src/hotspot/share/gc/g1/collectionSetChooser.cpp
changeset 53703 24341625d8f2
parent 51494 1906adbef2dc
equal deleted inserted replaced
53702:50a5d0353570 53703:24341625d8f2
     1 /*
     1 /*
     2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
     2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     7  * published by the Free Software Foundation.
    23  */
    23  */
    24 
    24 
    25 #include "precompiled.hpp"
    25 #include "precompiled.hpp"
    26 #include "gc/g1/collectionSetChooser.hpp"
    26 #include "gc/g1/collectionSetChooser.hpp"
    27 #include "gc/g1/g1CollectedHeap.inline.hpp"
    27 #include "gc/g1/g1CollectedHeap.inline.hpp"
       
    28 #include "gc/g1/g1CollectionSetCandidates.hpp"
    28 #include "gc/g1/heapRegionRemSet.hpp"
    29 #include "gc/g1/heapRegionRemSet.hpp"
    29 #include "gc/shared/space.inline.hpp"
    30 #include "gc/shared/space.inline.hpp"
    30 #include "runtime/atomic.hpp"
    31 #include "runtime/atomic.hpp"
    31 
    32 #include "utilities/quickSort.hpp"
    32 // Even though we don't use the GC efficiency in our heuristics as
    33 
    33 // much as we used to, we still order according to GC efficiency. This
    34 // Order regions according to GC efficiency. This will cause regions with a lot
    34 // will cause regions with a lot of live objects and large RSets to
    35 // of live objects and large remembered sets to end up at the end of the array.
    35 // end up at the end of the array. Given that we might skip collecting
    36 // Given that we might skip collecting the last few old regions, if after a few
    36 // the last few old regions, if after a few mixed GCs the remaining
    37 // mixed GCs the remaining have reclaimable bytes under a certain threshold, the
    37 // have reclaimable bytes under a certain threshold, the hope is that
    38 // hope is that the ones we'll skip are ones with both large remembered sets and
    38 // the ones we'll skip are ones with both large RSets and a lot of
    39 // a lot of live objects, not the ones with just a lot of live objects if we
    39 // live objects, not the ones with just a lot of live objects if we
       
    40 // ordered according to the amount of reclaimable bytes per region.
    40 // ordered according to the amount of reclaimable bytes per region.
    41 static int order_regions(HeapRegion* hr1, HeapRegion* hr2) {
    41 static int order_regions(HeapRegion* hr1, HeapRegion* hr2) {
       
    42   // Make sure that NULL entries are moved to the end.
    42   if (hr1 == NULL) {
    43   if (hr1 == NULL) {
    43     if (hr2 == NULL) {
    44     if (hr2 == NULL) {
    44       return 0;
    45       return 0;
    45     } else {
    46     } else {
    46       return 1;
    47       return 1;
    49     return -1;
    50     return -1;
    50   }
    51   }
    51 
    52 
    52   double gc_eff1 = hr1->gc_efficiency();
    53   double gc_eff1 = hr1->gc_efficiency();
    53   double gc_eff2 = hr2->gc_efficiency();
    54   double gc_eff2 = hr2->gc_efficiency();
       
    55 
    54   if (gc_eff1 > gc_eff2) {
    56   if (gc_eff1 > gc_eff2) {
    55     return -1;
    57     return -1;
    56   } if (gc_eff1 < gc_eff2) {
    58   } if (gc_eff1 < gc_eff2) {
    57     return 1;
    59     return 1;
    58   } else {
    60   } else {
    59     return 0;
    61     return 0;
    60   }
    62   }
    61 }
    63 }
    62 
    64 
    63 static int order_regions(HeapRegion** hr1p, HeapRegion** hr2p) {
    65 // Determine collection set candidates: For all regions determine whether they
    64   return order_regions(*hr1p, *hr2p);
    66 // should be a collection set candidates, calculate their efficiency, sort and
    65 }
    67 // return them as G1CollectionSetCandidates instance.
    66 
    68 // Threads calculate the GC efficiency of the regions they get to process, and
    67 CollectionSetChooser::CollectionSetChooser() :
    69 // put them into some work area unsorted. At the end the array is sorted and
    68   // The line below is the worst bit of C++ hackery I've ever written
    70 // copied into the G1CollectionSetCandidates instance; the caller will be the new
    69   // (Detlefs, 11/23).  You should think of it as equivalent to
    71 // owner of this object.
    70   // "_regions(100, true)": initialize the growable array and inform it
    72 class G1BuildCandidateRegionsTask : public AbstractGangTask {
    71   // that it should allocate its elem array(s) on the C heap.
    73 
    72   //
    74   // Work area for building the set of collection set candidates. Contains references
    73   // The first argument, however, is actually a comma expression
    75   // to heap regions with their GC efficiencies calculated. To reduce contention
    74   // (set_allocation_type(this, C_HEAP), 100). The purpose of the
    76   // on claiming array elements, worker threads claim parts of this array in chunks;
    75   // set_allocation_type() call is to replace the default allocation
    77   // Array elements may be NULL as threads might not get enough regions to fill
    76   // type for embedded objects STACK_OR_EMBEDDED with C_HEAP. It will
    78   // up their chunks completely.
    77   // allow to pass the assert in GenericGrowableArray() which checks
    79   // Final sorting will remove them.
    78   // that a growable array object must be on C heap if elements are.
    80   class G1BuildCandidateArray : public StackObj {
    79   //
    81 
    80   // Note: containing object is allocated on C heap since it is CHeapObj.
    82     uint const _max_size;
    81   //
    83     uint const _chunk_size;
    82   _regions((ResourceObj::set_allocation_type((address) &_regions,
    84 
    83                                              ResourceObj::C_HEAP),
    85     HeapRegion** _data;
    84                   100), true /* C_Heap */),
    86 
    85     _front(0), _end(0), _first_par_unreserved_idx(0),
    87     uint volatile _cur_claim_idx;
    86     _region_live_threshold_bytes(0), _remaining_reclaimable_bytes(0) {
    88 
    87   _region_live_threshold_bytes = mixed_gc_live_threshold_bytes();
    89     // Calculates the maximum array size that will be used.
    88 }
    90     static uint required_array_size(uint num_regions, uint num_workers, uint chunk_size) {
    89 
    91       uint const max_waste = num_workers * chunk_size;
    90 #ifndef PRODUCT
    92       // The array should be aligned with respect to chunk_size.
    91 void CollectionSetChooser::verify() {
    93       uint const aligned_num_regions = ((num_regions + chunk_size - 1) / chunk_size) * chunk_size;
    92   guarantee(_end <= regions_length(), "_end: %u regions length: %u", _end, regions_length());
    94 
    93   guarantee(_front <= _end, "_front: %u _end: %u", _front, _end);
    95       return aligned_num_regions + max_waste;
    94   uint index = 0;
    96     }
    95   size_t sum_of_reclaimable_bytes = 0;
    97 
    96   while (index < _front) {
    98   public:
    97     guarantee(regions_at(index) == NULL,
    99     G1BuildCandidateArray(uint max_num_regions, uint num_workers, uint chunk_size) :
    98               "all entries before _front should be NULL");
   100       _max_size(required_array_size(max_num_regions, num_workers, chunk_size)),
    99     index += 1;
   101       _chunk_size(chunk_size),
   100   }
   102       _data(NEW_C_HEAP_ARRAY(HeapRegion*, _max_size, mtGC)),
   101   HeapRegion *prev = NULL;
   103       _cur_claim_idx(0) {
   102   while (index < _end) {
   104       for (uint i = 0; i < _max_size; i++) {
   103     HeapRegion *curr = regions_at(index++);
   105         _data[i] = NULL;
   104     guarantee(curr != NULL, "Regions in _regions array cannot be NULL");
   106       }
   105     guarantee(!curr->is_young(), "should not be young!");
   107     }
   106     guarantee(!curr->is_pinned(),
   108 
   107               "Pinned region should not be in collection set (index %u)", curr->hrm_index());
   109     ~G1BuildCandidateArray() {
   108     if (prev != NULL) {
   110       FREE_C_HEAP_ARRAY(HeapRegion*, _data);
   109       guarantee(order_regions(prev, curr) != 1,
   111     }
   110                 "GC eff prev: %1.4f GC eff curr: %1.4f",
   112 
   111                 prev->gc_efficiency(), curr->gc_efficiency());
   113     // Claim a new chunk, returning its bounds [from, to[.
   112     }
   114     void claim_chunk(uint& from, uint& to) {
   113     sum_of_reclaimable_bytes += curr->reclaimable_bytes();
   115       uint result = Atomic::add(_chunk_size, &_cur_claim_idx);
   114     prev = curr;
   116       assert(_max_size > result - 1,
   115   }
   117              "Array too small, is %u should be %u with chunk size %u.",
   116   guarantee(sum_of_reclaimable_bytes == _remaining_reclaimable_bytes,
   118              _max_size, result, _chunk_size);
   117             "reclaimable bytes inconsistent, "
   119       from = result - _chunk_size;
   118             "remaining: " SIZE_FORMAT " sum: " SIZE_FORMAT,
   120       to = result;
   119             _remaining_reclaimable_bytes, sum_of_reclaimable_bytes);
   121     }
   120 }
   122 
   121 #endif // !PRODUCT
   123     // Set element in array.
   122 
   124     void set(uint idx, HeapRegion* hr) {
   123 void CollectionSetChooser::sort_regions() {
   125       assert(idx < _max_size, "Index %u out of bounds %u", idx, _max_size);
   124   // First trim any unused portion of the top in the parallel case.
   126       assert(_data[idx] == NULL, "Value must not have been set.");
   125   if (_first_par_unreserved_idx > 0) {
   127       _data[idx] = hr;
   126     assert(_first_par_unreserved_idx <= regions_length(),
   128     }
   127            "Or we didn't reserved enough length");
   129 
   128     regions_trunc_to(_first_par_unreserved_idx);
   130     void sort_and_copy_into(HeapRegion** dest, uint num_regions) {
   129   }
   131       if (_cur_claim_idx == 0) {
   130   _regions.sort(order_regions);
   132         return;
   131   assert(_end <= regions_length(), "Requirement");
   133       }
   132 #ifdef ASSERT
   134       for (uint i = _cur_claim_idx; i < _max_size; i++) {
   133   for (uint i = 0; i < _end; i++) {
   135         assert(_data[i] == NULL, "must be");
   134     assert(regions_at(i) != NULL, "Should be true by sorting!");
   136       }
   135   }
   137       QuickSort::sort(_data, _cur_claim_idx, order_regions, true);
   136 #endif // ASSERT
   138       for (uint i = num_regions; i < _max_size; i++) {
   137   if (log_is_enabled(Trace, gc, liveness)) {
   139         assert(_data[i] == NULL, "must be");
   138     G1PrintRegionLivenessInfoClosure cl("Post-Sorting");
   140       }
   139     for (uint i = 0; i < _end; ++i) {
   141       for (uint i = 0; i < num_regions; i++) {
   140       HeapRegion* r = regions_at(i);
   142         dest[i] = _data[i];
   141       cl.do_heap_region(r);
   143       }
   142     }
   144     }
   143   }
   145   };
   144   verify();
   146 
   145 }
   147   // Per-region closure. In addition to determining whether a region should be
   146 
   148   // added to the candidates, and calculating those regions' gc efficiencies, also
   147 void CollectionSetChooser::add_region(HeapRegion* hr) {
   149   // gather additional statistics.
   148   assert(!hr->is_pinned(),
   150   class G1BuildCandidateRegionsClosure : public HeapRegionClosure {
   149          "Pinned region shouldn't be added to the collection set (index %u)", hr->hrm_index());
   151     G1BuildCandidateArray* _array;
   150   assert(hr->is_old(), "should be old but is %s", hr->get_type_str());
   152 
   151   assert(hr->rem_set()->is_complete(),
   153     uint _cur_chunk_idx;
   152          "Trying to add region %u to the collection set with incomplete remembered set", hr->hrm_index());
   154     uint _cur_chunk_end;
   153   _regions.append(hr);
   155 
   154   _end++;
   156     uint _regions_added;
   155   _remaining_reclaimable_bytes += hr->reclaimable_bytes();
   157     size_t _reclaimable_bytes_added;
   156   hr->calc_gc_efficiency();
   158 
   157 }
   159     void add_region(HeapRegion* hr) {
   158 
   160       if (_cur_chunk_idx == _cur_chunk_end) {
   159 void CollectionSetChooser::push(HeapRegion* hr) {
   161         _array->claim_chunk(_cur_chunk_idx, _cur_chunk_end);
   160   assert(hr != NULL, "Can't put back a NULL region");
   162       }
   161   assert(_front >= 1, "Too many regions have been put back");
   163       assert(_cur_chunk_idx < _cur_chunk_end, "Must be");
   162   _front--;
   164 
   163   regions_at_put(_front, hr);
   165       hr->calc_gc_efficiency();
   164   _remaining_reclaimable_bytes += hr->reclaimable_bytes();
   166       _array->set(_cur_chunk_idx, hr);
   165 }
   167 
   166 
   168       _cur_chunk_idx++;
   167 void CollectionSetChooser::prepare_for_par_region_addition(uint n_threads,
   169 
   168                                                            uint n_regions,
   170       _regions_added++;
   169                                                            uint chunk_size) {
   171       _reclaimable_bytes_added += hr->reclaimable_bytes();
   170   _first_par_unreserved_idx = 0;
   172     }
   171   uint max_waste = n_threads * chunk_size;
   173 
   172   // it should be aligned with respect to chunk_size
   174     bool should_add(HeapRegion* hr) { return CollectionSetChooser::should_add(hr); }
   173   uint aligned_n_regions = (n_regions + chunk_size - 1) / chunk_size * chunk_size;
   175 
   174   assert(aligned_n_regions % chunk_size == 0, "should be aligned");
   176   public:
   175   regions_at_put_grow(aligned_n_regions + max_waste - 1, NULL);
   177     G1BuildCandidateRegionsClosure(G1BuildCandidateArray* array) :
   176 }
   178       _array(array),
   177 
   179       _cur_chunk_idx(0),
   178 uint CollectionSetChooser::claim_array_chunk(uint chunk_size) {
   180       _cur_chunk_end(0),
   179   uint res = (uint) Atomic::add((jint) chunk_size,
   181       _regions_added(0),
   180                                 (volatile jint*) &_first_par_unreserved_idx);
   182       _reclaimable_bytes_added(0) { }
   181   assert(regions_length() > res + chunk_size - 1,
   183 
   182          "Should already have been expanded");
   184     bool do_heap_region(HeapRegion* r) {
   183   return res - chunk_size;
   185       // We will skip any region that's currently used as an old GC
   184 }
   186       // alloc region (we should not consider those for collection
   185 
   187       // before we fill them up).
   186 void CollectionSetChooser::set_region(uint index, HeapRegion* hr) {
   188       if (should_add(r) && !G1CollectedHeap::heap()->is_old_gc_alloc_region(r)) {
   187   assert(regions_at(index) == NULL, "precondition");
   189         add_region(r);
   188   assert(hr->is_old(), "should be old but is %s", hr->get_type_str());
   190       } else if (r->is_old()) {
   189   regions_at_put(index, hr);
   191         // Keep remembered sets for humongous regions, otherwise clean out remembered
   190   hr->calc_gc_efficiency();
   192         // sets for old regions.
   191 }
   193         r->rem_set()->clear(true /* only_cardset */);
   192 
   194       } else {
   193 void CollectionSetChooser::update_totals(uint region_num,
   195         assert(r->is_archive() || !r->is_old() || !r->rem_set()->is_tracked(),
   194                                          size_t reclaimable_bytes) {
   196                "Missed to clear unused remembered set of region %u (%s) that is %s",
   195   // Only take the lock if we actually need to update the totals.
   197                r->hrm_index(), r->get_type_str(), r->rem_set()->get_state_str());
   196   if (region_num > 0) {
   198       }
   197     assert(reclaimable_bytes > 0, "invariant");
   199       return false;
   198     // We could have just used atomics instead of taking the
   200     }
   199     // lock. However, we currently don't have an atomic add for size_t.
   201 
   200     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
   202     uint regions_added() const { return _regions_added; }
   201     _end += region_num;
   203     size_t reclaimable_bytes_added() const { return _reclaimable_bytes_added; }
   202     _remaining_reclaimable_bytes += reclaimable_bytes;
   204   };
   203   } else {
   205 
   204     assert(reclaimable_bytes == 0, "invariant");
       
   205   }
       
   206 }
       
   207 
       
   208 void CollectionSetChooser::iterate(HeapRegionClosure* cl) {
       
   209   for (uint i = _front; i < _end; i++) {
       
   210     HeapRegion* r = regions_at(i);
       
   211     if (cl->do_heap_region(r)) {
       
   212       cl->set_incomplete();
       
   213       break;
       
   214     }
       
   215   }
       
   216 }
       
   217 
       
   218 void CollectionSetChooser::clear() {
       
   219   _regions.clear();
       
   220   _front = 0;
       
   221   _end = 0;
       
   222   _remaining_reclaimable_bytes = 0;
       
   223 }
       
   224 
       
   225 class ParKnownGarbageHRClosure: public HeapRegionClosure {
       
   226   G1CollectedHeap* _g1h;
       
   227   CSetChooserParUpdater _cset_updater;
       
   228 
       
   229 public:
       
   230   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
       
   231                            uint chunk_size) :
       
   232     _g1h(G1CollectedHeap::heap()),
       
   233     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
       
   234 
       
   235   bool do_heap_region(HeapRegion* r) {
       
   236     // We will skip any region that's currently used as an old GC
       
   237     // alloc region (we should not consider those for collection
       
   238     // before we fill them up).
       
   239     if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
       
   240       _cset_updater.add_region(r);
       
   241     } else if (r->is_old()) {
       
   242       // Keep remembered sets for humongous regions, otherwise clean out remembered
       
   243       // sets for old regions.
       
   244       r->rem_set()->clear(true /* only_cardset */);
       
   245     } else {
       
   246       assert(r->is_archive() || !r->is_old() || !r->rem_set()->is_tracked(),
       
   247              "Missed to clear unused remembered set of region %u (%s) that is %s",
       
   248              r->hrm_index(), r->get_type_str(), r->rem_set()->get_state_str());
       
   249     }
       
   250     return false;
       
   251   }
       
   252 };
       
   253 
       
   254 class ParKnownGarbageTask: public AbstractGangTask {
       
   255   CollectionSetChooser* _hrSorted;
       
   256   uint _chunk_size;
       
   257   G1CollectedHeap* _g1h;
   206   G1CollectedHeap* _g1h;
   258   HeapRegionClaimer _hrclaimer;
   207   HeapRegionClaimer _hrclaimer;
   259 
   208 
       
   209   uint volatile _num_regions_added;
       
   210   size_t volatile _reclaimable_bytes_added;
       
   211 
       
   212   G1BuildCandidateArray _result;
       
   213 
       
   214   void update_totals(uint num_regions, size_t reclaimable_bytes) {
       
   215     if (num_regions > 0) {
       
   216       assert(reclaimable_bytes > 0, "invariant");
       
   217       Atomic::add(num_regions, &_num_regions_added);
       
   218       Atomic::add(reclaimable_bytes, &_reclaimable_bytes_added);
       
   219     } else {
       
   220       assert(reclaimable_bytes == 0, "invariant");
       
   221     }
       
   222   }
       
   223 
   260 public:
   224 public:
   261   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
   225   G1BuildCandidateRegionsTask(uint max_num_regions, uint chunk_size, uint num_workers) :
   262       AbstractGangTask("ParKnownGarbageTask"),
   226     AbstractGangTask("G1 Build Candidate Regions"),
   263       _hrSorted(hrSorted), _chunk_size(chunk_size),
   227     _g1h(G1CollectedHeap::heap()),
   264       _g1h(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
   228     _hrclaimer(num_workers),
       
   229     _num_regions_added(0),
       
   230     _reclaimable_bytes_added(0),
       
   231     _result(max_num_regions, chunk_size, num_workers) { }
   265 
   232 
   266   void work(uint worker_id) {
   233   void work(uint worker_id) {
   267     ParKnownGarbageHRClosure par_known_garbage_cl(_hrSorted, _chunk_size);
   234     G1BuildCandidateRegionsClosure cl(&_result);
   268     _g1h->heap_region_par_iterate_from_worker_offset(&par_known_garbage_cl, &_hrclaimer, worker_id);
   235     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
       
   236     update_totals(cl.regions_added(), cl.reclaimable_bytes_added());
       
   237   }
       
   238 
       
   239   G1CollectionSetCandidates* get_sorted_candidates() {
       
   240     HeapRegion** regions = NEW_C_HEAP_ARRAY(HeapRegion*, _num_regions_added, mtGC);
       
   241     _result.sort_and_copy_into(regions, _num_regions_added);
       
   242     return new G1CollectionSetCandidates(regions,
       
   243                                          _num_regions_added,
       
   244                                          _reclaimable_bytes_added);
   269   }
   245   }
   270 };
   246 };
   271 
   247 
   272 uint CollectionSetChooser::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
   248 uint CollectionSetChooser::calculate_work_chunk_size(uint num_workers, uint num_regions) {
   273   assert(n_workers > 0, "Active gc workers should be greater than 0");
   249   assert(num_workers > 0, "Active gc workers should be greater than 0");
   274   const uint overpartition_factor = 4;
   250   return MAX2(num_regions / num_workers, 1U);
   275   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
   251 }
   276   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
   252 
   277 }
   253 bool CollectionSetChooser::should_add(HeapRegion* hr) {
   278 
       
   279 bool CollectionSetChooser::region_occupancy_low_enough_for_evac(size_t live_bytes) {
       
   280   return live_bytes < mixed_gc_live_threshold_bytes();
       
   281 }
       
   282 
       
   283 bool CollectionSetChooser::should_add(HeapRegion* hr) const {
       
   284   return !hr->is_young() &&
   254   return !hr->is_young() &&
   285          !hr->is_pinned() &&
   255          !hr->is_pinned() &&
   286          region_occupancy_low_enough_for_evac(hr->live_bytes()) &&
   256          region_occupancy_low_enough_for_evac(hr->live_bytes()) &&
   287          hr->rem_set()->is_complete();
   257          hr->rem_set()->is_complete();
   288 }
   258 }
   289 
   259 
   290 void CollectionSetChooser::rebuild(WorkGang* workers, uint n_regions) {
   260 G1CollectionSetCandidates* CollectionSetChooser::build(WorkGang* workers, uint max_num_regions) {
   291   clear();
   261   uint num_workers = workers->active_workers();
   292 
   262   uint chunk_size = calculate_work_chunk_size(num_workers, max_num_regions);
   293   uint n_workers = workers->active_workers();
   263 
   294 
   264   G1BuildCandidateRegionsTask cl(max_num_regions, chunk_size, num_workers);
   295   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
   265   workers->run_task(&cl, num_workers);
   296   prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
   266 
   297 
   267   G1CollectionSetCandidates* result = cl.get_sorted_candidates();
   298   ParKnownGarbageTask par_known_garbage_task(this, chunk_size, n_workers);
   268   result->verify();
   299   workers->run_task(&par_known_garbage_task);
   269   return result;
   300 
   270 }
   301   sort_regions();
       
   302 }