }
       
  3022 }
       
  3023 
       
  3024 
       
  3025 // this is called _after_ the global arguments have been parsed
       
  3026 jint os::init_2(void) {
       
  3027   // Allocate a single page and mark it as readable for safepoint polling
       
  3028   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
       
  3029   guarantee( polling_page != NULL, "Reserve Failed for polling page");
       
  3030 
       
  3031   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
       
  3032   guarantee( return_page != NULL, "Commit Failed for polling page");
       
  3033 
       
  3034   os::set_polling_page( polling_page );
       
  3035 
       
  3036 #ifndef PRODUCT
       
  3037   if( Verbose && PrintMiscellaneous )
       
  3038     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
       
  3039 #endif
       
  3040 
       
  3041   if (!UseMembar) {
       
  3042     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_EXECUTE_READWRITE);
       
  3043     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
       
  3044 
       
  3045     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_EXECUTE_READWRITE);
       
  3046     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
       
  3047 
       
  3048     os::set_memory_serialize_page( mem_serialize_page );
       
  3049 
       
  3050 #ifndef PRODUCT
       
  3051     if(Verbose && PrintMiscellaneous)
       
  3052       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
       
  3053 #endif
       
  3054 }
       
  3055 
       
  3056   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
       
  3057 
       
  3058   // Setup Windows Exceptions
       
  3059 
       
  3060   // On Itanium systems, Structured Exception Handling does not
       
  3061   // work since stack frames must be walkable by the OS.  Since
       
  3062   // much of our code is dynamically generated, and we do not have
       
  3063   // proper unwind .xdata sections, the system simply exits
       
  3064   // rather than delivering the exception.  To work around
       
  3065   // this we use VectorExceptions instead.
       
  3066 #ifdef _WIN64
       
  3067   if (UseVectoredExceptions) {
       
  3068     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
       
  3069   }
       
  3070 #endif
       
  3071 
       
  3072   // for debugging float code generation bugs
       
  3073   if (ForceFloatExceptions) {
       
  3074 #ifndef  _WIN64
       
  3075     static long fp_control_word = 0;
       
  3076     __asm { fstcw fp_control_word }
       
  3077     // see Intel PPro Manual, Vol. 2, p 7-16
       
  3078     const long precision = 0x20;
       
  3079     const long underflow = 0x10;
       
  3080     const long overflow  = 0x08;
       
  3081     const long zero_div  = 0x04;
       
  3082     const long denorm    = 0x02;
       
  3083     const long invalid   = 0x01;
       
  3084     fp_control_word |= invalid;
       
  3085     __asm { fldcw fp_control_word }
       
  3086 #endif
       
  3087   }
       
  3088 
       
  3089   // Initialize HPI.
       
  3090   jint hpi_result = hpi::initialize();
       
  3091   if (hpi_result != JNI_OK) { return hpi_result; }
       
  3092 
       
  3093   // If stack_commit_size is 0, windows will reserve the default size,
       
  3094   // but only commit a small portion of it.
       
  3095   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
       
  3096   size_t default_reserve_size = os::win32::default_stack_size();
       
  3097   size_t actual_reserve_size = stack_commit_size;
       
  3098   if (stack_commit_size < default_reserve_size) {
       
  3099     // If stack_commit_size == 0, we want this too
       
  3100     actual_reserve_size = default_reserve_size;
       
  3101   }
       
  3102 
       
  3103   JavaThread::set_stack_size_at_create(stack_commit_size);
       
  3104 
       
  3105   // Calculate theoretical max. size of Threads to guard gainst artifical
       
  3106   // out-of-memory situations, where all available address-space has been
       
  3107   // reserved by thread stacks.
       
  3108   assert(actual_reserve_size != 0, "Must have a stack");
       
  3109 
       
  3110   // Calculate the thread limit when we should start doing Virtual Memory
       
  3111   // banging. Currently when the threads will have used all but 200Mb of space.
       
  3112   //
       
  3113   // TODO: consider performing a similar calculation for commit size instead
       
  3114   // as reserve size, since on a 64-bit platform we'll run into that more
       
  3115   // often than running out of virtual memory space.  We can use the
       
  3116   // lower value of the two calculations as the os_thread_limit.
       
  3117   size_t max_address_space = ((size_t)1 << (BitsPerOop - 1)) - (200 * K * K);
       
  3118   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
       
  3119 
       
  3120   // at exit methods are called in the reverse order of their registration.
       
  3121   // there is no limit to the number of functions registered. atexit does
       
  3122   // not set errno.
       
  3123 
       
  3124   if (PerfAllowAtExitRegistration) {
       
  3125     // only register atexit functions if PerfAllowAtExitRegistration is set.
       
  3126     // atexit functions can be delayed until process exit time, which
       
  3127     // can be problematic for embedded VM situations. Embedded VMs should
       
  3128     // call DestroyJavaVM() to assure that VM resources are released.
       
  3129 
       
  3130     // note: perfMemory_exit_helper atexit function may be removed in
       
  3131     // the future if the appropriate cleanup code can be added to the
       
  3132     // VM_Exit VMOperation's doit method.
       
  3133     if (atexit(perfMemory_exit_helper) != 0) {
       
  3134       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
       
  3135     }
       
  3136   }
       
  3137 
       
  3138   // initialize PSAPI or ToolHelp for fatal error handler
       
  3139   if (win32::is_nt()) _init_psapi();
       
  3140   else _init_toolhelp();
       
  3141 
       
  3142 #ifndef _WIN64
       
  3143   // Print something if NX is enabled (win32 on AMD64)
       
  3144   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
       
  3145 #endif
       
  3146 
       
  3147   // initialize thread priority policy
       
  3148   prio_init();
       
  3149 
       
  3150   return JNI_OK;
       
  3151 }
       
  3152 
       
  3153 
       
  3154 // Mark the polling page as unreadable
       
  3155 void os::make_polling_page_unreadable(void) {
       
  3156   DWORD old_status;
       
  3157   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
       
  3158     fatal("Could not disable polling page");
       
  3159 };
       
  3160 
       
  3161 // Mark the polling page as readable
       
  3162 void os::make_polling_page_readable(void) {
       
  3163   DWORD old_status;
       
  3164   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
       
  3165     fatal("Could not enable polling page");
       
  3166 };
       
  3167 
       
  3168 
       
  3169 int os::stat(const char *path, struct stat *sbuf) {
       
  3170   char pathbuf[MAX_PATH];
       
  3171   if (strlen(path) > MAX_PATH - 1) {
       
  3172     errno = ENAMETOOLONG;
       
  3173     return -1;
       
  3174   }
       
  3175   hpi::native_path(strcpy(pathbuf, path));
       
  3176   int ret = ::stat(pathbuf, sbuf);
       
  3177   if (sbuf != NULL && UseUTCFileTimestamp) {
       
  3178     // Fix for 6539723.  st_mtime returned from stat() is dependent on
       
  3179     // the system timezone and so can return different values for the
       
  3180     // same file if/when daylight savings time changes.  This adjustment
       
  3181     // makes sure the same timestamp is returned regardless of the TZ.
       
  3182     //
       
  3183     // See:
       
  3184     // http://msdn.microsoft.com/library/
       
  3185     //   default.asp?url=/library/en-us/sysinfo/base/
       
  3186     //   time_zone_information_str.asp
       
  3187     // and
       
  3188     // http://msdn.microsoft.com/library/default.asp?url=
       
  3189     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
       
  3190     //
       
  3191     // NOTE: there is a insidious bug here:  If the timezone is changed
       
  3192     // after the call to stat() but before 'GetTimeZoneInformation()', then
       
  3193     // the adjustment we do here will be wrong and we'll return the wrong
       
  3194     // value (which will likely end up creating an invalid class data
       
  3195     // archive).  Absent a better API for this, or some time zone locking
       
  3196     // mechanism, we'll have to live with this risk.
       
  3197     TIME_ZONE_INFORMATION tz;
       
  3198     DWORD tzid = GetTimeZoneInformation(&tz);
       
  3199     int daylightBias =
       
  3200       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
       
  3201     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
       
  3202   }
       
  3203   return ret;
       
  3204 }
       
  3205 
       
  3206 
       
  3207 #define FT2INT64(ft) \
       
  3208   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
       
  3209 
       
  3210 
       
  3211 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
       
  3212 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
       
  3213 // of a thread.
       
  3214 //
       
  3215 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
       
  3216 // the fast estimate available on the platform.
       
  3217 
       
  3218 // current_thread_cpu_time() is not optimized for Windows yet
       
  3219 jlong os::current_thread_cpu_time() {
       
  3220   // return user + sys since the cost is the same
       
  3221   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
       
  3222 }
       
  3223 
       
  3224 jlong os::thread_cpu_time(Thread* thread) {
       
  3225   // consistent with what current_thread_cpu_time() returns.
       
  3226   return os::thread_cpu_time(thread, true /* user+sys */);
       
  3227 }
       
  3228 
       
  3229 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
       
  3230   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
       
  3231 }
       
  3232 
       
  3233 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
       
  3234   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
       
  3235   // If this function changes, os::is_thread_cpu_time_supported() should too
       
  3236   if (os::win32::is_nt()) {
       
  3237     FILETIME CreationTime;
       
  3238     FILETIME ExitTime;
       
  3239     FILETIME KernelTime;
       
  3240     FILETIME UserTime;
       
  3241 
       
  3242     if ( GetThreadTimes(thread->osthread()->thread_handle(),
       
  3243                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
       
  3244       return -1;
       
  3245     else
       
  3246       if (user_sys_cpu_time) {
       
  3247         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
       
  3248       } else {
       
  3249         return FT2INT64(UserTime) * 100;
       
  3250       }
       
  3251   } else {
       
  3252     return (jlong) timeGetTime() * 1000000;
       
  3253   }
       
  3254 }
       
  3255 
       
  3256 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
       
  3257   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
       
  3258   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
       
  3259   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
       
  3260   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
       
  3261 }
       
  3262 
       
  3263 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
       
  3264   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
       
  3265   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
       
  3266   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
       
  3267   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
       
  3268 }
       
  3269 
       
  3270 bool os::is_thread_cpu_time_supported() {
       
  3271   // see os::thread_cpu_time
       
  3272   if (os::win32::is_nt()) {
       
  3273     FILETIME CreationTime;
       
  3274     FILETIME ExitTime;
       
  3275     FILETIME KernelTime;
       
  3276     FILETIME UserTime;
       
  3277 
       
  3278     if ( GetThreadTimes(GetCurrentThread(),
       
  3279                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
       
  3280       return false;
       
  3281     else
       
  3282       return true;
       
  3283   } else {
       
  3284     return false;
       
  3285   }
       
  3286 }
       
  3287 
       
  3288 // Windows does't provide a loadavg primitive so this is stubbed out for now.
       
  3289 // It does have primitives (PDH API) to get CPU usage and run queue length.
       
  3290 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
       
  3291 // If we wanted to implement loadavg on Windows, we have a few options:
       
  3292 //
       
  3293 // a) Query CPU usage and run queue length and "fake" an answer by
       
  3294 //    returning the CPU usage if it's under 100%, and the run queue
       
  3295 //    length otherwise.  It turns out that querying is pretty slow
       
  3296 //    on Windows, on the order of 200 microseconds on a fast machine.
       
  3297 //    Note that on the Windows the CPU usage value is the % usage
       
  3298 //    since the last time the API was called (and the first call
       
  3299 //    returns 100%), so we'd have to deal with that as well.
       
  3300 //
       
  3301 // b) Sample the "fake" answer using a sampling thread and store
       
  3302 //    the answer in a global variable.  The call to loadavg would
       
  3303 //    just return the value of the global, avoiding the slow query.
       
  3304 //
       
  3305 // c) Sample a better answer using exponential decay to smooth the
       
  3306 //    value.  This is basically the algorithm used by UNIX kernels.
       
  3307 //
       
  3308 // Note that sampling thread starvation could affect both (b) and (c).
       
  3309 int os::loadavg(double loadavg[], int nelem) {
       
  3310   return -1;
       
  3311 }
       
  3312 
       
  3313 
       
  3314 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
       
  3315 bool os::dont_yield() {
       
  3316   return DontYieldALot;
       
  3317 }
       
  3318 
       
  3319 // Is a (classpath) directory empty?
       
  3320 bool os::dir_is_empty(const char* path) {
       
  3321   WIN32_FIND_DATA fd;
       
  3322   HANDLE f = FindFirstFile(path, &fd);
       
  3323   if (f == INVALID_HANDLE_VALUE) {
       
  3324     return true;
       
  3325   }
       
  3326   FindClose(f);
       
  3327   return false;
       
  3328 }
       
  3329 
       
  3330 // create binary file, rewriting existing file if required
       
  3331 int os::create_binary_file(const char* path, bool rewrite_existing) {
       
  3332   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
       
  3333   if (!rewrite_existing) {
       
  3334     oflags |= _O_EXCL;
       
  3335   }
       
  3336   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
       
  3337 }
       
  3338 
       
  3339 // return current position of file pointer
       
  3340 jlong os::current_file_offset(int fd) {
       
  3341   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
       
  3342 }
       
  3343 
       
  3344 // move file pointer to the specified offset
       
  3345 jlong os::seek_to_file_offset(int fd, jlong offset) {
       
  3346   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
       
  3347 }
       
  3348 
       
  3349 
       
  3350 // Map a block of memory.
       
  3351 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
       
  3352                      char *addr, size_t bytes, bool read_only,
       
  3353                      bool allow_exec) {
       
  3354   HANDLE hFile;
       
  3355   char* base;
       
  3356 
       
  3357   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
       
  3358                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
       
  3359   if (hFile == NULL) {
       
  3360     if (PrintMiscellaneous && Verbose) {
       
  3361       DWORD err = GetLastError();
       
  3362       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
       
  3363     }
       
  3364     return NULL;
       
  3365   }
       
  3366 
       
  3367   if (allow_exec) {
       
  3368     // CreateFileMapping/MapViewOfFileEx can't map executable memory
       
  3369     // unless it comes from a PE image (which the shared archive is not.)
       
  3370     // Even VirtualProtect refuses to give execute access to mapped memory
       
  3371     // that was not previously executable.
       
  3372     //
       
  3373     // Instead, stick the executable region in anonymous memory.  Yuck.
       
  3374     // Penalty is that ~4 pages will not be shareable - in the future
       
  3375     // we might consider DLLizing the shared archive with a proper PE
       
  3376     // header so that mapping executable + sharing is possible.
       
  3377 
       
  3378     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
       
  3379                                 PAGE_READWRITE);
       
  3380     if (base == NULL) {
       
  3381       if (PrintMiscellaneous && Verbose) {
       
  3382         DWORD err = GetLastError();
       
  3383         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
       
  3384       }
       
  3385       CloseHandle(hFile);
       
  3386       return NULL;
       
  3387     }
       
  3388 
       
  3389     DWORD bytes_read;
       
  3390     OVERLAPPED overlapped;
       
  3391     overlapped.Offset = (DWORD)file_offset;
       
  3392     overlapped.OffsetHigh = 0;
       
  3393     overlapped.hEvent = NULL;
       
  3394     // ReadFile guarantees that if the return value is true, the requested
       
  3395     // number of bytes were read before returning.
       
  3396     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
       
  3397     if (!res) {
       
  3398       if (PrintMiscellaneous && Verbose) {
       
  3399         DWORD err = GetLastError();
       
  3400         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
       
  3401       }
       
  3402       release_memory(base, bytes);
       
  3403       CloseHandle(hFile);
       
  3404       return NULL;
       
  3405     }
       
  3406   } else {
       
  3407     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
       
  3408                                     NULL /*file_name*/);
       
  3409     if (hMap == NULL) {
       
  3410       if (PrintMiscellaneous && Verbose) {
       
  3411         DWORD err = GetLastError();
       
  3412         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
       
  3413       }
       
  3414       CloseHandle(hFile);
       
  3415       return NULL;
       
  3416     }
       
  3417 
       
  3418     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
       
  3419     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
       
  3420                                   (DWORD)bytes, addr);
       
  3421     if (base == NULL) {
       
  3422       if (PrintMiscellaneous && Verbose) {
       
  3423         DWORD err = GetLastError();
       
  3424         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
       
  3425       }
       
  3426       CloseHandle(hMap);
       
  3427       CloseHandle(hFile);
       
  3428       return NULL;
       
  3429     }
       
  3430 
       
  3431     if (CloseHandle(hMap) == 0) {
       
  3432       if (PrintMiscellaneous && Verbose) {
       
  3433         DWORD err = GetLastError();
       
  3434         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
       
  3435       }
       
  3436       CloseHandle(hFile);
       
  3437       return base;
       
  3438     }
       
  3439   }
       
  3440 
       
  3441   if (allow_exec) {
       
  3442     DWORD old_protect;
       
  3443     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
       
  3444     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
       
  3445 
       
  3446     if (!res) {
       
  3447       if (PrintMiscellaneous && Verbose) {
       
  3448         DWORD err = GetLastError();
       
  3449         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
       
  3450       }
       
  3451       // Don't consider this a hard error, on IA32 even if the
       
  3452       // VirtualProtect fails, we should still be able to execute
       
  3453       CloseHandle(hFile);
       
  3454       return base;
       
  3455     }
       
  3456   }
       
  3457 
       
  3458   if (CloseHandle(hFile) == 0) {
       
  3459     if (PrintMiscellaneous && Verbose) {
       
  3460       DWORD err = GetLastError();
       
  3461       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
       
  3462     }
       
  3463     return base;
       
  3464   }
       
  3465 
       
  3466   return base;
       
  3467 }
       
  3468 
       
  3469 
       
  3470 // Remap a block of memory.
       
  3471 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
       
  3472                        char *addr, size_t bytes, bool read_only,
       
  3473                        bool allow_exec) {
       
  3474   // This OS does not allow existing memory maps to be remapped so we
       
  3475   // have to unmap the memory before we remap it.
       
  3476   if (!os::unmap_memory(addr, bytes)) {
       
  3477     return NULL;
       
  3478   }
       
  3479 
       
  3480   // There is a very small theoretical window between the unmap_memory()
       
  3481   // call above and the map_memory() call below where a thread in native
       
  3482   // code may be able to access an address that is no longer mapped.
       
  3483 
       
  3484   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
       
  3485                         allow_exec);
       
  3486 }
       
  3487 
       
  3488 
       
  3489 // Unmap a block of memory.
       
  3490 // Returns true=success, otherwise false.
       
  3491 
       
  3492 bool os::unmap_memory(char* addr, size_t bytes) {
       
  3493   BOOL result = UnmapViewOfFile(addr);
       
  3494   if (result == 0) {
       
  3495     if (PrintMiscellaneous && Verbose) {
       
  3496       DWORD err = GetLastError();
       
  3497       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
       
  3498     }
       
  3499     return false;
       
  3500   }
       
  3501   return true;
       
  3502 }
       
  3503 
       
  3504 void os::pause() {
       
  3505   char filename[MAX_PATH];
       
  3506   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
       
  3507     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
       
  3508   } else {
       
  3509     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
       
  3510   }
       
  3511 
       
  3512   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
       
  3513   if (fd != -1) {
       
  3514     struct stat buf;
       
  3515     close(fd);
       
  3516     while (::stat(filename, &buf) == 0) {
       
  3517       Sleep(100);
       
  3518     }
       
  3519   } else {
       
  3520     jio_fprintf(stderr,
       
  3521       "Could not open pause file '%s', continuing immediately.\n", filename);
       
  3522   }
       
  3523 }
       
  3524 
       
  3525 // An Event wraps a win32 "CreateEvent" kernel handle.
       
  3526 //
       
  3527 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
       
  3528 //
       
  3529 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
       
  3530 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
       
  3531 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
       
  3532 //     In addition, an unpark() operation might fetch the handle field, but the
       
  3533 //     event could recycle between the fetch and the SetEvent() operation.
       
  3534 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
       
  3535 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
       
  3536 //     on an stale but recycled handle would be harmless, but in practice this might
       
  3537 //     confuse other non-Sun code, so it's not a viable approach.
       
  3538 //
       
  3539 // 2:  Once a win32 event handle is associated with an Event, it remains associated
       
  3540 //     with the Event.  The event handle is never closed.  This could be construed
       
  3541 //     as handle leakage, but only up to the maximum # of threads that have been extant
       
  3542 //     at any one time.  This shouldn't be an issue, as windows platforms typically
       
  3543 //     permit a process to have hundreds of thousands of open handles.
       
  3544 //
       
  3545 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
       
  3546 //     and release unused handles.
       
  3547 //
       
  3548 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
       
  3549 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
       
  3550 //
       
  3551 // 5.  Use an RCU-like mechanism (Read-Copy Update).
       
  3552 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
       
  3553 //
       
  3554 // We use (2).
       
  3555 //
       
  3556 // TODO-FIXME:
       
  3557 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
       
  3558 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
       
  3559 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
       
  3560 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
       
  3561 //     into a single win32 CreateEvent() handle.
       
  3562 //
       
  3563 // _Event transitions in park()
       
  3564 //   -1 => -1 : illegal
       
  3565 //    1 =>  0 : pass - return immediately
       
  3566 //    0 => -1 : block
       
  3567 //
       
  3568 // _Event serves as a restricted-range semaphore :
       
  3569 //    -1 : thread is blocked
       
  3570 //     0 : neutral  - thread is running or ready
       
  3571 //     1 : signaled - thread is running or ready
       
  3572 //
       
  3573 // Another possible encoding of _Event would be
       
  3574 // with explicit "PARKED" and "SIGNALED" bits.
       
  3575 
       
  3576 int os::PlatformEvent::park (jlong Millis) {
       
  3577     guarantee (_ParkHandle != NULL , "Invariant") ;
       
  3578     guarantee (Millis > 0          , "Invariant") ;
       
  3579     int v ;
       
  3580 
       
  3581     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
       
  3582     // the initial park() operation.
       
  3583 
       
  3584     for (;;) {
       
  3585         v = _Event ;
       
  3586         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
       
  3587     }
       
  3588     guarantee ((v == 0) || (v == 1), "invariant") ;
       
  3589     if (v != 0) return OS_OK ;
       
  3590 
       
  3591     // Do this the hard way by blocking ...
       
  3592     // TODO: consider a brief spin here, gated on the success of recent
       
  3593     // spin attempts by this thread.
       
  3594     //
       
  3595     // We decompose long timeouts into series of shorter timed waits.
       
  3596     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
       
  3597     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
       
  3598     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
       
  3599     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
       
  3600     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
       
  3601     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
       
  3602     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
       
  3603     // for the already waited time.  This policy does not admit any new outcomes.
       
  3604     // In the future, however, we might want to track the accumulated wait time and
       
  3605     // adjust Millis accordingly if we encounter a spurious wakeup.
       
  3606 
       
  3607     const int MAXTIMEOUT = 0x10000000 ;
       
  3608     DWORD rv = WAIT_TIMEOUT ;
       
  3609     while (_Event < 0 && Millis > 0) {
       
  3610        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
       
  3611        if (Millis > MAXTIMEOUT) {
       
  3612           prd = MAXTIMEOUT ;
       
  3613        }
       
  3614        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
       
  3615        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
       
  3616        if (rv == WAIT_TIMEOUT) {
       
  3617            Millis -= prd ;
       
  3618        }
       
  3619     }
       
  3620     v = _Event ;
       
  3621     _Event = 0 ;
       
  3622     OrderAccess::fence() ;
       
  3623     // If we encounter a nearly simultanous timeout expiry and unpark()
       
  3624     // we return OS_OK indicating we awoke via unpark().
       
  3625     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
       
  3626     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
       
  3627 }
       
  3628 
       
  3629 void os::PlatformEvent::park () {
       
  3630     guarantee (_ParkHandle != NULL, "Invariant") ;
       
  3631     // Invariant: Only the thread associated with the Event/PlatformEvent
       
  3632     // may call park().
       
  3633     int v ;
       
  3634     for (;;) {
       
  3635         v = _Event ;
       
  3636         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
       
  3637     }
       
  3638     guarantee ((v == 0) || (v == 1), "invariant") ;
       
  3639     if (v != 0) return ;
       
  3640 
       
  3641     // Do this the hard way by blocking ...
       
  3642     // TODO: consider a brief spin here, gated on the success of recent
       
  3643     // spin attempts by this thread.
       
  3644     while (_Event < 0) {
       
  3645        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
       
  3646        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
       
  3647     }
       
  3648 
       
  3649     // Usually we'll find _Event == 0 at this point, but as
       
  3650     // an optional optimization we clear it, just in case can
       
  3651     // multiple unpark() operations drove _Event up to 1.
       
  3652     _Event = 0 ;
       
  3653     OrderAccess::fence() ;
       
  3654     guarantee (_Event >= 0, "invariant") ;
       
  3655 }
       
  3656 
       
  3657 void os::PlatformEvent::unpark() {
       
  3658   guarantee (_ParkHandle != NULL, "Invariant") ;
       
  3659   int v ;
       
  3660   for (;;) {
       
  3661       v = _Event ;      // Increment _Event if it's < 1.
       
  3662       if (v > 0) {
       
  3663          // If it's already signaled just return.
       
  3664          // The LD of _Event could have reordered or be satisfied
       
  3665          // by a read-aside from this processor's write buffer.
       
  3666          // To avoid problems execute a barrier and then
       
  3667          // ratify the value.  A degenerate CAS() would also work.
       
  3668          // Viz., CAS (v+0, &_Event, v) == v).
       
  3669          OrderAccess::fence() ;
       
  3670          if (_Event == v) return ;
       
  3671          continue ;
       
  3672       }
       
  3673       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
       
  3674   }
       
  3675   if (v < 0) {
       
  3676      ::SetEvent (_ParkHandle) ;
       
  3677   }
       
  3678 }
       
  3679 
       
  3680 
       
  3681 // JSR166
       
  3682 // -------------------------------------------------------
       
  3683 
       
  3684 /*
       
  3685  * The Windows implementation of Park is very straightforward: Basic
       
  3686  * operations on Win32 Events turn out to have the right semantics to
       
  3687  * use them directly. We opportunistically resuse the event inherited
       
  3688  * from Monitor.
       
  3689  */
       
  3690 
       
  3691 
       
  3692 void Parker::park(bool isAbsolute, jlong time) {
       
  3693   guarantee (_ParkEvent != NULL, "invariant") ;
       
  3694   // First, demultiplex/decode time arguments
       
  3695   if (time < 0) { // don't wait
       
  3696     return;
       
  3697   }
       
  3698   else if (time == 0) {
       
  3699     time = INFINITE;
       
  3700   }
       
  3701   else if  (isAbsolute) {
       
  3702     time -= os::javaTimeMillis(); // convert to relative time
       
  3703     if (time <= 0) // already elapsed
       
  3704       return;
       
  3705   }
       
  3706   else { // relative
       
  3707     time /= 1000000; // Must coarsen from nanos to millis
       
  3708     if (time == 0)   // Wait for the minimal time unit if zero
       
  3709       time = 1;
       
  3710   }
       
  3711 
       
  3712   JavaThread* thread = (JavaThread*)(Thread::current());
       
  3713   assert(thread->is_Java_thread(), "Must be JavaThread");
       
  3714   JavaThread *jt = (JavaThread *)thread;
       
  3715 
       
  3716   // Don't wait if interrupted or already triggered
       
  3717   if (Thread::is_interrupted(thread, false) ||
       
  3718     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
       
  3719     ResetEvent(_ParkEvent);
       
  3720     return;
       
  3721   }
       
  3722   else {
       
  3723     ThreadBlockInVM tbivm(jt);
       
  3724     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
       
  3725     jt->set_suspend_equivalent();
       
  3726 
       
  3727     WaitForSingleObject(_ParkEvent,  time);
       
  3728     ResetEvent(_ParkEvent);
       
  3729 
       
  3730     // If externally suspended while waiting, re-suspend
       
  3731     if (jt->handle_special_suspend_equivalent_condition()) {
       
  3732       jt->java_suspend_self();
       
  3733     }
       
  3734   }
       
  3735 }
       
  3736 
       
  3737 void Parker::unpark() {
       
  3738   guarantee (_ParkEvent != NULL, "invariant") ;
       
  3739   SetEvent(_ParkEvent);
       
  3740 }
       
  3741 
       
  3742 // Run the specified command in a separate process. Return its exit value,
       
  3743 // or -1 on failure (e.g. can't create a new process).
       
  3744 int os::fork_and_exec(char* cmd) {
       
  3745   STARTUPINFO si;
       
  3746   PROCESS_INFORMATION pi;
       
  3747 
       
  3748   memset(&si, 0, sizeof(si));
       
  3749   si.cb = sizeof(si);
       
  3750   memset(&pi, 0, sizeof(pi));
       
  3751   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
       
  3752                             cmd,    // command line
       
  3753                             NULL,   // process security attribute
       
  3754                             NULL,   // thread security attribute
       
  3755                             TRUE,   // inherits system handles
       
  3756                             0,      // no creation flags
       
  3757                             NULL,   // use parent's environment block
       
  3758                             NULL,   // use parent's starting directory
       
  3759                             &si,    // (in) startup information
       
  3760                             &pi);   // (out) process information
       
  3761 
       
  3762   if (rslt) {
       
  3763     // Wait until child process exits.
       
  3764     WaitForSingleObject(pi.hProcess, INFINITE);
       
  3765 
       
  3766     DWORD exit_code;
       
  3767     GetExitCodeProcess(pi.hProcess, &exit_code);
       
  3768 
       
  3769     // Close process and thread handles.
       
  3770     CloseHandle(pi.hProcess);
       
  3771     CloseHandle(pi.hThread);
       
  3772 
       
  3773     return (int)exit_code;
       
  3774   } else {
       
  3775     return -1;
       
  3776   }
       
  3777 }
       
  3778 
       
  3779 //--------------------------------------------------------------------------------------------------
       
  3780 // Non-product code
       
  3781 
       
  3782 static int mallocDebugIntervalCounter = 0;
       
  3783 static int mallocDebugCounter = 0;
       
  3784 bool os::check_heap(bool force) {
       
  3785   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
       
  3786   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
       
  3787     // Note: HeapValidate executes two hardware breakpoints when it finds something
       
  3788     // wrong; at these points, eax contains the address of the offending block (I think).
       
  3789     // To get to the exlicit error message(s) below, just continue twice.
       
  3790     HANDLE heap = GetProcessHeap();
       
  3791     { HeapLock(heap);
       
  3792       PROCESS_HEAP_ENTRY phe;
       
  3793       phe.lpData = NULL;
       
  3794       while (HeapWalk(heap, &phe) != 0) {
       
  3795         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
       
  3796             !HeapValidate(heap, 0, phe.lpData)) {
       
  3797           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
       
  3798           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
       
  3799           fatal("corrupted C heap");
       
  3800         }
       
  3801       }
       
  3802       int err = GetLastError();
       
  3803       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
       
  3804         fatal1("heap walk aborted with error %d", err);
       
  3805       }
       
  3806       HeapUnlock(heap);
       
  3807     }
       
  3808     mallocDebugIntervalCounter = 0;
       
  3809   }
       
  3810   return true;
       
  3811 }
       
  3812 
       
  3813 
       
  3814 #ifndef PRODUCT
       
  3815 bool os::find(address addr) {
       
  3816   // Nothing yet
       
  3817   return false;
       
  3818 }
       
  3819 #endif
       
  3820 
       
  3821 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
       
  3822   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
       
  3823 
       
  3824   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
       
  3825     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
       
  3826     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
       
  3827     address addr = (address) exceptionRecord->ExceptionInformation[1];
       
  3828 
       
  3829     if (os::is_memory_serialize_page(thread, addr))
       
  3830       return EXCEPTION_CONTINUE_EXECUTION;
       
  3831   }
       
  3832 
       
  3833   return EXCEPTION_CONTINUE_SEARCH;
       
  3834 }
       
  3835 
       
  3836 static int getLastErrorString(char *buf, size_t len)
       
  3837 {
       
  3838     long errval;
       
  3839 
       
  3840     if ((errval = GetLastError()) != 0)
       
  3841     {
       
  3842       /* DOS error */
       
  3843       size_t n = (size_t)FormatMessage(
       
  3844             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
       
  3845             NULL,
       
  3846             errval,
       
  3847             0,
       
  3848             buf,
       
  3849             (DWORD)len,
       
  3850             NULL);
       
  3851       if (n > 3) {
       
  3852         /* Drop final '.', CR, LF */
       
  3853         if (buf[n - 1] == '\n') n--;
       
  3854         if (buf[n - 1] == '\r') n--;
       
  3855         if (buf[n - 1] == '.') n--;
       
  3856         buf[n] = '\0';
       
  3857       }
       
  3858       return (int)n;
       
  3859     }
       
  3860 
       
  3861     if (errno != 0)
       
  3862     {
       
  3863       /* C runtime error that has no corresponding DOS error code */
       
  3864       const char *s = strerror(errno);
       
  3865       size_t n = strlen(s);
       
  3866       if (n >= len) n = len - 1;
       
  3867       strncpy(buf, s, n);
       
  3868       buf[n] = '\0';
       
  3869       return (int)n;
       
  3870     }
       
  3871     return 0;
       
  3872 }